
Journal of Software Engineering and Applications, 2021, 14, 44-66
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.141004 Jan. 21, 2021 44 Journal of Software Engineering and Applications

Cyclomatic Complexity-Based Encapsulation,
Data Hiding, and Separation of Concerns

Charles W. Butler, Thomas J. McCabe

Colorado State University, Fort Collins, USA

Abstract
Three design principles are prominent in software development-encapsulation,
data hiding, and separation of concerns. These principles are used as subjec-
tive quality criteria for both procedural and object-oriented applications. The
purpose of research is to quantify encapsulation, data hiding, and separation
of concerns is quantified using cyclomatic-based metrics. As a result of this
research, the derived design metrics, coefficient of encapsulation, coefficient
of data hiding, and coefficient of separation of concerns, are defined and ap-
plied to production software indicating whether the software has low or high
encapsulation, data hiding, and separation of concerns.

Keywords
Object-Oriented Design Methods, Reliability, Complexity Measures, Software
Design, Encapsulation, Information Hiding, Separation of Concerns, McCabe
Metrics, Coefficient of Encapsulation, Coefficient of Data Hiding, Coefficient
of Separation of Concerns

1. Introduction

The importance of software development has never been more critical. Software
is a driving force in product and information technology as it provides functio-
nality for a broad range of computer platforms. Today, the sheer volume of
software is immeasurable. Existing application portfolios grow annually through
the introduction of new applications and maintenance of existing applications.
An overriding force in this growth is software quality. When developing soft-
ware, a software developer is aware of how critical high quality is to every soft-
ware solution. Sustaining quality in today’s large software inventories is an on-
going challenge.

Three proven design principles, encapsulation, data hiding and separation of

How to cite this paper: Butler, C.W. and
McCabe, T.J. (2021) Cyclomatic Complex-
ity-Based Encapsulation, Data Hiding, and
Separation of Concerns. Journal of Soft-
ware Engineering and Applications, 14,
44-66.
https://doi.org/10.4236/jsea.2021.141004

Received: November 25, 2020
Accepted: January 18, 2021
Published: January 21, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.141004
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.141004
http://creativecommons.org/licenses/by/4.0/

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 45 Journal of Software Engineering and Applications

concern, have a long and successful history in the software development discip-
line. They have been used to assist software developers when designing software
and assessing the quality of the software design. When packaging functionality,
software developers seek to encapsulate process with data so that the functional-
ity is constructed logically correct and highly maintainable. When process and
data are constructed to hide data, the design properties promote protected access
and reduced risks to data. Further, when multiple software components are de-
veloped with separation of concerns, the influence across software components
is less, and these components standalone without creating ripple effects that are
often unknown or unpredictable. Software with good encapsulation, data hiding
and separation of concerns are more desirable than the alternative—poor en-
capsulation, data hiding and separation of concern.

The problem with these design principles is their inheritance subjectivity.
While software engineers seek to achieve good encapsulation, data hiding, and
separation of concern, the assessment of these design principles is subjective.
What is good? What is poor? Multiple software engineers can look at the same
software target and assess the design quality to be poor, medium, or high. Cur-
rently, these design principles lack a fact basis for assessing the quality level. In
this research, McCabe metrics are utilized to derive objective measures for the
level of encapsulation, data hiding and separation of concern in a software ap-
plication. Using these software metrics, a software engineer can achieve the fol-
lowing:

1) An objective measurement for encapsulation, data hiding, and separation;
2) A repeatable measurement for a targeted software application;
3) A measurement understandable by software engineers and management;
4) A measurement derived from a classical set of McCabe metrics that have

recognition and creditability in the software engineering discipline.

2. Objectives

Software developers and engineers should consider proven design principles
when designing and constructing software. Software design principles serve as
the foundation for analytical reasoning regarding the quality of a software solu-
tion. A good software design facilitates the creation of software code and reduces
the time to maintain the software while achieving execution performance. The
objectives of this article include two elements. The first is to define three quan-
titative design metrics: encapsulation, data hiding, and separation of concerns
coefficients. This quantification increases the value of these principles when
creating and maintaining software. The second element is to illustrate these me-
trics using software examples and demonstrate how they provide valuable objec-
tive insight into software quality. To accomplish the stated objectives, McCabe
metrics are applied to three proven design principles: encapsulation, data hiding,
and separation of concern. Cyclomatic complexity, module design complexity,
global data complexity, and specified data complexity for local data are used to

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 46 Journal of Software Engineering and Applications

quantify these design principles.

3. Object Oriented Software Metrics

Important research has been performed on software metrics. Metrics have been
shown to predict faults [1] [2] [3] [4]. Other research has measured modularity
[5]. Still other research has measured maintainability [6]. Three groups of me-
trics have become mainstream including those developed by Chidamber and
Kemerer [7], Bansiya and Davis [8], and Tang, Kao, and Chen [9]. Table 1 con-
tains a summary of the popular metrics authored by these researchers.

These software metrics are powerful, and the Chidamber and Kemerer metric
suite has become the gold standard for object oriented metrics. Intuitively, they
demonstrate measurable characteristics of an object oriented program. For the
general design environment, they describe measurable attributes about complexity,

Table 1. Software metric descriptions.

Metric Acronym Description Author

Number of public
methods

NPM A count of public methods in a class Bansiya & Davis

Data access metric DAM The ratio of private attributes to the total attributes declared in a class Bansiya & Davis

Measure of aggregation MOA
A count of the number of class fields who types are user defined classes;
measures the part-whole relationship

Bansiya & Davis

Measure of functional
abstraction

MFA The ratio of the number of methods inherited by a class to the total number of
methods accessible by the member methods on the class

Bansiya & Davis

Cohesion among methods
of class

CAM

The summation of the number of different types of method parameters in
every method divided by a multiplication of the number of different method
parameter types in whole class and number of methods; the relatedness of
methods of a class based on the parameter list of the methods

Bansiya & Davis

Weighted methods per
class

WMC The number of methods in the class Chidamber & Kemerer

Depth of inheritance tree WIT The inheritance levels form the top object hierarchy top Chidamber & Kemerer

Number of children NOC The number of immediate descendants of the class Chidamber & Kemerer

Coupling between object
classes

CBO
The number of classes coupled to a given class as a result of method calls, field
accesses, inheritance, method arguments, return types, and exceptions

Chidamber & Kemerer

Response for a class RFC
The number of different methods that can be executed when an object of that
class receives a message

Chidamber & Kemerer

Lack of cohesion of
methods

LCOM
The sets of methods a class that are not related through sharing of some of the
class fields

Chidamber & Kemerer

Inheritance coupling IC

The number of parent classes to which a given class is coupled; coupling
occurs when 1) an inherited method uses an attribute that is defined in a new
or redefined method, 2) one of its inherited methods calls a redefined method
or 3) one of its inherited methods is called by a redefined method and uses a
parameter that is defined in the redefined model

Tang, Kao & Chen

Coupling between
methods

CBM
The total number of new or redefined methods to which all the inherited
methods are coupled

Tang, Kao & Chen

Average method
complexity

AMC
The average method size for each class; size is equal to the number of Java
binary codes in the method

Tang, Kao & Chen

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 47 Journal of Software Engineering and Applications

cohesion and coupling. A shortcoming is that they do not map directly to
long-standing design principles—encapsulation, data hiding, and separation of
concerns. In addition, these design principles apply to all software, not just ob-
ject oriented code.

4. Design Characteristics
4.1. Popular Software Design Principles

As software is designed, there are well-established principles applied by software
developers. These principles guide the development effort with the goal of
creating quality software that is understandable, testable, and measurable. Three
of the most popular design principles are encapsulation, data hiding, and separa-
tion of concerns. In Meilir Page-Jones’ book, encapsulation is defined as [10]:

The grouping of related ideas into one unit, which can thereafter be re-
ferred to by a single name.

In programming languages, encapsulation refers to one of two related but dis-
tinct notions, and sometimes to the combination thereof. First, it is a language
construct that facilitates the bundling of data with the modules (or other func-
tions) operating on that data. Secondly, it is language mechanism for restricting
access to some of the object’s components.

Sometimes, encapsulation and data hiding are used interchangeably. Howev-
er, data (information) hiding is a software design principle originally introduced
by David L. Parnas. In his paper written almost 40 years ago, Parnas used data
hiding to discuss the criteria leading to good modularity in structured pro-
gramming [11]:

Every module in the [...] decomposition is characterized by its knowledge of
a design decision which it hides from all others. Its interface or definition
was chosen to reveal as little as possible about its inner workings.

Specifically, in object-oriented programming, data hiding shields internal ob-
ject details (data members). Data hiding ensures exclusive data access to class
members and protects object integrity by preventing unintended or intended
changes. Decision logic that does not use public global and parameter data indi-
cates strong data hiding (since other objects cannot access this data) and deci-
sion logic that uses public global and parameter data indicates weak data hiding
(since other objects can access this data).

The term, separation of concerns, was first used by Edsger W. Dijkstra in his
1974 paper “On the Role of Scientific Thought”. Dijkstra wrote that separation
of concerns [12]:

Even if not perfectly possible is yet the only available technique for effective
ordering of one’s thoughts.

Separation of concerns has grown into a software design characteristic for se-
parating a program into objects such that each object addresses a separate con-

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 48 Journal of Software Engineering and Applications

cern. A concern is a logic or a set of information that affects the code of a pro-
gram. Decision logic that connects modules and uses public global and parame-
ter data indicates weak separation of concerns, since this logic and data is in-
fluencing the operation of one or more other objects.

Encapsulation, data hiding, and separation of concerns are design principles
that are, sometimes, misunderstood and, at other times, misapplied. Figure 1 il-
lustrates an important view of the overlap and uniqueness among these design
principles. In this view, program and data logic elements are essential factors in
determining encapsulation, data hiding, and separation of concerns. The inter-
section among encapsulation, data hiding, and separation of concerns represents
principle overlap. High use of local data drives encapsulation; low use of global
data promotes data hiding; low inter-module program logic establishes separa-
tion of concerns. Yet, there is interaction among these principles. When good
encapsulation is achieved, software exhibits good data hiding or a low level of
global data usage. By contrast, poor encapsulation results in poor data hiding or
higher use of global data. A similar relationship for data hiding exists with en-
capsulation. If good data hiding is achieved, software exhibits good encapsula-
tion or a high level of local data usage. In inverse, as poor data hiding is exhi-
bited, it is accompanied by lower use of local data. When high encapsulation is
achieved, software exhibits a high separation of concerns since inter-module in-
fluence is low from local data and program logic. When lower encapsulation is

Figure 1. Encapsulation, data hiding and separation of concerns interaction.

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 49 Journal of Software Engineering and Applications

realized, it is accompanied by lower separation of concerns as less local data
usage will promote more global data and program control logic that reaches into
other modules. Finally, when the intersection of data hiding and separation of
concerns is considered, software exhibiting high data hiding will result in high
separation of concerns. When lower data hiding is realized, it is accompanied by
lower separation of concerns as more global data usage will promote more data
and program control logic that reach into other modules.

There are pragmatic implications associated with the relationship among en-
capsulation, data hiding, and separation of concerns. Note the 7 regions in Fig-
ure 2 and consider region 1. This region which is the intersection of all three de-
sign principles represents good encapsulation, good data hiding and good sepa-
ration of concerns. What is the software engineering implication of the com-
bined states of these three design principles? As described in Table 2, enhancing,
modifying, fixing, and reusing success is best when encapsulation, data hiding,
and separation of concerns are all good. As software changes are implemented,
design activities should not try to introduce global references or call additional
modules to sustain good design principles.

4.2. Design Principle Taxonomy and Evolution Guidelines

In Table 2, each region represents potential effects on software when alternative
combinations of good or poor encapsulation, data hiding, and separation of

Figure 2. Regions of encapsulation, data hiding and separation of concerns.

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 50 Journal of Software Engineering and Applications

Table 2. Design principles and software tactics.

Region #
Encaps
ulation

Data
Hiding

Separation
of Concerns

Tactic When Enhancing, Modifying, Fixing or Reusing

1 good good good Best chance of success; try not to introduce global data references or call additional modules.

2 good poor poor
Pinpoint the used global data to see if the modifications affect it. Check how the called modules are
affected by the prescribed changes.

3 poor good poor Check the effects on called modules. Make sure the changes are not referencing global data.

4 poor poor good
These ‘leaf’ modules tend to be the most reused—keep it that way by not calling new modules. Be
wary of the global data referenced—just pulling the module for reuse without its global data will not
work.

5 good poor good The main issue is global data—do not try to reuse without its global data environment.

6 poor good good
Good chance of success here. Not much local data used so this is probably highly computational.
Also reusable since not dependent on called modules.

7 good good poor
This could be a transaction driven module calling several subordinates. Looks clean except for the
substructure it calls. When reusing you may need all the modules it calls.

concerns exist. Let’s examine region 2, this region represents a design with good
encapsulation and poor data hiding and separation of concerns. Since this design
has good encapsulation, global data and interdependent control logic among
modules produce poor data hiding and separation of concerns. When work is
conducted on this design type, modifications should pinpoint the risk of global
data changes and the affected modules should be closely monitored for ripple
effects. Consider another area, region 3. This region represents a design with
good data hiding and poor encapsulation and separation of concerns. When im-
plementing software changes to this class of software, it is important to check the
effects on called modules and to ensure that changes are not referencing global
data. In Table 2, additional scenarios are described for combinations of encap-
sulation, data hiding and separation of concerns interaction and potential actions
taken when working with various combinations of subjective design qualities.

The proof in the pudding is the usefulness of these design principles in doing
what must be done with software modules—constructing, enhancing, modifying,
reusing, understanding, and testing. When a module is modified or reused, de-
sign principles provide a sensitivity than can help avoid errors and increase
productivity. The above Venn diagram has seven distinct regions delineating
unique advice and reuse sensitivity based on their encapsulation, data hiding,
and separation of concerns qualities. Table 2 addresses issues unique and identi-
fiable by the underlying three design principles. The Venn diagram and table can
be useful desktop guides making software developers aware of the sensitivities
and issues that should be recognized when dealing with or modifying software.
Likewise, these tactics could enhance a modification walkthrough or review to
insure the pertinent and unique issues are emphasized and focused upon. It goes
without saying that the proposed modifications should only enhance and im-
prove the design so as to not degrade it. The explicit design principles, above
Venn diagram, and table can be desktop guides assisting this effort. Even more

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 51 Journal of Software Engineering and Applications

effective would be quantitative metrics for these design principles. Since the es-
tablishment of the values of good and poor is completely subjective, this ap-
proach would be strengthened when an objective quantitative measure for en-
capsulation, data hiding, and separation of concerns is determined. The next
sections will develop such quantitative metrics which will ground these concepts
and make them operational.

5. McCabe Metrics

Today, the McCabe metric set includes module, design and data metrics. Module
level metrics are cyclomatic complexity and essential complexity. Design level
metrics are module design complexity, design complexity, and integration com-
plexity. There are two special object-oriented metric derived from the design
level metrics. Object design complexity and object integration complexity are
special cases of design level metrics calculated for object oriented programs. A
third set is data metrics. These metrics are calculated by transferring mathemat-
ical concepts of cyclomatic complexity to the data world. Global data complexity
is a data metric for public data. Specified data complexity is a metric that sup-
ports any selected set of data. The selected set can be public, private, or parame-
ter data, or any combination of these three data types.

5.1. Unit Level Metrics

In 1976, McCabe introduced a number of software metrics. Cyclomatic com-
plexity, v, is a measure of the number of paths through a program [13]. The
number of paths can be infinite if the program has a backward branch, and cyc-
lomatic measure is built on the number of basis paths through the program.
Cyclomatic complexity is derived from a flowgraph and mathematically com-
puted using graph theory. Cyclomatic complexity is a measurement of the logi-
cal complexity of a module and the minimum effort necessary to qualify a mod-
ule. For the remainder of this research, a module and a method are considered to
be synonymous and the word, module, is used to represent both software code
types. v is the number of linearly independent paths in a module and, conse-
quently, the minimum number of paths that one should test using McCabe
Structured Testing Methodology. There are three mathematical ways to calculate
cyclomatic complexity; a simple way is determining the number of decision pre-
dicates. Then, cyclomatic complexity is calculated as:

1. v(G) = number of predicates + 1

By examining the decision statements, the design predicates can be counted
resulting in the cyclomatic complexity metric. It is important to recognize that
many decision statements have compound conditions. An example is a com-
pound IF statement [13]:

If A = B and C = D and E = F then

In this example, v(G) is equal to 4 (three IF design predicates + 1). Cyclomatic

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 52 Journal of Software Engineering and Applications

complexity recognizes that compound predicates increase program logic com-
plexity and integrates complex decision constructs in order to calculate v(G). An
upper limit of 10 for a testable software unit is proposed because McCabe’s re-
search found software with v(G) > 10 was less manageable, more difficult to test,
and less reliable.

In McCabe’s original article [13], essential complexity (ev) was also defined.
Essential complexity is a measurement of the degree to which a module G con-
tains unstructured constructs.

2. ev = the cyclomatic complexity of a reduced flowgraph, v(G)

Reduction is completed by logically removing all structured constructs. Essen-
tial complexity can range from 1 to v. When ev is low, a module is well-structured
and can easily be decomposed into multiple modules. In contrast, when ev is
high, a module is not well-structured and cannot be easily be decomposed into
multiple modules [13]. McCabe methodology utilizes graphical representation of
software (see Figure 3). A flowgraph is an architectural diagram of a software
module logic, and a flowgraph is constructed from written code. It is a visualiza-
tion of module decision logic. A Battlemap is an architectural diagram of a soft-
ware design. A Battlemap is constructed from written code and is a hierarchical
visualization of software modules or classes and methods. Both of these code vi-
sualizations are tools used to analyze software design and testing requirements.

Figure 3. Flowgraphs and design coefficients for kauli coeus software.

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 53 Journal of Software Engineering and Applications

5.2. Design Level Metrics

In 1989, McCabe and Butler extended cyclomatic complexity-based metrics into
design principles. Module design complexity, iv, is a measurement of the deci-
sion structure of a module, G, which controls the invocation of G’s immediate
subordinate modules.

3. iv = the cyclomatic complexity of a reduced flowgraph, v(G)

Reduction is completed by logically removing all decision constructs that do
not significantly impact calls and returns from subordinate routines. It is a
quantification of the testing effort of a module as it calls its subordinates [14].
Module design complexity is mathematically computed using a reduction tech-
nique on a flowgraph. The technique eliminates decision predicates that do not
significantly impact calls to subordinates. Module design complexity varies from
1 to v. When iv is low (iv = 1), a module does not conditionally call subordi-
nates. In contrast, when iv is high (iv = 15), a module executes many condition-
ally calls to subordinates. In order to measure the proportion of logic that is as-
sociated with calls, ivdensity (iv/v) was defined. High ivdensity is a design cha-
racteristic that indicates high use of calls in module logic; low ivdensity indicates
low use of calls in module logic (ivdensity ranges between 0 and 1) [14]. Two
other metrics, design complexity and integration complexity, were introduced.
Design complexity, S0, is a measurement of the decision structure which con-
trols the invocation of modules within the design. It is a quantification of the
testing effort of the calls in the design, starting with the top or root module,
trickling down through subordinates and exiting through the top. Design
complexity is calculated as ∑iv. The third metric, integration complexity, is a
measurement of the integration tests that qualify the design tree. Integration
complexity, S1, is a quantification of a basis set of integration tests and meas-
ures the minimum integration testing effort of a design. Each S1 test validates the
integration of several modules and is known as a subtree of the whole design tree
[14].

After introducing these three metrics in 1989, McCabe and Butler developed
two variations of S0 and S1 for testing of object-oriented code. These metrics took
advantage of object oriented design efficiencies to reduce the number of design
tests. Object design complexity (OS0) is a measurement of the decision structure
which controls the invocation of modules within an object-oriented design. It is
a quantification of the testing effort of all calls in the design, starting with the top
module, trickling down through subordinates and exiting through the top. Ob-
ject integration complexity (OS1) is a measurement of the integration tests that
qualifies the design tree for an object-oriented program including any unre-
solved module references. A subtree is a sequence of calls from a module to des-
cendant modules and of returns from them. Just as integration complexity de-
sign defines the number of test subtrees in the required basis set for that design,
OS1 defines the number of linearly independent design subtrees in a basis set for
an object-oriented design [15].

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 54 Journal of Software Engineering and Applications

5.3. Data Level Metrics

McCabe metrics are not limited to measurement of logic and decision structure.
The data domain includes two classes of metrics [14].

4. gdv = the cyclomatic complexity of a reduced flowgraph, v(G)

5. sdv = the cyclomatic complexity of a reduced flowgraph, v(G)

Reduction is completed by logically removing all decision constructs that do
not significantly the use of global or selected data [14]. Global data complexity
(gdv) is a measurement of the decision structure of a module which controls the
use of global and parameter data. gdv is the cyclomatic complexity after the de-
cision predicates are logically reduced that do not impact data defined either
outside the module or passed as formal parameters. Second, specified data com-
plexity is a flexible, configurable measurement of data targeted by a software de-
veloper. Specified data complexity (sdv) is a measurement of the decision struc-
ture of a module which controls the use of selected local, global, and parameter
data. sdv is the cyclomatic complexity after the decision predicates are logically
reduced that do not impact target (selected) local, global and parameter data.
Specified data complexity can be used in many ways. For the purposed of this
research, it is used to quantify data metrics for measuring encapsulation, data
hiding, and separation of concerns [16].

Specified Data Metrics
Six specified data metrics are used in building design coefficients for encapsulation,
data hiding, and separation of concern. Below is the definition of these six metrics.
• local data complexity (ldv): specified data complexity of local (private) data; 0

≤ ldv ≤ v;
• ldvdensity (ldv/v): high ldvdensity is a design characteristic that indicates

high use of local (private) data in module logic; low ldvdensity indicates low
use of local (private) data in module logic; 0 ≤ ldvdensity ≤ 1;

• public global data complexity (pgdv): specified data complexity of global
(public) data excluding parameter data; 0 ≤ pgdv ≤ v;

• pgdvdensity (pgdv/v): high pgdvdensity is a design characteristic that indi-
cates high use of global (public) data in module logic; low pgdvdensity indi-
cates low use of global (public) data in module logic; 0 ≤ pgdvdensity ≤ 1;

• parameter data complexity (pdv): specified data complexity of parameters
(passed arguments) excluding public global data; 0 ≤ pdv ≤ v;

• pdvdensity (pdv/v): high pdvdensity is a design characteristic that indicates
high use of parameters in module logic; low pdvdensity indicates low use of
parameters in module logic; 0 ≤ pdvdensity ≤ 1.

These specified data metrics and their density metrics form the foundation for
design coefficients.

6. Design Coefficients

In statistics, correlation is a measure of the degree of relatedness of variables. It

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 55 Journal of Software Engineering and Applications

can used by a business analyst to determine if variables, such as temperature and
ice cream sales, rise and fall in a related manner. For a sample pair, correlation
analysis can yield a numerical value that represents the relatedness of tempera-
ture and ice cream sales over time. The coefficient of correlation, r, is a popular
measure of correlation. The statistic r is the Pearson product-moment correla-
tion, named after Karl Pearson, an English statistician [17]. The coefficient of
correlation is a measure of the linear correlation between two variables. It is a
number that ranges from −1 to 0 to +1, representing the strength of the rela-
tionship between the variables. An r value of +1 indicates perfect positive corre-
lation. When r is +1, a positive change in one variable completely explains a pos-
itive change in the second variable. When r is −1, a change in one variable com-
pletely explains an inverse change in the second variable. An r of 0 means no li-
near relationship between the two variables. In this case, any change in one va-
riable does not explain change in the second variable. In statistics, a proxy varia-
ble is a measured variable that is used in place of a variable that cannot be meas-
ured. In order for a variable to be a proxy, it must have a close correlation, not
necessarily linear or positive, with the inferred value. Many times in correlation
analysis, proxy variables are used to determine if there is a relationship between
two variables. These concepts associated with the coefficient of correlation are
used as a basis for cyclomatic complexity-based design metrics.

Encapsulation, data hiding, and separation of concerns are design concepts
without ordinal or interval measurement. Being able to measure software’s de-
sign quality is fundamental when assessing the progress of design as it relates to
construction. There is now widespread acknowledgement that using subjective
design characteristics is a common practice when measuring overall software
quality. In practice, these design concepts are measured using subject measure-
ments such as a Likert Scale—very low, low, moderate, high, and very high.
However, the Likert Scale is uni-dimensional and only gives limited choices, and
the space between each choice is not equidistant. Therefore, a Likert Scale fails to
measure the true value of these design concepts. Also, it is likely that software
developers’ subjective values are influenced by previous development work or
opinions of peers. Frequently, people tend to avoid choosing the extremes op-
tions on the scale (very low and very high) because of the negative social impli-
cations, even when an extreme choice would be best.

Cyclomatic complexity-based design metrics for encapsulation, data hiding,
and separation of concerns are measured as coefficients. Each of these design
characteristics has a representative coefficient, Cx, where x is either encapsula-
tion (encap), data hiding (dh), or separation of concerns (soc), and each meas-
ures the spread of the design characteristics from low to high. For example, the
encapsulation coefficient measures encapsulation based upon cyclomatic com-
plexity-based measurements. Unlike the coefficient of correlation, these design
measurements are not a measure of linear correlation between two variables.
Rather, they are proxy variables used to replace previous subjective measures for

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 56 Journal of Software Engineering and Applications

encapsulation, data hiding, and separation of concerns. The coefficients range
from 0 to +1, representing the spread of the design characteristics from low to
high. When Cx is 0, the design characteristic is the lowest and when Cx is 1, the
design characteristic is the highest. Using cyclomatic complexity-based measures
to derive measurements for these design characteristics provides several advan-
tages. First, the measurements are derived from McCabe metrics which have an
acknowledged place in software metrics. McCabe metrics are also objective in
that different software developers looking at the same software calculated the
same result. McCabe’s cyclomatic complexity has a research implication with
software quality. Research studies have shown that modules with higher cyclo-
matic complexity (v > 10) are harder to test and exhibit poorer quality [13].
These benefits are integrated into the following cyclomatic complexity-based de-
sign metrics.

6.1. Encapsulation Coefficient

The encapsulation coefficient is a measurement of the quality of data bundling
within a module operating of that data; a measurement of the decision logic that
uses (refers to) local data and global data. The coefficient measures the relative
magnitude of local data manipulation to the magnitude of combined local and
global manipulation. Decision logic that uses local data indicates high encapsu-
lation (since the data is exclusively bundled with the module) and decision logic
that uses global data indicates low encapsulation (since the data is not exclusive-
ly bundled with the module).

Module encapsulation coefficient:

(
)

cyclomatic complexity, local complexity,

public complexity, public global data complexity
encapC f=

(), ,encapC f v ldv pgdv=

(rationale: ldv is a measurement of local data manipulation within a module;
high ldv indicates that module logic is bundled using local data)

1
encap

ldv pgdv
ldvdensity pgdvdensity ldv pgdvv vC

ldv pgdvldvdensity pgdvdensity ldv pgdv
v v

 − − − = = = + + +

where ldv and pgdv not = 0 and 0 ≤ Cencap
1 < |1|; −1 indicates low encapsulation

and 1 indicates high encapsulation.
So that encapsulation, data hiding, and separation of concerns behave quanti-

tatively with common magnitude, encapsulation is scaled to be:

()1 1 2encap encapC C= +

where 0 ≤ Cencap ≤ 1; 0 indicates low encapsulation and 1 indicates high encapsu-
lation.

Where ldv and pgdv = 0, Cencap = 0.

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 57 Journal of Software Engineering and Applications

A peculiar and sometimes pathological case occurs when both ldv and pgdv
are zero. This strange case implies that the algorithm references no data—no lo-
cal data nor any global data. Even though the denominator is zero in the above
formula, the convention of defining the metric value to be zero is used. This
convention gives an encapsulation coefficient indicating the lowest (worse) value
for encapsulating data. Over and above this mathematical anomaly, these bizarre
modules deserve careful inspection. Often they are doing something strange that
affects data below the syntactic level of the language being used. For example, in
a real-time system, a module referencing no data may just be looping in order to
waste some time so it can properly synchronize. It appears that it is using no da-
ta but that is not the case. It is affecting the system clock which is data below the
syntactic level of language. Change the units in the system clock or get a faster
processor and the low encapsulation in this logical construct would cause errors.
Another case that has been witnessed is dividing by zero in Ada which triggers
an exception recovery procedure. Although there is no syntactic data being used,
there is compiler generated data keeping track of these anomalies—so, in fact,
this is low encapsulation with risky properties. This same argument applies to
data hiding (defined next) when ldv, pgdv and pdv = 0. When modules use no da-
ta, they are exhibiting the lowest encapsulation and data hiding characteristics.

6.2. Data Hiding

The data hiding coefficient is a module measurement of the quality of hiding a
module’s internal data members and limiting data access from external objects.

Module data hiding coefficient:

(
)

cyclomatic complexity, local data complexity,

public global data complexity, parameter data complexity
dhC f=

(), , ,dhC f v ldv pgdv pdv=

(rationale: pgdv and pdv are measurements of public global and parameter data
manipulation within a module; low pgdv and pdv indicate that module logic is
hiding data from other modules)

() ()()1dhC pgdvdendisy pdvdensity ldvdensity pgdvdensity pdvdensity= − + + +

() ()() () () ()()()1dhC pgdv v pdv v ldv v pgdv v pdv v= − + + +

() ()()1dhC pgdv pdv ldv pgdv pdv= − + + +

where ldv and pgdv and pdv not = 0 and 0 ≤ Cdh ≤ 1; 0 indicates low data hiding
and 1 indicates high data hiding.

Where ldv and pgdv and pdv = 0, Cdh = 0.

6.3. Separation of Concerns

Module separation of concerns coefficient: module separation of concerns (soc)
is a design characteristic for partitioning a design into modules such that each

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 58 Journal of Software Engineering and Applications

module addresses a separate internal function concern, not relying on other
modules.

(
)

cyclomatic complexity, module design complexity,

global data complexity, parameter data complexity
socC f=

(), , ,socC f v iv pgdv pdv=

(rationale: iv, pgdv and pdv are measurements of module logic influencing one
or more other modules; low iv, pgdv and pdv indicate that module logic is not
influencing other module logic or data manipulation)

() () ()()
()() ()() ()()()
()()()
()()

1 1 1 3

1 1 1 3

3 3

1 3

socC ivdensity pgdvdensity pdvdensity

iv v pgdv v pdb v

iv pgdv pdv v

iv pgdv pdv v

= − + − + −

= − + − + −

= − + +

= − + +

where 0 ≤ Csoc ≤ 1; 0 indicates low separation of concerns and 1 indicates high
separation of concerns.

6.4. Design Coefficient Examples

In Table 3, the design coefficients are calculated for a set of software modules,
presented as module pairs A and B, C and D, and E and F. The v for these mod-
ules is 10. Modules A and B demonstrate the effect of local and public global da-
ta complexity in determining the encapsulation coefficient. In these modules,
module design and parameter data complexity are constant. In module A when
local data complexity is high (10) and public global data complexity is low (1),
the encapsulation coefficient is high (0.909) indicating the module exhibits high
encapsulation. In contrast in module B, when local data complexity is low (1)
and public global data complexity is high (10), the encapsulation coefficient is
low (0.091). In contrasting these two modules, module A uses large quantities of
local data and low quantities of global data which are good encapsulation qualities.

Table 3. Cyclomatic complexity-based design coefficients.

Module Name v iv ldv pgdv pdv
Cencap Cdh Csoc

()1 1 2encapC +
 () ()()1 pgdv pdv ldv gdv pdv− + + +

()()1 3iv pgdv pdv v− + +

A high Cencap 10 1 10 1 0 0.909 0.909 0.933

B low Cencap 10 1 1 10 0 0.091 0.091 0.633

C high Cdh 10 1 10 0 0 1.000 1.000 0.967

D low Cdh 10 1 0 10 10 0.000 0.000 0.300

E high Csoc 10 0 10 0 0 1.000 1.000 1.000

F high Csoc 10 10 10 10 10 0.500 0.333 0.000

G high Cencap 20 1 20 1 0 0.952

H low Cencap 20 1 1 20 0 0.048

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 59 Journal of Software Engineering and Applications

Module B uses low quantities of local data and high quantities of global data
which are poor encapsulation qualities. The encapsulation coefficient behaves
mathematically consistent with these intuitive qualities. Values between these
extremes are determined by the actual values for local data and public data com-
plexities for a given module.

In Table 3, modules C and D demonstrate the effects of local data, public
global data, and parameter data complexities in calculating the data hiding coef-
ficient. In the data hiding coefficient example, module design complexity is a
constant. In module C, local data complexity is high (10), public global data
complexity is low (0), and parameter data complexity is low (0). This module’s
data hiding coefficient is 1.000. In module D, the local data complexity is low (0)
and the public global and parameter data complexities are high, 10 and 10, re-
spectively. Module D’s data hiding coefficient is 0.000. When contrasting these
two modules, module C uses large quantities of local data and low quantities of
both global and parameter data which are good data hiding qualities. Module D
uses low quantities of local data and high quantities of global and parameter data
which are poor data hiding qualities. The data hiding coefficient behaves ma-
thematically consistent with these intuitive qualities. As with the encapsulation
coefficient, values between these extremes are determined by the actual values
for local data and public global and parameter data complexities for a given
module.

The final example illustrated in Table 3 is the separation of concerns coeffi-
cient. In this example, modules E and F contrast the effects of module design,
public global data, and parameter complexities. In this example, local data com-
plexity is constant. In module E, module design, public global data, and parame-
ter complexities are 0, 0, and 0, respectively. These low metrics indicate that
module E has no interaction with other modules, either through control logic or
data sharing. Its coefficient is 1.000. In contrast, module F’s design, public global
data, and parameter complexities are 10, 10, and 10, respectively. Module F has
high levels of interaction with other modules through control logic and data
sharing. Its separation of concerns coefficient is 0.000. Again, as with the encap-
sulation and data hiding coefficients, values between these extremes are deter-
mined by the actual values for local data and public global and parameter data
complexities for a given module.

There is one other important illustration of the encapsulation, data hiding,
and separation of concerns coefficients in Table 3. There are two modules, G
and H, whose v = 20. By traditional McCabe measurement, these modules have
twice as much decision logic as the previous 6 modules. This code is considered
“too complexity” and is a candidate for decomposition. Compare the encapsula-
tion coefficients for modules G and H with those for modules A and B. Modules
A and B have encapsulation coefficients of 0.909 (high) and 0.091 (low). Mod-
ules G and H encapsulation coefficients are 0.952 (high) and 0.048 (low). Con-
sider the higher encapsulation coefficients of modules A and G. Module G’s en-

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 60 Journal of Software Engineering and Applications

capsulation coefficient is higher than module A’s, indicating it is better encapsu-
lated. Even though module G’s cyclomatic complexity is considered to be poorer
than module A’s, its encapsulation coefficient is better. This outcome reflects the
fact that the module G makes good use of proportionally more local data and
proportionally less public global data. The encapsulation design of module G is
better and more desirable. When comparing modules H and B, module H has a
lower encapsulation coefficient, 0.048 and 0.091, respectively. Module H’s en-
capsulation coefficient is lower than module B’s because it makes use of, propor-
tionally, less local data and more public global than module B.

7. Design Coefficients Applied to Production Code

The Kuali Foundation is a consortium of interested universities, colleges and
commercial firms that joined together to produce an enterprise software solu-
tion for the academic business model. The Kauli Foundation utilizes a commu-
nity source developed software acquisition module. Using Kuali Enterprise Re-
source Planning (ERP) modules, the encapsulation, data hiding, and separation
of concerns coefficients are calculated using production code. For this study, the
Kauli Coeus, Version 5.0.1, and Kauli Financial System, Version 4.1.1, applica-
tion code was utilized. Kauli Financial System is financial software that meets the
needs of Carnegie class institutions, and Kauli Coeus is an application for ad-
ministration of grants to federal funding agencies [18]. In Figure 3, flowgraphs
for two Coeus modules are illustrated. Both modules have similar v’s and ev’s,
which indicate similar testing requirements and code construction quality for
maintainability. However, these metrics do not provide insight into their design
quality.

Table 4 contains traditional McCabe metrics and complexity-based design

Table 4. Kuali coeus production code design coefficients.

Module/Module v ev iv ldv pgdv pdv Cencap Cdh Csoc
Design
Quality

A—(Coeus-S2S PHS398TrainingSub
AwardBudgetV1_0Generator.getPHS398TrainingBudget_MODL
TR-ANE_GRF-1)

12 5 11 12 0 0 1.000 Higher

B—(Coeus-Budget-
QueryList.getFieldValue_MODLTR-JB_GRF-1)

12 7 5 10 3 0 0.769 Lower

C—(Coeus-S2S-
SFLLLV1_1Generator.getReportEntity_MODLTR-BGE_GRF-1)

14 1 14 0 1 0 0.933 Higher

D—(Coeus-S2S-
GlobalLibraryV2_0Generator.getAddressDataType_MODLTR-Y
I_GRF-1)

13 1 12 0 2 4 0.684 Lower

E—(Coeus-S2S-
S2SUtilServiceImpl.getNKeyPersons_MODLTR-BOM_GRF-1)

12 7 5 0 2 0 0.750 Higher

F—(Coeus-S2S-
PHS398TrainingSubAwardBudgetV1_0Generator.getPHS398Tra
iningBudget_MODLTR-ANE_GRF-1)

11 6 10 0 0 8 0.684 Lower

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 61 Journal of Software Engineering and Applications

metrics for 6 Coeus modules including the two modules shown in Figure 3.
These design coefficients are calculated for Coeus code using McCabe IQ soft-
ware. The modules are paired by McCabe metrics, v and ev. In the table each
module is provided a short name, A, B, C respectively, because the actual mod-
ule name is long and complex. As pairs, A and B, C and D, and E and F have
equal or similar v and ev metrics. For these pairs, a different design coefficient is
provided. For the first pair, module A has Cencap = 1.000 and module B has Cencap
= 0.769, indicating module A has better encapsulation that module B. Data hid-
ing coefficients are calculated for modules C and D. Module C’s Cdh is 0.933
which is a higher data hiding coefficient than module D’s (0.684). Csoc is illu-
strated using modules E and F. With this module pair, the Csoc is close with
module E’s Csoc being slightly higher, 0.750 and 0.684, respectively. The magni-
tude of these coefficients behaves consistently with the design principles subjec-
tive values, and they are ordinal values providing an objective measurement of
each design principle.

8. Class Design Coefficients

An extension of design coefficients is the measurement of class encapsulation,
data hiding, and separation of concerns. Extending design coefficients to the
class level is valuable because the metrics provide objective measurement for a
higher abstraction of code. Since a class is composed of modules, the class mod-
ules are used to calculate the class design coefficients. Instead of a simple aggre-
gation of individual module coefficients, a weight average based upon cyclomatic
complexity is used. Using module cyclomatic complexity as a weight, the class
design coefficients take into account a module’s granularity. When a large mod-
ule (for example, v = 40) is poorly designed with low encapsulation, data hiding,
and separation of concerns, that module’s weight will negatively impact the class
design coefficient. The inverse is true when design coefficients are positive. Uti-
lizing this approach, a small well-designed module and a poorly-designed mod-
ule do not cancel out their contribution to the class design coefficients.

Class encapsulation coefficient: a measurement of the level of bundling of data
with modules operating on that data; a measurement of the proportion of deci-
sion logic that uses (refers to) local data and global data. The class encapsulation
coefficient is calculated by summarizing the module encapsulation coefficients
that are encapsulated in the class. It is the weighted average of the class module
encapsulation coefficients.

()()
m

m m
encap encapO v C v

= ∑ ∑

where m is a module.
Class data hiding coefficient: a class measurement of the level of hiding inter-

nal data members and limiting data access from external objects. The class data
hiding coefficient is calculated by summarizing the module data hiding coeffi-
cients that are encapsulated in the class. It is the weighted average of the class

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 62 Journal of Software Engineering and Applications

module data hiding coefficients.

()()
m

m m
dh dhO v C v

= ∑ ∑

where m is a module.
Class separation of concerns coefficient: class separation of concerns is a de-

sign characteristic for separating a computer program into object classes, such
that each class addresses a separate concern. The class separation of concerns
coefficient is calculated by summarizing the module separation of concerns coef-
ficients that are encapsulated in the class. It is the weighted average of the class
module separation of concerns coefficients.

()()
m

m m
soc socO v C v

= ∑ ∑

where m is a module.

Class Coefficient Example

Table 5 illustrates design coefficients at the class level. These examples are gen-
erated from Kuali code, using the Budget Construction (BC) module of the Kauli
Financial System (KFS), Version 5.0.2. Budget Construction is the module that
supports fiscal year-based budgeting and annual/monthly amount breakdowns.
There are two classes in this example, TempListLookupAction and OjbPen-
dingBCAppointmentFundingActiveIndicatorCoversion (OjbPendingBC). There
are 15 and 2 methods in each class, respectively. TempListLookupAction exhi-
bits lower values with values of 0.355, 0.469, and 0.206 for Oencap, Odh, and Osoc,
respectively. The class design coefficients for the OjbPendingBC class are 0.641,
0.786, and 0.524 for Oencap, Odh, and Osoc, respectively. When contrasted to Tem-
pListLookupAction, OjbPendingBC is better encapsulated with higher data hid-
ing, and it has better separation of concerns. Since TempListLookupAction is
more granular with fewer methods, greater use of local data, and lower use of
global data, its design coefficients reflect better levels of encapsulation, data hid-
ing, and separation of concerns.

9. Design Coefficients for Module Types

There are software instances where encapsulation, data hiding, and separation of
concerns behave unique to the module’s function. In these instances, data shar-
ing is not always bad; logical dependency is not always bad. Table 6 contains 5
examples of unique types of modules sometimes found in software solutions.
Consider module A whose function is an execution switch. This module manag-
es the control between a high level module and many lower level modules; it
controls the calls to numerous subordinates through control logic rather than
data. For this module type, a lower (0.659), rather than a higher Csoc, is expected,
since directing subordinate modules requires control logic. Again, a lower Csoc is
not necessarily bad. If a global data switch (module B) functions logically to direct

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 63 Journal of Software Engineering and Applications

Table 5. Kauli financial system budget construction class design coefficients
examples.

 v Cencap Cdh Csoc

Class temp List Lookup Action Class

Methods perform Lookup 3 0.330 0.500 0.000

build Lock Key Message 4 0.500 0.570 0.330

populate Lock Summary 6 0.460 0.550 0.280

perform Question Without Input 4 0.330 0.500 0.170

do Unlock Confirmation 6 0.380 0.500 0.220

unlock 6 0.230 0.380 0.110

submit Report 6 0.230 0.380 0.110

get NEW Incumbent 1 0.330 0.500 0.000

perform Extended Incumbent Search 1 0.330 0.500 0.000

search 1 0.330 0.500 0.000

get New Position 2 0.500 0.670 0.330

perform Extended Position Search 12 0.330 0.380 0.360

cancel 2 0.400 0.500 0.170

clear Values 4 0.400 0.500 0.170

start 5 0.380 0.500 0.130

Design
Coefficients

 63
Osoc =
0.355

Odh =
0.469

Osoc =
0.206

Class
Ojb Pending BC Appointment Funding
Active Indicator Conversion

Methods sql ToJava 4 0.8 1 0.67

 java ToSql 3 0.43 0.5 0.33

Design
Coefficients

 7
Osoc =
0.641

Odh =
0.786

Osoc =
0.524

Table 6. Design coefficients for method types.

Method Name v iv ldv pgdv pdv
Cencap Cdh Csoc

()1 1 2encapC +
 () ()()1 pgdv pdv ldv gdv pdv− + + +

()()1 3iv pgdv pdv v− + +

A—execution switch 45 45 0 1 0 0.000 0.000 0.659

B—global data switch 45 1 1 45 0 0.022 0.022 0.659

C—local data switch 45 1 45 0 0 1.000 1.000 0.993

D—small well-
structured

10 1 5 0 0 1.000 1.000 0.967

E—large complex
unstructured

34 28 10 15 0 0.400 0.250 0.431

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 64 Journal of Software Engineering and Applications

global data through an application, it should use high volumes of public global and
parameter data resulting in a low Cencap and Cdh. Module B’s low Cencap (0.022) and
Cdh (0.022) are not bad since they reflects the module’s functional responsibility.

Other module types can be identified and classified by design coefficient me-
trics. A local data switch should exhibited good design coefficients. In Table 6,
module C has high Cencap (1.000), Cdh (1.000) and Csoc (0.993), since the module
type should have good encapsulation, data hiding, and separation of concerns. A
small, well-structured module, such as module D, should also have good encapsu-
lation, data hiding, and separation of concerns. Module D fits this profile with
high Cencap (1.000), Cdh (1.000) and Csoc (0.993). However, a large, complex, un-
structured module should not have the higher quality implications of a small,
well-structured module. Module E illustrates this concept with high measurements
for v, iv, ldv, pgdv, and pdv. The complex module’s functionality included subor-
dinate control logic, local data usage, and public global and parameter data usage.
The impact of this complexity results in poor encapsulation, data hiding, and se-
paration of concerns as reflected in low Cencap (0.400), Cdh (0.250) and Csoc (0.431).

10. Conclusions

Encapsulation, data hiding, and separation of concerns have been prominent de-
sign principles for over forty years. Subjectively, software developers have used
them to assess the quality of designs. Quantifying encapsulation, data hiding,
and separation of concerns design principles provide metrics valuable to soft-
ware developers as software design tools. Our design metrics, coefficient of en-
capsulation, coefficient of data hiding, and coefficient of separation of concerns
are three metrics which represent an important set of tools. Since the design
structure of a program is an important component of logical complexity and da-
ta usage, the decision structure inherently contains the manner in which the de-
sign logic is implemented. These three design metrics address how software logic
reflects the use of local, global, and parameter data in program logic. With these
metrics, the quantification can be completed at two levels: module and class.
Calculation of design coefficients represents a new analytical tool previously
unavailable to software developers.

The coefficient of encapsulation, coefficient of data hiding, and coefficient of
separation of concerns exhibit desired properties which support their applicabil-
ity.
• The metrics are objective and mathematically rigorous. In addition to being

intuitive consistent with low or high encapsulation, data hiding, and separa-
tion of concerns, it is critical that the metrics be objective. The same design
principle viewed a two different times or by two different software developers
yields the same coefficient values. If the metrics are not objective, the indi-
vidual interest involved in a development effort will have differing interpre-
tation reducing the effectiveness of the coefficients as tools.

• The metrics intuitively behave with the subjective degree of design quality.

https://doi.org/10.4236/jsea.2021.141004

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 65 Journal of Software Engineering and Applications

When a module or class is well-designed, the encapsulation, data hiding, and
separation of concerns are determined to be high, good or positive depending
on the subjective stratification used. Accordingly, when a module or class is
well-designed, the coefficient of encapsulation, coefficient of data hiding, and
coefficient of separation of concerns are valued from 0 to 1 with 1 corres-
ponding to high, good, or positive.

• The metrics should be of operational help. Metrics that correlate and esti-
mate characteristics such as quality and maintainability are useful. If the me-
trics can directly drive the design modularization process.

• The design metrics introduced in this article are for quantifying design prin-
ciples in procedural and object-oriented code. They are valuable for assessing
and controlling encapsulation, data hiding, and separation of concerns. They
are also valuable for application portfolio management as they provide
measures of design dynamics throughout the application life cycle. If better
encapsulation, data hiding, and separation of concerns is achieved in during
software design and maintenance, there will be positive impact on applica-
tion costs, reliability, and performance.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Xu, J., Ho, D. and Capretz, L.F. (2008) An Empirical Validation of Objected-Oriented

Design Metrics for Fault Prediction. Journal of Computer Science, 4, 571-577.
https://doi.org/10.3844/jcssp.2008.571.577

[2] Selvarani, R., Nair, T.R.G. and Prasad, V.K. (2009) Estimation of Defect Proneness
Using Design Complexity Measurements in Object-Oriented Software. Internation-
al Conference on Signal Processing Systems, Singapore, 2009, 766-770.
https://doi.org/10.1109/ICSPS.2009.163

[3] Zage, W., Zage, D., McDonald, P. and Khan, I. (1993) Evaluating Design Metrics on
Large-Scale Software. IEEE Software, 10, 75-81.
https://doi.org/10.1109/52.219620

[4] Basili, V.R., Briand, L. and Melo, W.L. (1995) A Validation of Object-Oriented De-
sign Metrics as Quality Indicators. University of Maryland, College Park.

[5] Sarkar, S., Kak, A.C and Rama, G.M. (2008) Metrics for Measuring the Quality of
Modularization of Large-Scale Object-Oriented Software. IEEE Transactions on
Software Engineering, 34, 700-720. https://doi.org/10.1109/TSE.2008.43

[6] Coleman, D., Ash, D., Lowther, B. and Oman, P. (1994) Using Metrics to Evaluate
Software System Maintainability. IEEE Computer, 27, 44-49.
https://doi.org/10.1109/2.303623

[7] Chidamber, S.R. and Kemerer, C.F. (1994) A Metrics Suite for Object Oriented De-
sign. IEEE Transactions on Software Engineering, 20, 476-493.
https://doi.org/10.1109/32.295895

[8] Bansiya, J. and Davis, C.G. (2002) A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transaction on Software Engineering, 28, 4-17.

https://doi.org/10.4236/jsea.2021.141004
https://doi.org/10.3844/jcssp.2008.571.577
https://doi.org/10.1109/ICSPS.2009.163
https://doi.org/10.1109/52.219620
https://doi.org/10.1109/TSE.2008.43
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/32.295895

C. W. Butler, T. J. McCabe

DOI: 10.4236/jsea.2021.141004 66 Journal of Software Engineering and Applications

https://doi.org/10.1109/32.979986

[9] Tang, M.-H., Kao, M.-H. and Chen, M-H. (1999) An Empirical Study of Ob-
ject-Oriented Metrics. Proceedings of the Software Metrics Symposium, Boca Ra-
ton, 4-6 November 1999, 242-249.

[10] Page-Jones, M. (2000) Fundamentals of Object-Oriented Design in UML. Addi-
son-Wesley Longman Publishing Co., Inc., Boston.

[11] Parnas, D.L. (1972) On the Criteria to Be Used in Decomposing Systems into Mod-
ules. Communications of the ACM, 15, 1053-1058.
https://doi.org/10.1145/361598.361623

[12] Dijkstra, E.W. (1982) On the Role of Scientific Thought. Springer-Verlag, New
York, 60-66. https://doi.org/10.1007/978-1-4612-5695-3_12

[13] McCabe, T.J. (1976) A Complexity Measure. IEEE Transactions on Software Engi-
neering, 2, 309-320. https://doi.org/10.1109/TSE.1976.233837

[14] McCabe, T.J. and Butler, C.W. (1989) Design Complexity Measurement and Test-
ing. Communications of the ACM, 32, 1415-1425.
https://doi.org/10.1145/76380.76382

[15] McCabe, T.J., Dreyer, L.A., Dunn, A.J. and Watson, A.H. (1994) Testing an Ob-
ject-Oriented Application. The Journal of the Quality Assurance Institute, 8, 21-27.

[16] McCabe Software. Software Metrics Glossary.
http://www.mccabe.com/iq_research_metrics.htm

[17] http://en.wikipedia.org/wiki/Correlation_coefficient

[18] Solutions for Higher Education. http://www.kuali.org/

https://doi.org/10.4236/jsea.2021.141004
https://doi.org/10.1109/32.979986
https://doi.org/10.1145/361598.361623
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/76380.76382
http://www.mccabe.com/iq_research_metrics.htm
http://en.wikipedia.org/wiki/Correlation_coefficient
http://www.kuali.org/

	Cyclomatic Complexity-Based Encapsulation, Data Hiding, and Separation of Concerns
	Abstract
	Keywords
	1. Introduction
	2. Objectives
	3. Object Oriented Software Metrics
	4. Design Characteristics
	4.1. Popular Software Design Principles
	4.2. Design Principle Taxonomy and Evolution Guidelines

	5. McCabe Metrics
	5.1. Unit Level Metrics
	5.2. Design Level Metrics
	5.3. Data Level Metrics
	Specified Data Metrics

	6. Design Coefficients
	6.1. Encapsulation Coefficient
	6.2. Data Hiding
	6.3. Separation of Concerns
	6.4. Design Coefficient Examples

	7. Design Coefficients Applied to Production Code
	8. Class Design Coefficients
	Class Coefficient Example

	9. Design Coefficients for Module Types
	10. Conclusions
	Conflicts of Interest
	References

