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Abstract 
Three design principles are prominent in software development-encapsulation, 
data hiding, and separation of concerns. These principles are used as subjec-
tive quality criteria for both procedural and object-oriented applications. The 
purpose of research is to quantify encapsulation, data hiding, and separation 
of concerns is quantified using cyclomatic-based metrics. As a result of this 
research, the derived design metrics, coefficient of encapsulation, coefficient 
of data hiding, and coefficient of separation of concerns, are defined and ap-
plied to production software indicating whether the software has low or high 
encapsulation, data hiding, and separation of concerns. 
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1. Introduction 

The importance of software development has never been more critical. Software 
is a driving force in product and information technology as it provides functio-
nality for a broad range of computer platforms. Today, the sheer volume of 
software is immeasurable. Existing application portfolios grow annually through 
the introduction of new applications and maintenance of existing applications. 
An overriding force in this growth is software quality. When developing soft-
ware, a software developer is aware of how critical high quality is to every soft-
ware solution. Sustaining quality in today’s large software inventories is an on-
going challenge. 

Three proven design principles, encapsulation, data hiding and separation of 

How to cite this paper: Butler, C.W. and 
McCabe, T.J. (2021) Cyclomatic Complex-
ity-Based Encapsulation, Data Hiding, and 
Separation of Concerns. Journal of Soft-
ware Engineering and Applications, 14, 
44-66. 
https://doi.org/10.4236/jsea.2021.141004 
 
Received: November 25, 2020 
Accepted: January 18, 2021 
Published: January 21, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.141004
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.141004
http://creativecommons.org/licenses/by/4.0/


C. W. Butler, T. J. McCabe 
 

 

DOI: 10.4236/jsea.2021.141004 45 Journal of Software Engineering and Applications 
 

concern, have a long and successful history in the software development discip-
line. They have been used to assist software developers when designing software 
and assessing the quality of the software design. When packaging functionality, 
software developers seek to encapsulate process with data so that the functional-
ity is constructed logically correct and highly maintainable. When process and 
data are constructed to hide data, the design properties promote protected access 
and reduced risks to data. Further, when multiple software components are de-
veloped with separation of concerns, the influence across software components 
is less, and these components standalone without creating ripple effects that are 
often unknown or unpredictable. Software with good encapsulation, data hiding 
and separation of concerns are more desirable than the alternative—poor en-
capsulation, data hiding and separation of concern. 

The problem with these design principles is their inheritance subjectivity. 
While software engineers seek to achieve good encapsulation, data hiding, and 
separation of concern, the assessment of these design principles is subjective. 
What is good? What is poor? Multiple software engineers can look at the same 
software target and assess the design quality to be poor, medium, or high. Cur-
rently, these design principles lack a fact basis for assessing the quality level. In 
this research, McCabe metrics are utilized to derive objective measures for the 
level of encapsulation, data hiding and separation of concern in a software ap-
plication. Using these software metrics, a software engineer can achieve the fol-
lowing: 

1) An objective measurement for encapsulation, data hiding, and separation; 
2) A repeatable measurement for a targeted software application; 
3) A measurement understandable by software engineers and management; 
4) A measurement derived from a classical set of McCabe metrics that have 

recognition and creditability in the software engineering discipline. 

2. Objectives 

Software developers and engineers should consider proven design principles 
when designing and constructing software. Software design principles serve as 
the foundation for analytical reasoning regarding the quality of a software solu-
tion. A good software design facilitates the creation of software code and reduces 
the time to maintain the software while achieving execution performance. The 
objectives of this article include two elements. The first is to define three quan-
titative design metrics: encapsulation, data hiding, and separation of concerns 
coefficients. This quantification increases the value of these principles when 
creating and maintaining software. The second element is to illustrate these me-
trics using software examples and demonstrate how they provide valuable objec-
tive insight into software quality. To accomplish the stated objectives, McCabe 
metrics are applied to three proven design principles: encapsulation, data hiding, 
and separation of concern. Cyclomatic complexity, module design complexity, 
global data complexity, and specified data complexity for local data are used to 
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quantify these design principles. 

3. Object Oriented Software Metrics 

Important research has been performed on software metrics. Metrics have been 
shown to predict faults [1] [2] [3] [4]. Other research has measured modularity 
[5]. Still other research has measured maintainability [6]. Three groups of me-
trics have become mainstream including those developed by Chidamber and 
Kemerer [7], Bansiya and Davis [8], and Tang, Kao, and Chen [9]. Table 1 con-
tains a summary of the popular metrics authored by these researchers.  

These software metrics are powerful, and the Chidamber and Kemerer metric 
suite has become the gold standard for object oriented metrics. Intuitively, they 
demonstrate measurable characteristics of an object oriented program. For the 
general design environment, they describe measurable attributes about complexity,  

 
Table 1. Software metric descriptions. 

Metric Acronym Description Author 

Number of public 
methods 

NPM A count of public methods in a class Bansiya & Davis 

Data access metric DAM The ratio of private attributes to the total attributes declared in a class Bansiya & Davis 

Measure of aggregation MOA 
A count of the number of class fields who types are user defined classes; 
measures the part-whole relationship 

Bansiya & Davis 

Measure of functional 
abstraction 

MFA The ratio of the number of methods inherited by a class to the total number of 
methods accessible by the member methods on the class 

Bansiya & Davis 

Cohesion among methods 
of class 

CAM 

The summation of the number of different types of method parameters in 
every method divided by a multiplication of the number of different method 
parameter types in whole class and number of methods; the relatedness of 
methods of a class based on the parameter list of the methods 

Bansiya & Davis 

Weighted methods per 
class 

WMC The number of methods in the class Chidamber & Kemerer 

Depth of inheritance tree WIT The inheritance levels form the top object hierarchy top Chidamber & Kemerer 

Number of children NOC The number of immediate descendants of the class Chidamber & Kemerer 

Coupling between object 
classes 

CBO 
The number of classes coupled to a given class as a result of method calls, field 
accesses, inheritance, method arguments, return types, and exceptions 

Chidamber & Kemerer 

Response for a class RFC 
The number of different methods that can be executed when an object of that 
class receives a message 

Chidamber & Kemerer 

Lack of cohesion of 
methods 

LCOM 
The sets of methods a class that are not related through sharing of some of the 
class fields 

Chidamber & Kemerer 

Inheritance coupling IC 

The number of parent classes to which a given class is coupled; coupling 
occurs when 1) an inherited method uses an attribute that is defined in a new 
or redefined method, 2) one of its inherited methods calls a redefined method 
or 3) one of its inherited methods is called by a redefined method and uses a 
parameter that is defined in the redefined model 

Tang, Kao & Chen 

Coupling between 
methods 

CBM 
The total number of new or redefined methods to which all the inherited 
methods are coupled 

Tang, Kao & Chen 

Average method 
complexity 

AMC 
The average method size for each class; size is equal to the number of Java 
binary codes in the method 

Tang, Kao & Chen 
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cohesion and coupling. A shortcoming is that they do not map directly to 
long-standing design principles—encapsulation, data hiding, and separation of 
concerns. In addition, these design principles apply to all software, not just ob-
ject oriented code. 

4. Design Characteristics 
4.1. Popular Software Design Principles 

As software is designed, there are well-established principles applied by software 
developers. These principles guide the development effort with the goal of 
creating quality software that is understandable, testable, and measurable. Three 
of the most popular design principles are encapsulation, data hiding, and separa-
tion of concerns. In Meilir Page-Jones’ book, encapsulation is defined as [10]: 

The grouping of related ideas into one unit, which can thereafter be re-
ferred to by a single name. 

In programming languages, encapsulation refers to one of two related but dis-
tinct notions, and sometimes to the combination thereof. First, it is a language 
construct that facilitates the bundling of data with the modules (or other func-
tions) operating on that data. Secondly, it is language mechanism for restricting 
access to some of the object’s components. 

Sometimes, encapsulation and data hiding are used interchangeably. Howev-
er, data (information) hiding is a software design principle originally introduced 
by David L. Parnas. In his paper written almost 40 years ago, Parnas used data 
hiding to discuss the criteria leading to good modularity in structured pro-
gramming [11]: 

Every module in the [...] decomposition is characterized by its knowledge of 
a design decision which it hides from all others. Its interface or definition 
was chosen to reveal as little as possible about its inner workings. 

Specifically, in object-oriented programming, data hiding shields internal ob-
ject details (data members). Data hiding ensures exclusive data access to class 
members and protects object integrity by preventing unintended or intended 
changes. Decision logic that does not use public global and parameter data indi-
cates strong data hiding (since other objects cannot access this data) and deci-
sion logic that uses public global and parameter data indicates weak data hiding 
(since other objects can access this data). 

The term, separation of concerns, was first used by Edsger W. Dijkstra in his 
1974 paper “On the Role of Scientific Thought”. Dijkstra wrote that separation 
of concerns [12]: 

Even if not perfectly possible is yet the only available technique for effective 
ordering of one’s thoughts. 

Separation of concerns has grown into a software design characteristic for se-
parating a program into objects such that each object addresses a separate con-
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cern. A concern is a logic or a set of information that affects the code of a pro-
gram. Decision logic that connects modules and uses public global and parame-
ter data indicates weak separation of concerns, since this logic and data is in-
fluencing the operation of one or more other objects. 

Encapsulation, data hiding, and separation of concerns are design principles 
that are, sometimes, misunderstood and, at other times, misapplied. Figure 1 il-
lustrates an important view of the overlap and uniqueness among these design 
principles. In this view, program and data logic elements are essential factors in 
determining encapsulation, data hiding, and separation of concerns. The inter-
section among encapsulation, data hiding, and separation of concerns represents 
principle overlap. High use of local data drives encapsulation; low use of global 
data promotes data hiding; low inter-module program logic establishes separa-
tion of concerns. Yet, there is interaction among these principles. When good 
encapsulation is achieved, software exhibits good data hiding or a low level of 
global data usage. By contrast, poor encapsulation results in poor data hiding or 
higher use of global data. A similar relationship for data hiding exists with en-
capsulation. If good data hiding is achieved, software exhibits good encapsula-
tion or a high level of local data usage. In inverse, as poor data hiding is exhi-
bited, it is accompanied by lower use of local data. When high encapsulation is 
achieved, software exhibits a high separation of concerns since inter-module in-
fluence is low from local data and program logic. When lower encapsulation is  

 

 
Figure 1. Encapsulation, data hiding and separation of concerns interaction. 

https://doi.org/10.4236/jsea.2021.141004


C. W. Butler, T. J. McCabe 
 

 

DOI: 10.4236/jsea.2021.141004 49 Journal of Software Engineering and Applications 
 

realized, it is accompanied by lower separation of concerns as less local data 
usage will promote more global data and program control logic that reaches into 
other modules. Finally, when the intersection of data hiding and separation of 
concerns is considered, software exhibiting high data hiding will result in high 
separation of concerns. When lower data hiding is realized, it is accompanied by 
lower separation of concerns as more global data usage will promote more data 
and program control logic that reach into other modules. 

There are pragmatic implications associated with the relationship among en-
capsulation, data hiding, and separation of concerns. Note the 7 regions in Fig-
ure 2 and consider region 1. This region which is the intersection of all three de-
sign principles represents good encapsulation, good data hiding and good sepa-
ration of concerns. What is the software engineering implication of the com-
bined states of these three design principles? As described in Table 2, enhancing, 
modifying, fixing, and reusing success is best when encapsulation, data hiding, 
and separation of concerns are all good. As software changes are implemented, 
design activities should not try to introduce global references or call additional 
modules to sustain good design principles. 

4.2. Design Principle Taxonomy and Evolution Guidelines 

In Table 2, each region represents potential effects on software when alternative 
combinations of good or poor encapsulation, data hiding, and separation of  

 

 

Figure 2. Regions of encapsulation, data hiding and separation of concerns. 
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Table 2. Design principles and software tactics. 

Region # 
Encaps
ulation 

Data 
Hiding 

Separation 
of Concerns 

Tactic When Enhancing, Modifying, Fixing or Reusing 

1 good good good Best chance of success; try not to introduce global data references or call additional modules. 

2 good poor poor 
Pinpoint the used global data to see if the modifications affect it. Check how the called modules are 
affected by the prescribed changes. 

3 poor good poor Check the effects on called modules. Make sure the changes are not referencing global data. 

4 poor poor good 
These ‘leaf’ modules tend to be the most reused—keep it that way by not calling new modules. Be 
wary of the global data referenced—just pulling the module for reuse without its global data will not 
work. 

5 good poor good The main issue is global data—do not try to reuse without its global data environment. 

6 poor good good 
Good chance of success here. Not much local data used so this is probably highly computational. 
Also reusable since not dependent on called modules. 

7 good good poor 
This could be a transaction driven module calling several subordinates. Looks clean except for the 
substructure it calls. When reusing you may need all the modules it calls. 

 
concerns exist. Let’s examine region 2, this region represents a design with good 
encapsulation and poor data hiding and separation of concerns. Since this design 
has good encapsulation, global data and interdependent control logic among 
modules produce poor data hiding and separation of concerns. When work is 
conducted on this design type, modifications should pinpoint the risk of global 
data changes and the affected modules should be closely monitored for ripple 
effects. Consider another area, region 3. This region represents a design with 
good data hiding and poor encapsulation and separation of concerns. When im-
plementing software changes to this class of software, it is important to check the 
effects on called modules and to ensure that changes are not referencing global 
data. In Table 2, additional scenarios are described for combinations of encap-
sulation, data hiding and separation of concerns interaction and potential actions 
taken when working with various combinations of subjective design qualities. 

The proof in the pudding is the usefulness of these design principles in doing 
what must be done with software modules—constructing, enhancing, modifying, 
reusing, understanding, and testing. When a module is modified or reused, de-
sign principles provide a sensitivity than can help avoid errors and increase 
productivity. The above Venn diagram has seven distinct regions delineating 
unique advice and reuse sensitivity based on their encapsulation, data hiding, 
and separation of concerns qualities. Table 2 addresses issues unique and identi-
fiable by the underlying three design principles. The Venn diagram and table can 
be useful desktop guides making software developers aware of the sensitivities 
and issues that should be recognized when dealing with or modifying software. 
Likewise, these tactics could enhance a modification walkthrough or review to 
insure the pertinent and unique issues are emphasized and focused upon. It goes 
without saying that the proposed modifications should only enhance and im-
prove the design so as to not degrade it. The explicit design principles, above 
Venn diagram, and table can be desktop guides assisting this effort. Even more 
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effective would be quantitative metrics for these design principles. Since the es-
tablishment of the values of good and poor is completely subjective, this ap-
proach would be strengthened when an objective quantitative measure for en-
capsulation, data hiding, and separation of concerns is determined. The next 
sections will develop such quantitative metrics which will ground these concepts 
and make them operational. 

5. McCabe Metrics 

Today, the McCabe metric set includes module, design and data metrics. Module 
level metrics are cyclomatic complexity and essential complexity. Design level 
metrics are module design complexity, design complexity, and integration com-
plexity. There are two special object-oriented metric derived from the design 
level metrics. Object design complexity and object integration complexity are 
special cases of design level metrics calculated for object oriented programs. A 
third set is data metrics. These metrics are calculated by transferring mathemat-
ical concepts of cyclomatic complexity to the data world. Global data complexity 
is a data metric for public data. Specified data complexity is a metric that sup-
ports any selected set of data. The selected set can be public, private, or parame-
ter data, or any combination of these three data types. 

5.1. Unit Level Metrics 

In 1976, McCabe introduced a number of software metrics. Cyclomatic com-
plexity, v, is a measure of the number of paths through a program [13]. The 
number of paths can be infinite if the program has a backward branch, and cyc-
lomatic measure is built on the number of basis paths through the program. 
Cyclomatic complexity is derived from a flowgraph and mathematically com-
puted using graph theory. Cyclomatic complexity is a measurement of the logi-
cal complexity of a module and the minimum effort necessary to qualify a mod-
ule. For the remainder of this research, a module and a method are considered to 
be synonymous and the word, module, is used to represent both software code 
types. v is the number of linearly independent paths in a module and, conse-
quently, the minimum number of paths that one should test using McCabe 
Structured Testing Methodology. There are three mathematical ways to calculate 
cyclomatic complexity; a simple way is determining the number of decision pre-
dicates. Then, cyclomatic complexity is calculated as: 

1. v(G) = number of predicates + 1 

By examining the decision statements, the design predicates can be counted 
resulting in the cyclomatic complexity metric. It is important to recognize that 
many decision statements have compound conditions. An example is a com-
pound IF statement [13]: 

If A = B and C = D and E = F then 

In this example, v(G) is equal to 4 (three IF design predicates + 1). Cyclomatic 
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complexity recognizes that compound predicates increase program logic com-
plexity and integrates complex decision constructs in order to calculate v(G). An 
upper limit of 10 for a testable software unit is proposed because McCabe’s re-
search found software with v(G) > 10 was less manageable, more difficult to test, 
and less reliable. 

In McCabe’s original article [13], essential complexity (ev) was also defined. 
Essential complexity is a measurement of the degree to which a module G con-
tains unstructured constructs. 

2. ev = the cyclomatic complexity of a reduced flowgraph, v(G) 

Reduction is completed by logically removing all structured constructs. Essen-
tial complexity can range from 1 to v. When ev is low, a module is well-structured 
and can easily be decomposed into multiple modules. In contrast, when ev is 
high, a module is not well-structured and cannot be easily be decomposed into 
multiple modules [13]. McCabe methodology utilizes graphical representation of 
software (see Figure 3). A flowgraph is an architectural diagram of a software 
module logic, and a flowgraph is constructed from written code. It is a visualiza-
tion of module decision logic. A Battlemap is an architectural diagram of a soft-
ware design. A Battlemap is constructed from written code and is a hierarchical 
visualization of software modules or classes and methods. Both of these code vi-
sualizations are tools used to analyze software design and testing requirements. 

 

 
Figure 3. Flowgraphs and design coefficients for kauli coeus software. 
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5.2. Design Level Metrics 

In 1989, McCabe and Butler extended cyclomatic complexity-based metrics into 
design principles. Module design complexity, iv, is a measurement of the deci-
sion structure of a module, G, which controls the invocation of G’s immediate 
subordinate modules. 

3. iv = the cyclomatic complexity of a reduced flowgraph, v(G) 

Reduction is completed by logically removing all decision constructs that do 
not significantly impact calls and returns from subordinate routines. It is a 
quantification of the testing effort of a module as it calls its subordinates [14]. 
Module design complexity is mathematically computed using a reduction tech-
nique on a flowgraph. The technique eliminates decision predicates that do not 
significantly impact calls to subordinates. Module design complexity varies from 
1 to v. When iv is low (iv = 1), a module does not conditionally call subordi-
nates. In contrast, when iv is high (iv = 15), a module executes many condition-
ally calls to subordinates. In order to measure the proportion of logic that is as-
sociated with calls, ivdensity (iv/v) was defined. High ivdensity is a design cha-
racteristic that indicates high use of calls in module logic; low ivdensity indicates 
low use of calls in module logic (ivdensity ranges between 0 and 1) [14]. Two 
other metrics, design complexity and integration complexity, were introduced. 
Design complexity, S0, is a measurement of the decision structure which con-
trols the invocation of modules within the design. It is a quantification of the 
testing effort of the calls in the design, starting with the top or root module, 
trickling down through subordinates and exiting through the top. Design 
complexity is calculated as ∑iv. The third metric, integration complexity, is a 
measurement of the integration tests that qualify the design tree. Integration 
complexity, S1, is a quantification of a basis set of integration tests and meas-
ures the minimum integration testing effort of a design. Each S1 test validates the 
integration of several modules and is known as a subtree of the whole design tree 
[14]. 

After introducing these three metrics in 1989, McCabe and Butler developed 
two variations of S0 and S1 for testing of object-oriented code. These metrics took 
advantage of object oriented design efficiencies to reduce the number of design 
tests. Object design complexity (OS0) is a measurement of the decision structure 
which controls the invocation of modules within an object-oriented design. It is 
a quantification of the testing effort of all calls in the design, starting with the top 
module, trickling down through subordinates and exiting through the top. Ob-
ject integration complexity (OS1) is a measurement of the integration tests that 
qualifies the design tree for an object-oriented program including any unre-
solved module references. A subtree is a sequence of calls from a module to des-
cendant modules and of returns from them. Just as integration complexity de-
sign defines the number of test subtrees in the required basis set for that design, 
OS1 defines the number of linearly independent design subtrees in a basis set for 
an object-oriented design [15]. 
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5.3. Data Level Metrics 

McCabe metrics are not limited to measurement of logic and decision structure. 
The data domain includes two classes of metrics [14]. 

4. gdv = the cyclomatic complexity of a reduced flowgraph, v(G) 

5. sdv = the cyclomatic complexity of a reduced flowgraph, v(G) 

Reduction is completed by logically removing all decision constructs that do 
not significantly the use of global or selected data [14]. Global data complexity 
(gdv) is a measurement of the decision structure of a module which controls the 
use of global and parameter data. gdv is the cyclomatic complexity after the de-
cision predicates are logically reduced that do not impact data defined either 
outside the module or passed as formal parameters. Second, specified data com-
plexity is a flexible, configurable measurement of data targeted by a software de-
veloper. Specified data complexity (sdv) is a measurement of the decision struc-
ture of a module which controls the use of selected local, global, and parameter 
data. sdv is the cyclomatic complexity after the decision predicates are logically 
reduced that do not impact target (selected) local, global and parameter data. 
Specified data complexity can be used in many ways. For the purposed of this 
research, it is used to quantify data metrics for measuring encapsulation, data 
hiding, and separation of concerns [16]. 

Specified Data Metrics 
Six specified data metrics are used in building design coefficients for encapsulation, 
data hiding, and separation of concern. Below is the definition of these six metrics. 
• local data complexity (ldv): specified data complexity of local (private) data; 0 

≤ ldv ≤ v; 
• ldvdensity (ldv/v): high ldvdensity is a design characteristic that indicates 

high use of local (private) data in module logic; low ldvdensity indicates low 
use of local (private) data in module logic; 0 ≤ ldvdensity ≤ 1; 

• public global data complexity (pgdv): specified data complexity of global 
(public) data excluding parameter data; 0 ≤ pgdv ≤ v; 

• pgdvdensity (pgdv/v): high pgdvdensity is a design characteristic that indi-
cates high use of global (public) data in module logic; low pgdvdensity indi-
cates low use of global (public) data in module logic; 0 ≤ pgdvdensity ≤ 1; 

• parameter data complexity (pdv): specified data complexity of parameters 
(passed arguments) excluding public global data; 0 ≤ pdv ≤ v; 

• pdvdensity (pdv/v): high pdvdensity is a design characteristic that indicates 
high use of parameters in module logic; low pdvdensity indicates low use of 
parameters in module logic; 0 ≤ pdvdensity ≤ 1. 

These specified data metrics and their density metrics form the foundation for 
design coefficients. 

6. Design Coefficients 

In statistics, correlation is a measure of the degree of relatedness of variables. It 
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can used by a business analyst to determine if variables, such as temperature and 
ice cream sales, rise and fall in a related manner. For a sample pair, correlation 
analysis can yield a numerical value that represents the relatedness of tempera-
ture and ice cream sales over time. The coefficient of correlation, r, is a popular 
measure of correlation. The statistic r is the Pearson product-moment correla-
tion, named after Karl Pearson, an English statistician [17]. The coefficient of 
correlation is a measure of the linear correlation between two variables. It is a 
number that ranges from −1 to 0 to +1, representing the strength of the rela-
tionship between the variables. An r value of +1 indicates perfect positive corre-
lation. When r is +1, a positive change in one variable completely explains a pos-
itive change in the second variable. When r is −1, a change in one variable com-
pletely explains an inverse change in the second variable. An r of 0 means no li-
near relationship between the two variables. In this case, any change in one va-
riable does not explain change in the second variable. In statistics, a proxy varia-
ble is a measured variable that is used in place of a variable that cannot be meas-
ured. In order for a variable to be a proxy, it must have a close correlation, not 
necessarily linear or positive, with the inferred value. Many times in correlation 
analysis, proxy variables are used to determine if there is a relationship between 
two variables. These concepts associated with the coefficient of correlation are 
used as a basis for cyclomatic complexity-based design metrics. 

Encapsulation, data hiding, and separation of concerns are design concepts 
without ordinal or interval measurement. Being able to measure software’s de-
sign quality is fundamental when assessing the progress of design as it relates to 
construction. There is now widespread acknowledgement that using subjective 
design characteristics is a common practice when measuring overall software 
quality. In practice, these design concepts are measured using subject measure-
ments such as a Likert Scale—very low, low, moderate, high, and very high. 
However, the Likert Scale is uni-dimensional and only gives limited choices, and 
the space between each choice is not equidistant. Therefore, a Likert Scale fails to 
measure the true value of these design concepts. Also, it is likely that software 
developers’ subjective values are influenced by previous development work or 
opinions of peers. Frequently, people tend to avoid choosing the extremes op-
tions on the scale (very low and very high) because of the negative social impli-
cations, even when an extreme choice would be best. 

Cyclomatic complexity-based design metrics for encapsulation, data hiding, 
and separation of concerns are measured as coefficients. Each of these design 
characteristics has a representative coefficient, Cx, where x is either encapsula-
tion (encap), data hiding (dh), or separation of concerns (soc), and each meas-
ures the spread of the design characteristics from low to high. For example, the 
encapsulation coefficient measures encapsulation based upon cyclomatic com-
plexity-based measurements. Unlike the coefficient of correlation, these design 
measurements are not a measure of linear correlation between two variables. 
Rather, they are proxy variables used to replace previous subjective measures for 
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encapsulation, data hiding, and separation of concerns. The coefficients range 
from 0 to +1, representing the spread of the design characteristics from low to 
high. When Cx is 0, the design characteristic is the lowest and when Cx is 1, the 
design characteristic is the highest. Using cyclomatic complexity-based measures 
to derive measurements for these design characteristics provides several advan-
tages. First, the measurements are derived from McCabe metrics which have an 
acknowledged place in software metrics. McCabe metrics are also objective in 
that different software developers looking at the same software calculated the 
same result. McCabe’s cyclomatic complexity has a research implication with 
software quality. Research studies have shown that modules with higher cyclo-
matic complexity (v > 10) are harder to test and exhibit poorer quality [13]. 
These benefits are integrated into the following cyclomatic complexity-based de-
sign metrics. 

6.1. Encapsulation Coefficient 

The encapsulation coefficient is a measurement of the quality of data bundling 
within a module operating of that data; a measurement of the decision logic that 
uses (refers to) local data and global data. The coefficient measures the relative 
magnitude of local data manipulation to the magnitude of combined local and 
global manipulation. Decision logic that uses local data indicates high encapsu-
lation (since the data is exclusively bundled with the module) and decision logic 
that uses global data indicates low encapsulation (since the data is not exclusive-
ly bundled with the module). 

Module encapsulation coefficient: 

(
)

cyclomatic complexity, local complexity,

public complexity, public global data complexity
encapC f=

 
( ), ,encapC f v ldv pgdv=  

(rationale: ldv is a measurement of local data manipulation within a module; 
high ldv indicates that module logic is bundled using local data) 

1
encap

ldv pgdv
ldvdensity pgdvdensity ldv pgdvv vC

ldv pgdvldvdensity pgdvdensity ldv pgdv
v v

 −    − − = = =   + +    + 
   

where ldv and pgdv not = 0 and 0 ≤ Cencap
1 < |1|; −1 indicates low encapsulation 

and 1 indicates high encapsulation. 
So that encapsulation, data hiding, and separation of concerns behave quanti-

tatively with common magnitude, encapsulation is scaled to be: 

( )1 1 2encap encapC C= +
 

where 0 ≤ Cencap ≤ 1; 0 indicates low encapsulation and 1 indicates high encapsu-
lation. 

Where ldv and pgdv = 0, Cencap = 0. 
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A peculiar and sometimes pathological case occurs when both ldv and pgdv 
are zero. This strange case implies that the algorithm references no data—no lo-
cal data nor any global data. Even though the denominator is zero in the above 
formula, the convention of defining the metric value to be zero is used. This 
convention gives an encapsulation coefficient indicating the lowest (worse) value 
for encapsulating data. Over and above this mathematical anomaly, these bizarre 
modules deserve careful inspection. Often they are doing something strange that 
affects data below the syntactic level of the language being used. For example, in 
a real-time system, a module referencing no data may just be looping in order to 
waste some time so it can properly synchronize. It appears that it is using no da-
ta but that is not the case. It is affecting the system clock which is data below the 
syntactic level of language. Change the units in the system clock or get a faster 
processor and the low encapsulation in this logical construct would cause errors. 
Another case that has been witnessed is dividing by zero in Ada which triggers 
an exception recovery procedure. Although there is no syntactic data being used, 
there is compiler generated data keeping track of these anomalies—so, in fact, 
this is low encapsulation with risky properties. This same argument applies to 
data hiding (defined next) when ldv, pgdv and pdv = 0. When modules use no da-
ta, they are exhibiting the lowest encapsulation and data hiding characteristics. 

6.2. Data Hiding 

The data hiding coefficient is a module measurement of the quality of hiding a 
module’s internal data members and limiting data access from external objects. 

Module data hiding coefficient: 

(
)

cyclomatic complexity, local data complexity,

public global data complexity, parameter data complexity
dhC f=

 
( ), , ,dhC f v ldv pgdv pdv=  

(rationale: pgdv and pdv are measurements of public global and parameter data 
manipulation within a module; low pgdv and pdv indicate that module logic is 
hiding data from other modules) 

( ) ( )( )1dhC pgdvdendisy pdvdensity ldvdensity pgdvdensity pdvdensity= − + + +
 

( ) ( )( ) ( ) ( ) ( )( )( )1dhC pgdv v pdv v ldv v pgdv v pdv v= − + + +
 

( ) ( )( )1dhC pgdv pdv ldv pgdv pdv= − + + +
 

where ldv and pgdv and pdv not = 0 and 0 ≤ Cdh ≤ 1; 0 indicates low data hiding 
and 1 indicates high data hiding. 

Where ldv and pgdv and pdv = 0, Cdh = 0. 

6.3. Separation of Concerns 

Module separation of concerns coefficient: module separation of concerns (soc) 
is a design characteristic for partitioning a design into modules such that each 
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module addresses a separate internal function concern, not relying on other 
modules. 

(
)

cyclomatic complexity, module design complexity,

global data complexity, parameter data complexity
socC f=

 
( ), , ,socC f v iv pgdv pdv=  

(rationale: iv, pgdv and pdv are measurements of module logic influencing one 
or more other modules; low iv, pgdv and pdv indicate that module logic is not 
influencing other module logic or data manipulation) 

( ) ( ) ( )( )
( )( ) ( )( ) ( )( )( )
( )( )( )
( )( )

1 1 1 3

1 1 1 3

3 3

1 3

socC ivdensity pgdvdensity pdvdensity

iv v pgdv v pdb v

iv pgdv pdv v

iv pgdv pdv v

= − + − + −

= − + − + −

= − + +

= − + +
 

where 0 ≤ Csoc ≤ 1; 0 indicates low separation of concerns and 1 indicates high 
separation of concerns. 

6.4. Design Coefficient Examples 

In Table 3, the design coefficients are calculated for a set of software modules, 
presented as module pairs A and B, C and D, and E and F. The v for these mod-
ules is 10. Modules A and B demonstrate the effect of local and public global da-
ta complexity in determining the encapsulation coefficient. In these modules, 
module design and parameter data complexity are constant. In module A when 
local data complexity is high (10) and public global data complexity is low (1), 
the encapsulation coefficient is high (0.909) indicating the module exhibits high 
encapsulation. In contrast in module B, when local data complexity is low (1) 
and public global data complexity is high (10), the encapsulation coefficient is 
low (0.091). In contrasting these two modules, module A uses large quantities of 
local data and low quantities of global data which are good encapsulation qualities.  

 
Table 3. Cyclomatic complexity-based design coefficients. 

Module Name v iv ldv pgdv pdv 
Cencap Cdh Csoc 

( )1 1 2encapC +
 ( ) ( )( )1 pgdv pdv ldv gdv pdv− + + +

 
( )( )1 3iv pgdv pdv v− + +

 

A high Cencap 10 1 10 1 0 0.909 0.909 0.933 

B low Cencap 10 1 1 10 0 0.091 0.091 0.633 

C high Cdh 10 1 10 0 0 1.000 1.000 0.967 

D low Cdh 10 1 0 10 10 0.000 0.000 0.300 

E high Csoc 10 0 10 0 0 1.000 1.000 1.000 

F high Csoc 10 10 10 10 10 0.500 0.333 0.000 

G high Cencap 20 1 20 1 0 0.952   

H low Cencap 20 1 1 20 0 0.048   
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Module B uses low quantities of local data and high quantities of global data 
which are poor encapsulation qualities. The encapsulation coefficient behaves 
mathematically consistent with these intuitive qualities. Values between these 
extremes are determined by the actual values for local data and public data com-
plexities for a given module. 

In Table 3, modules C and D demonstrate the effects of local data, public 
global data, and parameter data complexities in calculating the data hiding coef-
ficient. In the data hiding coefficient example, module design complexity is a 
constant. In module C, local data complexity is high (10), public global data 
complexity is low (0), and parameter data complexity is low (0). This module’s 
data hiding coefficient is 1.000. In module D, the local data complexity is low (0) 
and the public global and parameter data complexities are high, 10 and 10, re-
spectively. Module D’s data hiding coefficient is 0.000. When contrasting these 
two modules, module C uses large quantities of local data and low quantities of 
both global and parameter data which are good data hiding qualities. Module D 
uses low quantities of local data and high quantities of global and parameter data 
which are poor data hiding qualities. The data hiding coefficient behaves ma-
thematically consistent with these intuitive qualities. As with the encapsulation 
coefficient, values between these extremes are determined by the actual values 
for local data and public global and parameter data complexities for a given 
module. 

The final example illustrated in Table 3 is the separation of concerns coeffi-
cient. In this example, modules E and F contrast the effects of module design, 
public global data, and parameter complexities. In this example, local data com-
plexity is constant. In module E, module design, public global data, and parame-
ter complexities are 0, 0, and 0, respectively. These low metrics indicate that 
module E has no interaction with other modules, either through control logic or 
data sharing. Its coefficient is 1.000. In contrast, module F’s design, public global 
data, and parameter complexities are 10, 10, and 10, respectively. Module F has 
high levels of interaction with other modules through control logic and data 
sharing. Its separation of concerns coefficient is 0.000. Again, as with the encap-
sulation and data hiding coefficients, values between these extremes are deter-
mined by the actual values for local data and public global and parameter data 
complexities for a given module. 

There is one other important illustration of the encapsulation, data hiding, 
and separation of concerns coefficients in Table 3. There are two modules, G 
and H, whose v = 20. By traditional McCabe measurement, these modules have 
twice as much decision logic as the previous 6 modules. This code is considered 
“too complexity” and is a candidate for decomposition. Compare the encapsula-
tion coefficients for modules G and H with those for modules A and B. Modules 
A and B have encapsulation coefficients of 0.909 (high) and 0.091 (low). Mod-
ules G and H encapsulation coefficients are 0.952 (high) and 0.048 (low). Con-
sider the higher encapsulation coefficients of modules A and G. Module G’s en-
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capsulation coefficient is higher than module A’s, indicating it is better encapsu-
lated. Even though module G’s cyclomatic complexity is considered to be poorer 
than module A’s, its encapsulation coefficient is better. This outcome reflects the 
fact that the module G makes good use of proportionally more local data and 
proportionally less public global data. The encapsulation design of module G is 
better and more desirable. When comparing modules H and B, module H has a 
lower encapsulation coefficient, 0.048 and 0.091, respectively. Module H’s en-
capsulation coefficient is lower than module B’s because it makes use of, propor-
tionally, less local data and more public global than module B. 

7. Design Coefficients Applied to Production Code 

The Kuali Foundation is a consortium of interested universities, colleges and 
commercial firms that joined together to produce an enterprise software solu-
tion for the academic business model. The Kauli Foundation utilizes a commu-
nity source developed software acquisition module. Using Kuali Enterprise Re-
source Planning (ERP) modules, the encapsulation, data hiding, and separation 
of concerns coefficients are calculated using production code. For this study, the 
Kauli Coeus, Version 5.0.1, and Kauli Financial System, Version 4.1.1, applica-
tion code was utilized. Kauli Financial System is financial software that meets the 
needs of Carnegie class institutions, and Kauli Coeus is an application for ad-
ministration of grants to federal funding agencies [18]. In Figure 3, flowgraphs 
for two Coeus modules are illustrated. Both modules have similar v’s and ev’s, 
which indicate similar testing requirements and code construction quality for 
maintainability. However, these metrics do not provide insight into their design 
quality. 

Table 4 contains traditional McCabe metrics and complexity-based design  
 
Table 4. Kuali coeus production code design coefficients. 

Module/Module v ev iv ldv pgdv pdv Cencap Cdh Csoc 
Design  
Quality 

A—(Coeus-S2S PHS398TrainingSub 
AwardBudgetV1_0Generator.getPHS398TrainingBudget_MODL
TR-ANE_GRF-1) 

12 5 11 12 0 0 1.000   Higher 

B—(Coeus-Budget- 
QueryList.getFieldValue_MODLTR-JB_GRF-1) 

12 7 5 10 3 0 0.769   Lower 

C—(Coeus-S2S- 
SFLLLV1_1Generator.getReportEntity_MODLTR-BGE_GRF-1) 

14 1 14 0 1 0  0.933  Higher 

D—(Coeus-S2S- 
GlobalLibraryV2_0Generator.getAddressDataType_MODLTR-Y
I_GRF-1) 

13 1 12 0 2 4  0.684  Lower 

E—(Coeus-S2S- 
S2SUtilServiceImpl.getNKeyPersons_MODLTR-BOM_GRF-1) 

12 7 5 0 2 0   0.750 Higher 

F—(Coeus-S2S- 
PHS398TrainingSubAwardBudgetV1_0Generator.getPHS398Tra
iningBudget_MODLTR-ANE_GRF-1) 

11 6 10 0 0 8   0.684 Lower 
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metrics for 6 Coeus modules including the two modules shown in Figure 3. 
These design coefficients are calculated for Coeus code using McCabe IQ soft-
ware. The modules are paired by McCabe metrics, v and ev. In the table each 
module is provided a short name, A, B, C respectively, because the actual mod-
ule name is long and complex. As pairs, A and B, C and D, and E and F have 
equal or similar v and ev metrics. For these pairs, a different design coefficient is 
provided. For the first pair, module A has Cencap = 1.000 and module B has Cencap 
= 0.769, indicating module A has better encapsulation that module B. Data hid-
ing coefficients are calculated for modules C and D. Module C’s Cdh is 0.933 
which is a higher data hiding coefficient than module D’s (0.684). Csoc is illu-
strated using modules E and F. With this module pair, the Csoc is close with 
module E’s Csoc being slightly higher, 0.750 and 0.684, respectively. The magni-
tude of these coefficients behaves consistently with the design principles subjec-
tive values, and they are ordinal values providing an objective measurement of 
each design principle. 

8. Class Design Coefficients 

An extension of design coefficients is the measurement of class encapsulation, 
data hiding, and separation of concerns. Extending design coefficients to the 
class level is valuable because the metrics provide objective measurement for a 
higher abstraction of code. Since a class is composed of modules, the class mod-
ules are used to calculate the class design coefficients. Instead of a simple aggre-
gation of individual module coefficients, a weight average based upon cyclomatic 
complexity is used. Using module cyclomatic complexity as a weight, the class 
design coefficients take into account a module’s granularity. When a large mod-
ule (for example, v = 40) is poorly designed with low encapsulation, data hiding, 
and separation of concerns, that module’s weight will negatively impact the class 
design coefficient. The inverse is true when design coefficients are positive. Uti-
lizing this approach, a small well-designed module and a poorly-designed mod-
ule do not cancel out their contribution to the class design coefficients. 

Class encapsulation coefficient: a measurement of the level of bundling of data 
with modules operating on that data; a measurement of the proportion of deci-
sion logic that uses (refers to) local data and global data. The class encapsulation 
coefficient is calculated by summarizing the module encapsulation coefficients 
that are encapsulated in the class. It is the weighted average of the class module 
encapsulation coefficients. 

( )( )
m

m m
encap encapO v C v 

 
 

= ∑ ∑
 

where m is a module. 
Class data hiding coefficient: a class measurement of the level of hiding inter-

nal data members and limiting data access from external objects. The class data 
hiding coefficient is calculated by summarizing the module data hiding coeffi-
cients that are encapsulated in the class. It is the weighted average of the class 
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module data hiding coefficients. 

( )( )
m

m m
dh dhO v C v 

 
 

= ∑ ∑
 

where m is a module. 
Class separation of concerns coefficient: class separation of concerns is a de-

sign characteristic for separating a computer program into object classes, such 
that each class addresses a separate concern. The class separation of concerns 
coefficient is calculated by summarizing the module separation of concerns coef-
ficients that are encapsulated in the class. It is the weighted average of the class 
module separation of concerns coefficients. 

( )( )
m

m m
soc socO v C v 

 
 

= ∑ ∑
 

where m is a module. 

Class Coefficient Example 

Table 5 illustrates design coefficients at the class level. These examples are gen-
erated from Kuali code, using the Budget Construction (BC) module of the Kauli 
Financial System (KFS), Version 5.0.2. Budget Construction is the module that 
supports fiscal year-based budgeting and annual/monthly amount breakdowns. 
There are two classes in this example, TempListLookupAction and OjbPen-
dingBCAppointmentFundingActiveIndicatorCoversion (OjbPendingBC). There 
are 15 and 2 methods in each class, respectively. TempListLookupAction exhi-
bits lower values with values of 0.355, 0.469, and 0.206 for Oencap, Odh, and Osoc, 
respectively. The class design coefficients for the OjbPendingBC class are 0.641, 
0.786, and 0.524 for Oencap, Odh, and Osoc, respectively. When contrasted to Tem-
pListLookupAction, OjbPendingBC is better encapsulated with higher data hid-
ing, and it has better separation of concerns. Since TempListLookupAction is 
more granular with fewer methods, greater use of local data, and lower use of 
global data, its design coefficients reflect better levels of encapsulation, data hid-
ing, and separation of concerns. 

9. Design Coefficients for Module Types 

There are software instances where encapsulation, data hiding, and separation of 
concerns behave unique to the module’s function. In these instances, data shar-
ing is not always bad; logical dependency is not always bad. Table 6 contains 5 
examples of unique types of modules sometimes found in software solutions. 
Consider module A whose function is an execution switch. This module manag-
es the control between a high level module and many lower level modules; it 
controls the calls to numerous subordinates through control logic rather than 
data. For this module type, a lower (0.659), rather than a higher Csoc, is expected, 
since directing subordinate modules requires control logic. Again, a lower Csoc is 
not necessarily bad. If a global data switch (module B) functions logically to direct  
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Table 5. Kauli financial system budget construction class design coefficients 
examples. 

  v Cencap Cdh Csoc 

Class temp List Lookup Action Class     

Methods perform Lookup 3 0.330 0.500 0.000 

 

build Lock Key Message 4 0.500 0.570 0.330 

populate Lock Summary 6 0.460 0.550 0.280 

perform Question Without Input 4 0.330 0.500 0.170 

do Unlock Confirmation 6 0.380 0.500 0.220 

unlock 6 0.230 0.380 0.110 

submit Report 6 0.230 0.380 0.110 

get NEW Incumbent 1 0.330 0.500 0.000 

perform Extended Incumbent Search 1 0.330 0.500 0.000 

search 1 0.330 0.500 0.000 

get New Position 2 0.500 0.670 0.330 

perform Extended Position Search 12 0.330 0.380 0.360 

cancel 2 0.400 0.500 0.170 

clear Values 4 0.400 0.500 0.170 

start 5 0.380 0.500 0.130 

Design 
Coefficients 

 63 
Osoc = 
0.355 

Odh = 
0.469 

Osoc = 
0.206 

Class 
Ojb Pending BC Appointment Funding 
Active Indicator Conversion 

    

Methods sql ToJava 4 0.8 1 0.67 

 java ToSql 3 0.43 0.5 0.33 

Design 
Coefficients 

 7 
Osoc = 
0.641 

Odh = 
0.786 

Osoc = 
0.524 

 
Table 6. Design coefficients for method types. 

Method Name v iv ldv pgdv pdv 
Cencap Cdh Csoc 

( )1 1 2encapC +
 ( ) ( )( )1 pgdv pdv ldv gdv pdv− + + +

 
( )( )1 3iv pgdv pdv v− + +

 

A—execution switch 45 45 0 1 0 0.000 0.000 0.659 

B—global data switch 45 1 1 45 0 0.022 0.022 0.659 

C—local data switch 45 1 45 0 0 1.000 1.000 0.993 

D—small well- 
structured 

10 1 5 0 0 1.000 1.000 0.967 

E—large complex 
unstructured 

34 28 10 15 0 0.400 0.250 0.431 
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global data through an application, it should use high volumes of public global and 
parameter data resulting in a low Cencap and Cdh. Module B’s low Cencap (0.022) and 
Cdh (0.022) are not bad since they reflects the module’s functional responsibility. 

Other module types can be identified and classified by design coefficient me-
trics. A local data switch should exhibited good design coefficients. In Table 6, 
module C has high Cencap (1.000), Cdh (1.000) and Csoc (0.993), since the module 
type should have good encapsulation, data hiding, and separation of concerns. A 
small, well-structured module, such as module D, should also have good encapsu-
lation, data hiding, and separation of concerns. Module D fits this profile with 
high Cencap (1.000), Cdh (1.000) and Csoc (0.993). However, a large, complex, un-
structured module should not have the higher quality implications of a small, 
well-structured module. Module E illustrates this concept with high measurements 
for v, iv, ldv, pgdv, and pdv. The complex module’s functionality included subor-
dinate control logic, local data usage, and public global and parameter data usage. 
The impact of this complexity results in poor encapsulation, data hiding, and se-
paration of concerns as reflected in low Cencap (0.400), Cdh (0.250) and Csoc (0.431). 

10. Conclusions 

Encapsulation, data hiding, and separation of concerns have been prominent de-
sign principles for over forty years. Subjectively, software developers have used 
them to assess the quality of designs. Quantifying encapsulation, data hiding, 
and separation of concerns design principles provide metrics valuable to soft-
ware developers as software design tools. Our design metrics, coefficient of en-
capsulation, coefficient of data hiding, and coefficient of separation of concerns 
are three metrics which represent an important set of tools. Since the design 
structure of a program is an important component of logical complexity and da-
ta usage, the decision structure inherently contains the manner in which the de-
sign logic is implemented. These three design metrics address how software logic 
reflects the use of local, global, and parameter data in program logic. With these 
metrics, the quantification can be completed at two levels: module and class. 
Calculation of design coefficients represents a new analytical tool previously 
unavailable to software developers. 

The coefficient of encapsulation, coefficient of data hiding, and coefficient of 
separation of concerns exhibit desired properties which support their applicabil-
ity. 
• The metrics are objective and mathematically rigorous. In addition to being 

intuitive consistent with low or high encapsulation, data hiding, and separa-
tion of concerns, it is critical that the metrics be objective. The same design 
principle viewed a two different times or by two different software developers 
yields the same coefficient values. If the metrics are not objective, the indi-
vidual interest involved in a development effort will have differing interpre-
tation reducing the effectiveness of the coefficients as tools. 

• The metrics intuitively behave with the subjective degree of design quality. 
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When a module or class is well-designed, the encapsulation, data hiding, and 
separation of concerns are determined to be high, good or positive depending 
on the subjective stratification used. Accordingly, when a module or class is 
well-designed, the coefficient of encapsulation, coefficient of data hiding, and 
coefficient of separation of concerns are valued from 0 to 1 with 1 corres-
ponding to high, good, or positive. 

• The metrics should be of operational help. Metrics that correlate and esti-
mate characteristics such as quality and maintainability are useful. If the me-
trics can directly drive the design modularization process. 

• The design metrics introduced in this article are for quantifying design prin-
ciples in procedural and object-oriented code. They are valuable for assessing 
and controlling encapsulation, data hiding, and separation of concerns. They 
are also valuable for application portfolio management as they provide 
measures of design dynamics throughout the application life cycle. If better 
encapsulation, data hiding, and separation of concerns is achieved in during 
software design and maintenance, there will be positive impact on applica-
tion costs, reliability, and performance. 
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