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Abstract 
Convolutional neural networks, which have achieved outstanding performance 
in image recognition, have been extensively applied to action recognition. 
The mainstream approaches to video understanding can be categorized into 
two-dimensional and three-dimensional convolutional neural networks. Al-
though three-dimensional convolutional filters can learn the temporal corre-
lation between different frames by extracting the features of multiple frames 
simultaneously, it results in an explosive number of parameters and calcula-
tion cost. Methods based on two-dimensional convolutional neural networks 
use fewer parameters; they often incorporate optical flow to compensate for 
their inability to learn temporal relationships. However, calculating the cor-
responding optical flow results in additional calculation cost; further, it ne-
cessitates the use of another model to learn the features of optical flow. We 
proposed an action recognition framework based on the two-dimensional 
convolutional neural network; therefore, it was necessary to resolve the lack 
of temporal relationships. To expand the temporal receptive field, we pro-
posed a multi-scale temporal shift module, which was then combined with a 
temporal feature difference extraction module to extract the difference be-
tween the features of different frames. Finally, the model was compressed to 
make it more compact. We evaluated our method on two major action recog-
nition benchmarks: the HMDB51 and UCF-101 datasets. Before compression, 
the proposed method achieved an accuracy of 72.83% on the HMDB51 data-
set and 96.25% on the UCF-101 dataset. Following compression, the accuracy 
was still impressive, at 95.57% and 72.19% on each dataset. The final model 
was more compact than most related works. 
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1. Introduction 

Recently in the field of computer vision, human action recognition has become 
increasingly research-worthy. With the development of technology, action rec-
ognition has wide applications in the present era. Deep ConvNets, such as In-
ception-V1 [1], ResNet [2], and their variations [3] [4] [5] [6] have already 
achieved outstanding performance in image classification. Several studies on ac-
tion recognition led to the direct inflation of the filters of these models from 
two-dimensional (2D) to three-dimensional (3D) to obtain inflated 3D ConvNets 
(I3D) [7], resolution 3D LLC (Res3D) [8], ResNeXt3D [9], among other models. 
Currently, there are two main approaches to action recognition: 2D CNN (con-
volutional neural network) and 3D CNN. The 2D CNN method performs con-
volution on one frame at a time, without temporal fusion. Conversely, the 3D 
CNN method performs convolution on multiple frames using 3D convolutional 
filters to achieve spatio-temporal learning. 

In contrast to image recognition, video understanding requires learning the 
relevance of frames; therefore, the disadvantage of the 2D CNN method is its 
relatively limited performance when only RGB images are used for recognition. 
To improve their accuracy, most 2D CNN mainstream approaches, such as 
two-stream [10] and its variations [11] [12] [13], incorporate the optical flow 
field [14]; however, this leads to additional computational costs. Conversely, 
C3D [15], the mainstream method based on 3D CNN leverages the advantages 
of 3D convolutional kernels to perform convolution on multiple frames and ef-
fectively learn the correlation of adjacent sampled frames. However, compared 
with the 2D CNN, its architecture causes an explosion of parameters and calcu-
lations. 

In this study, we aimed to further improve the performance of the traditional 
2D CNN architecture for action recognition by expanding the temporal recep-
tive fields. Although TSM [16] attempts to increase the temporal receptive fields 
to three, methods [11] [12] that generally use a stack of five optical flow frames 
as inputs with each RGB frame still have limitations. We propose the multi-scale 
temporal shift module (MSTSM), which can learn spatio-temporal information 
more effectively. Owing to the shift blocks with different scales, the entire model 
has higher receptive fields in the time dimension. Furthermore, many actions are 
prone to misprediction owing to the similarity of the movements that constitute 
them. The temporal feature difference extraction module of the proposed mod-
ule can subtract the features of different frames to learn the uniqueness of the 
details of each action. Figure 1 is a schematic diagram of the proposed model. 
Finally, we filtered out similar kernels to make the model more compact. 
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Figure 1. Schematic diagram of proposed method. Multi-scale temporal shift module 
merges features of multiple frames to enlarge the temporal receptive fields. Temporal 
feature difference extraction module subtracts features of different frames to highlight 
differences. 

2. Related Works 

Recently, many approaches to video understanding and action recognition have 
been proposed. We discuss some mainstream works in this section. Compared 
with the traditional methods [17] [18], these works can be broadly categorized 
into two classes: 2D ConvNets-based methods and 3D ConvNets-based methods.  

2.1. 2D CNN 

It is difficult to capture temporal relationship, which is crucial in video recogni-
tion, using methods based on 2D CNN; hence, most works incorporate other 
streams, such as optical flow or motion vector [19] [20] [21] [22], to compensate 
for this deficiency. 

Simonyan et al. [10] designed a two-stream ConvNet framework that contains 
spatial and temporal streams. The input for the spatial stream is a still RGB im-
age sampled from the source video, whereas that of the temporal stream is in the 
form of stacked dense optical flow. The outputs from these two streams are 
combined through late fusion to obtain the final prediction. 

Wang et al. [11] proposed the TSN based on the aforementioned two-stream 
method. In this approach, the long-range temporal information is captured from 
the sampled frames using a sparse sampling strategy. First, the given input vid-
eos are sliced into several segments of equal length; then, one frame is sampled 
from each segment. Fusing the extracted features from these sampled snippets 
enable the framework to effectively learn the long-range relationships in the 
temporal dimension. 

Lin et al. [16] proposed TSM, which propels the channel forward and backward 
along the temporal dimension; thus, the features of adjacent sampled frames are 
fused with the current frame after processing. It can be applied to any 2D Con-
vNet backbone to achieve a similar effect as 3D ConvNet without extra costs. 

2.2. 3D CNN 

Carreira et al. [7] proposed a framework called I3D, which inflates all the con-
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volutional filters and pooling layers of the Inception-V1 model [1] from 2D ker-
nels to 3D kernels. Because of the design of Inception-V1 and the pre-trained 
weights on the Kinetics dataset [23], this framework has fewer parameters com-
pared to C3D [15] and thus circumvents the overfitting problem. However, the 
I3D samples frames from the whole video at the inference stage, which causes 
heavy computational cost. 

Wang et al. [24] proposed an I3D-based framework that incorporated long 
short-term memory (LSTM) [25] for improved accuracy to model the high-level 
temporal features extracted by the Kinetics-pretrained I3D model. However, 
similar to the I3D, this approach experienced parameter explosion due to the 
LSTM. 

T-C3D, a framework proposed by Liu et al. [26], first divides the given input 
video into three clips and samples eight frames from each clip. Thus, it can cap-
ture short-term features from frames in the same clips using 3D kernels and 
long-term features when fusing the prediction from each clip. Furthermore, Liu 
et al. employed compression methods [27] [28] to reduce the model size. 

Although the compression technique reduces the model size, T-C3D still re-
quires several frames for inference, which still causes explosive FLOPs. 

3. Multi-Scale Temporal Shift Module and Temporal Feature  
Difference Extraction Based on 2D CNN for Action  
Recognition 

We combined two proposed modules, MSTSM and temporal feature difference 
extraction module (TFDEM), on ResNet-50 [2], as shown in Figure 2. First, we 
adopted the sparse sampling strategy [11] and fed the sampled frames to our 
model. In the MSTSM, after shifting the feature maps along the temporal di-
mension, we replaced and concatenated different frame features in the two tem-
poral shift blocks and increased the temporal receptive fields. In the TFDEM, to 
highlight the difference between the frames, we subtracted the feature maps of 
the current frame and the next frame. Then, we integrated the cross-entropy loss 
[29] value of the two paths to update the weights of the entire model. Finally, to 
make the model more compact, we filtered the kernels in the layers that had 
passed the MSTSM. 

 

 

Figure 2. Overall architecture of proposed method. Backbone used was 2D ResNet-50; we 
performed convolution on different frames at different times. We pruned kernels of lay-
ers that passed MSTSM and denoted them as “MSTSM-p”. 
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3.1. Sampling Strategy 
Similar to Wang et al. [11], we adopted a sparse sampling strategy. The input vid-
eo was sliced into several segments and one frame from each segment was sam-
pled. This made it possible to understand the information conveyed by the entire 
video. 

For example, given an input video with N frames, we divided the N frames 
into n parts of equal length; thus, each part was composed of k N n=  frames. 
Then, the sampled frames from each part formed a set and were denoted as fol-
lows: 

{ }1 2 3, , , , nFrames F F F F= �                   (1) 

where the frame number iF  for the training stage was a random number in the 
interval [ ]1,k  and plus ( )1i k− ∗ . For the testing stage, the frame number iF  
was the median of the interval [ ]1, k  and plus ( )1i k− ∗ . In our experiments, n 
is 8, unless otherwise specified. 

3.2. Multi-Scale Temporal Shift Module 

As the name implies, the MSTSM shifts features with different scales along the 
temporal dimension. The main purpose of shifting the feature maps bi-directionally 
is to merge the features of different frames when performing convolution. Fig-
ure 3 shows the detailed structure of the MSTSM. The rows with different colors 
indicate the features from different time units Ti, where i is the frame index. For 
brevity, we excluded the batch size, height, and width dimensions of the feature 
map. Next, we describe the benefits of the two temporal shift blocks with differ-
ent shift units. 
 

 

Figure 3. Detailed structure of proposed MSTSM. For input feature maps, rows with different colors indicate features from 
different time units Ti, where i is frame index. 
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1) One-unit Temporal Shift Block: In the case of shifting one unit, features are 
shifted from the frames before and after the current frame; this is also the rela-
tionship that needs to be learned most in action recognition. We selected the 
number of input channels with a higher ratio to be shifted. The intuitive idea 
was to replace the original feature maps with the shifted ones, as shown on the 
left side of Figure 3. However, the replaced feature map may contain very im-
portant channels from the original frame; thus, it may not be possible to learn 
the current frame effectively. Spatio-temporal learning can be achieved without 
incurring additional costs. 

2) Two-unit Temporal Shift Block: After one-unit temporal shifting, to further 
increase the model’s temporal receptive fields, we shifted the features by two 
units. Thus, we shifted the features of the frame before the previous frame and 
after the next frame to the current frame. Hence, as illustrated in Figure 4, we 
merged the information from the other four frames with those of the current 
frames, except for boundary cases. 

To circumvent the aforementioned risk, we concatenated the shifted features 
with the original identical feature maps, as shown on the right side of Figure 3. 
Thus, the features with two-unit shifts could be considered extra information. 
However, although the information is critical, shifting a large number of chan-
nels with two units may confuse the model about the features that are close to 
the current frame; this may interfere with the learning of temporal order. There-
fore, we selected the number of channels with a lower ratio in this case; this can 
also reduce computational costs. 

3.3. Temporal Feature Difference Extraction Module 

In several cases, the difference between the frames was subtle even though we 
adopted the sparse sampling strategy. Another problem was that the movements 
that constituted some actions differed only slightly. Thus, the proposed TFDEM 
module was designed to address these problems. 

Figure 5 shows the detailed structure of the TFDEM. To maintain the effi-
ciency and enlarge the receptive fields during feature extraction, the stride of the 
convolutional layers before subtraction was set to 2; this shrinks the size of the 
feature maps. However, subtracting the low-resolution features did not have sig-
nificant impact; therefore, the bilinear upsample layer was inserted before fea-
ture subtraction. Then, the convolutional, global average pooling [30], and fully 
connected layers extracted and aggregated the subtracted features. 

 

 

Figure 4. After passing through the proposed MSTSM, temporal receptive fields, except 
boundary cases, can be increased by five. 
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Figure 5. Schematic of proposed TFDEM (Temporal feature difference extraction module) that subtracts features 
of different frames to highlight differences. 

 
Figure 6 shows the effect of our proposed TFDEM; the top row is the sampled 

frames from the given video. It is difficult to see the difference between the two 
sampled frames and the extracted features. The feature maps at the bottom row 
are the results following subtraction. Frame 1 (the bottom right) remains the same. 
The bottom left shows the result of subtracting the feature map of Frame 2 from 
that of Frame 1. It can be observed that the different regions between the frames 
are highlighted following subtraction. 

3.4. Objective Function 

We had two overall objective functions during the training stage: main  and 

TFDEM . The first objective function main  was calculated based on the defini-
tion of the cross entropy with the output probability mainp  from the main path 
and the ground-truth label truey . The equation can be written as follows: 

( ) ( ) ( ), ,

1 1

1arg min arg min ln
N C i c i c

main main true main
i c

W y p
N = =

 = − 
 

∑∑       (2) 

where N is the total number of training videos, mainW  is the learnable weight of 
the main path, truey  is the ground-truth label, C is the total number of catego-
ries, and ( ) ,i c

mainp , produced by the main path, is the probability of the ith video 
belonging to the cth category. 

Similarly, the equation of the second objective function TFDEM  can be writ-
ten as follows: 

( ) ( ) ( ), ,

1 1

1arg min arg min ln
N C i c i c

TFDEM TFDEM true TFDEM
i c

W y p
N = =

 = − 
 

∑∑    (3) 

where TFDEMW  is the learnable weight of the TFDEM path, and ( ) ,i c
TFDEMp , 

produced by the TFDEM path, is the probability of the ith video belonging to the 
cth category. 

total  is the sum of both objective functions. Hence, the equation can be writ-
ten as follows: 

( ) ( ) ( )arg min arg mintotal main main TFDEM TFDEMW W W= +           (4) 

where W is the learnable weight of the entire model. 

3.5. Pruning Method 

The kernel space of each convolutional layer contains some “similar” kernels.  
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Figure 6. Example to visualize feature map before and after subtraction. 
Top row: sampled frames. Middle row: feature maps of each frame be-
fore subtraction. Bottom row: feature map of Frame 1 remains the same; 
other one is the difference of feature maps of Frames 1 and 2. 

 
Performing convolution using similar kernels will result in similar outputs. Highly 
similar outputs may be redundant in the model; hence, some of them can be 
removed with no significant effect. 

1) Defining Similar Kernels: We used two steps to define “similar” kernels. 
First, we searched for a kernel GMK  with the smallest distance from all other 
kernels in the kernel space; the equation can be written as follows: 

[ ] 2
1, out

i i j
j Channel

td K K
∈

= −∑                    (5) 

itd  is summation of the distance for a kernel iK  to all other kernels in the 
same kernel space.  

min ,GM
iK K=                        (6) 

where iK  with minimum itd  and outChannel  is the number of output chan-
nels for each target layer and iK  is the thi  kernel in the kernel space. Second, 
we ranked all the kernels in the ascending order of their distance from GMK  
using the following equation: 

( )1 2, , , , , ,i channelsort d d d d� �  

[ ]
2

, 1,GM
i i outd K K i Channel= − ∀ ∈                (7) 

Then, we selected kernels according to the pruning ratio. 
Therefore, the “similar kernels” referred to hereafter are kernels with a smaller 

distance from GMK . 
2) Target Layers: The target layers in our method were the layers with the 

MSTSM because the kernel similarity may either result in redundant spatial or 
temporal features, following shifting. Pruning this layer can filter out redundant 
spatial and temporal features, as illustrated in Figure 7. 

3) Averaging Selected Input Feature Maps: It is known that each input feature 
map of the layer iL  is the output feature map of 1iL − . Therefore, we first found 

1 1i
out inC R− ∗  similar kernels from the kernel space of 1iL − . Then, we averaged 
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the corresponding channels of the output feature map into one channel, where 

inR  is the prune ratio in this case and 1i
outC −  is the number of output channels 

of 1iL − . 
4) Pruning Selected Kernels: To prune the kernels in layer iL , we found and 

eliminated similar kernels with the ratio outR ; therefore, both i
outC  and 1i

inC +  
reduced 1i

out outC R∗  channels, respectively, where i
outC  was the number of 

output channels of iL  and 1i
inC +  was the number of input channels of 1iL + . 

Both cases are illustrated in Figure 8. 

4. Results 

In this section, we first describe our experimental environment and datasets. Then, 
we present the experimental results to demonstrate that the proposed modules 
can improve the performance. Further, the ablation studies are described to 
show how we determined the optimal settings. At the end of this section, we 
present the comparison results of the proposed method and several state-of-the- 
art methods. 

 

 

Figure 7. Target layer redundant features: After shifting, channels 
with high similarities form redundant spatial or temporal features. 

 

 

Figure 8. Selecting pruning channels. Example of (a) average input feature map based on the similar kernels of the 
previous layer. (b) Similar kernels in target layer were eliminated and convolution was conducted with averaged 
input feature maps. 
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4.1. Experimental Environment 

We implemented our proposed method using the Pytorch [32] framework. Ow-
ing to the benefits of transfer learning, we pre-trained our model on the Image-
Net [33] and Kinetics [23] datasets. During the fine-tuning process, we froze the 
batch normalization [3] layer. We trained our model with a weight decay of 
0.0005, and an initial learning rate of 0.00025, which was divided by ten every 
ten epochs; the batch size was 16, and the optimizer was the stochastic gradient 
descent (SGD) [34]. The CPU was an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.1 
GHz, and the GPU was NVIDIA TITAN V. 

4.2. Datasets 

We mainly evaluated our framework on the UCF-101 dataset provided by [35] 
and the HMDB51 dataset provided by [36]. We briefly introduce these two da-
tasets in the following sections. 

1) UCF-101 [35]: The UCF-101 is one of the most popular datasets for action 
recognition. It contains 13,320 realistic action videos from 101 categories in five 
groups; most of the videos were collected from YouTube. The video frame rate 
in this dataset is 25 frames per second and the resolution 320 × 240. The dataset 
was composed of three training and testing splits; we also presented the average 
accuracy of the three splits, similar to the majority of existing works. 

2) HMDB51 [36]: HMDB51 is another popular dataset used for evaluation in 
most action recognition research. The videos in this dataset were gathered 
mostly from movies. It consists of 6766 videos with 51 categories, each of which 
contains a minimum of 101 clips. The resolution of the videos in this dataset is 
340 × 256; the frame rate was 30 frames per second. The dataset was composed 
of three training and testing splits. Similar to the evaluation strategy of the 
UCF-101 dataset, we presented the average accuracy of the three splits. 

4.3. Data Augmentation 

To improve the performance of the model and avoiding overfitting, we applied 
similar data augmentation as [16] during training. First, we resized the raw im-
age to make the shorter side equal to 256 pixels. Then, we performed corner and 
center cropping on the height and width to satisfy the size [ ]256,224,192,168∈ . 
Subsequently, we resized the cropped image to 224 × 224. In the last step, a ran-
dom horizontal flipping with probability 0.5p =  was performed. 

4.4. Experimental Results and Ablation Studies 

In this section, we present the results of the proposed methods step by step. Un-
less otherwise specified, the results were evaluated on the UCF-101 dataset. 

We show the various settings of the proposed modules and discuss their in-
fluence on different aspects. Furthermore, we also attempted to apply our pro-
posed method to a different backbone; we obtained competitive results. We also 
demonstrate the possibility of incorporating the optical flow into our method to 
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achieve greater accuracy. 
Table 1 shows the comparison result of the baseline and proposed MSTSM. In 

the baseline, the uni-scale temporal shift module was combined with the back-
bone. Conversely, the proposed method fused the MSTSM with the backbone, 
which is denoted as MSTSM. From Table 1, it can be observed that the MSTSM 
improved the average accuracy by 0.71%. 

Based on the results shown in Table 1, we incorporated the TFDEM into the 
MSTSM and denoted it as the MSTSM-TFDEM. Compared to the architecture 
with only the MSTSM, the average accuracy increased by 0.61%. Therefore, the 
results obtained using these two proposed modules were 1.32% more accurate, 
compared with the result yielded by the baseline. 

Then, we applied our pruning method to the architecture based on the MSTSM 
and TFDEM and denoted it as MSTSM-TFDEM-p. After filtering out similar 
kernels, we preserved the useful and informative features. Based on the experi-
mental result, we reduced approximately 2M of parameters and maintained an 
accuracy of 95.57%. 

The influence of each module is summarized in Table 1. Regardless of wheth-
er we combined the TFDEM and MSTSM, the accuracy was significantly higher 
than that of the baseline. The highest accuracy was achieved by the combination 
of the modules. 

1) Incorporation with Optical Flow: Similar to other works, we also attempted 
to incorporate the optical flow stream into the proposed module to achieve ac-
curacy. The resultant architecture is shown in Table 1. The architecture with the 
optical flow stream is denoted as MSTSM-TFDEM-OF. We combined the RGB 
and optical flow networks at a weight ratio of 1:1.5, which is the best weight ratio 
based on our experiments. The accuracy of the module incorporating the optical 
flow was 1.6% higher. 

 
Table 1. Experimental results of our proposed methods on UCF-101 dataset using Res-
Net-50 and efficientnet-B0 [31] as the backbone. 

Backbone Method Accuracy # Params GFLOPs 

ResNet-50 
[16] (baseline) 

(our reimplementation) 
94.93% 23.7 3.8 

ResNet-50 

MSTSM 95.64% 24.2 3.9 

[16] + TFDEM 95.71% 23.9 3.9 

MSTSM + TFDEM 96.25% 24.5 4.0 

MSTSM + TFDEM + pruning 95.57% 22.4 3.6 

MSTSM-TFDEM-OF 97.98% 49.0 7.9 

EfficientNet-B0 
MSTSM 95.60% 4.23 0.7 

MSTSM + TFDEM 96.08% 4.49 0.7 
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2) Application to Different Backbones: In this section, we demonstrate that 
our proposed modules can be applied to any backbone. We take the Efficient-
Net-B0 [31] as an example. From the experimental results shown in Table 1, we 
obtained a similar accuracy as ResNet-50 and successfully compressed the num-
ber of parameters from 23.71 M to 4.49 M, which reduces the model size by ap-
proximately 81.06%. 

3) Shift Ratio of Each Temporal Shift Block: Regarding the experiments, the 
first aspect to be discussed is the shift ratio of each temporal shift block. We ex-
perimented with various combinations of the ratio of each temporal shift block. 
The ratios of the one-unit temporal shift block and two-unit temporal shift block 
are denoted as oneR  and twoR , respectively. As shown in Table 2, this can be 
divided into two cases: one twoR R<  and one twoR R> . In the first case ( one twoR R< ), 
we set 1 16oneR =  and 1 8twoR = . The result was not satisfactory because, as 
mentioned in Section 3.2.1, the frame before and after the current frame is the 
most important relationship that must be learned to perform action recognition; 
hence, oneR  should be greater than twoR . In another case ( one twoR R> ), we 
fixed 1 8oneR =  and twoR  varies from 1/12 to 1/20. With the decrease in twoR , 
the accuracy and number of parameters also decreased. To ensure higher accu-
racy and fewer parameters, we set 1 8oneR =  and 1 16twoR = . 

4) Temporal Receptive Fields of ConvNet: In this section, we discuss the im-
pact of the temporal receptive field (TRF). In addition to the two-unit temporal 
shift block, we also experimented with other scales, as shown in Figure 9. Figure 
9(a) illustrates a variation of the two-unit-shift, which pads the features of the 
next frame to the vacancy bi-directionally. Figure 9(b) is the schematic of the 
MSTSM with three scales ranging from a one-unit-shift to a three-unit-shift. 

 

 

Figure 9. Different approaches to obtain higher TRF. (a) Variant of two-unit 
shift; moving next frame to pad vacancy. (b) Shift with three scales. 
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Table 2. Finding balance between accuracy and parameters tradeoff from ablation studies 
on various ratios of each temporal shift block. 

 
one twoR R<  one twoR R>  

1/16 1/8 1/8 1/12 1/8 1/16 1/8 1/20 

Accuracy 94.58% 95.79% 95.72% 95.26% 

# Params (M) 24.79 24.43 24.25 24.14 

 
In Table 3, iMSTSM  indicates that we shifted the feature maps using i 

scale(s), and 2varMSTSM  denotes the variation shown in Figure 9(a). From the 
experimental results shown in Table 3, the value of the temporal receptive field 
is not a fixed number because there are boundary cases. Furthermore, as the 
temporal receptive field increased, the corresponding accuracy did not necessar-
ily increase. This is because some input videos have a large number of frames, 
causing the interval of our sampled frames to be so large that frames that were 
far away provided less relevant features. Therefore, we adopted the 2MSTSM  as 
our proposed module. 

5) Effect of Minimizing LTFDEM: Although subtracting the feature maps of dif-
ferent frames can highlight the difference between them, our TFDEM can still 
extract features inaccurately. Hence, we also minimized the loss value of the 
proposed TFDEM path to update the weights in it. We present the comparison 
result between the performance of the TFDEM with and without minimizing the 
loss value of the TFDEM path in Table 4. 

4.5. Comparison with Other Works 

We evaluated our framework on the UCF-101 and HMDB51 datasets and com-
pared the performance with other modules in this section. As shown in Table 5, 
the proposed method outperformed the others while using only the RGB modal-
ity and eight frames. 
 
Table 3. Comparison of architecture with different temporal receptive fields in terms of 
accuracy on UCF-101 dataset split-1. 

Type of MSTSM Accuracy Temporal Receptive Fields 

1MSTSM  95.00% 2 - 3 

2MSTSM  95.72% 3 - 5 

2varMSTSM  95.20% 4 - 5 

3MSTSM  95.16% 4 - 7 

 
Table 4. Comparison of accuracy of TFDEM with and without minimized loss value of 
TFDEM path on UCF-101 dataset. 

Method Accuracy 

w/ LTFDEM 96.25% 

w/o LTFDEM 95.59% 
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Table 5. Comparison of accuracy and number of parameters between proposed model and state-of-the-art methods on UCF101 
dataset and HMDB51 dataset. 

Works Architecture Modality Sampling frames # Params 
Accuracy 
(UCF101) 

Accuracy 
(HDMB51) 

I3D-LSTM [24] (IOP’19) 3D CNN RGB whole video - 95.1% - 

STH [20] (VCIP’19) 3D and 2D CNN RGB, MV 16 88 94.3% 68.6% 

T-C3D [26] (TCSVT’20) 3D CNN RGB 24 31.7 92.5% 62.4% 

IP-LSTM [37] (Access’20) LSTM RGB, OF 25 27.6 91.4% 68.2% 

STDDCN [38] (PR’19) 2D CNN RGB, OF 25 59 94.8% 69.49% 

Heterogeneous Two-Stream [12] 2D CNN RGB, OF 25 45.5 94.4% 67.2% 

LVR [39] (ICMLA’19) 2D CNN RGB, OF 25 92.8 94.4% 71.0% 

Multi-teacher KD [21] (JSA’20) 2D CNN RGB, MV, Residual (1 + 11) 33.6 88.5% 56.16% 

TSM [16] (ICCV’19) 2D CNN RGB 8 23.7 94.9% 70.91% 

TSN [11] (TPAMI’19) 2D CNN RGB, OF 25 22.6 94.9% 71.0% 

MSTSM-TFDEM (ours) 2D CNN RGB 8 24.5 96.25% 72.83% 

MSTSM-TFDEM-p (ours) 2D CNN RGB 8 22.4 95.57% 72.19% 

MSTSM-TFDEM (ours EfficientNet) 2D CNN RGB 8 4.5 96.08% 72.48% 

5. Conclusion 

In this study, we designed an action recognition framework based on 2D Con-
vNet. When an RGB image alone is used as the 2D ConvNet input, there will be 
no information regarding the temporal relationship. To expand the temporal 
receptive fields without increasing the number of parameters, we proposed an 
MSTSM with average-sized receptive fields to learn the features from other 
frames. We also proposed a TFDEM to avoid mispredictions in the case of simi-
lar actions. Further, our pruning method made it possible to filter out similar 
kernels and obtain a compact model. Experimental results show that both the 
MSTSM and TFDEM are effective and our modules can effortlessly be applied to 
any other backbone. With both proposed modules, it was possible to achieve an 
accuracy of 96.25% on the UCF-101 dataset, which is a 1.1% improvement on 
the I3D-LSTM [24]. For the HMDB51 dataset, we achieved 72.83% accuracy, an 
improvement of 1.8% on the LVR [39]. After compression, the number of para-
meters was effectively reduced by approximately 2M, and an accuracy of 95.57% 
and 72.19% was achieved on the UCF-101 and HMDB51 datasets, respectively. 
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