
Journal of Software Engineering and Applications, 2020, 13, 278-287
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.1310018 Oct. 27, 2020 278 Journal of Software Engineering and Applications

Result-as-a-Service (RaaS): Persistent Helper
Functions in a Serverless Offering

Arshdeep Bahga, Vijay K. Madisetti, Joel R. Corporan

Georgia Institute of Technology, Atlanta, USA

Abstract
Serverless Computing or Functions-as-a-Service (FaaS) is an execution model
for cloud computing environments where the cloud provider executes a piece
of code (a function) by dynamically allocating resources. When a function
has not been executed for a long time or is being executed for the first time, a
new container has to be created, and the execution environment has to be in-
itialized resulting in a cold start. Cold start can result in a higher latency. We
propose a new computing and execution model for cloud environments
called Result-as-a-Service (RaaS), which aims to reduce the computational
cost and overhead while achieving high availability. In between successive
calls to a function, a persistent function can help in successive calls by pre-
computing the functions for different possible arguments and then distribut-
ing the results when a matching function call is found.

Keywords
Serverless Computing, Functions-as-a-Service, Lambda Functions

1. Introduction

Serverless Computing or Functions-as-a-Service (FaaS) is an execution model
for cloud computing environments where the cloud provider executes a piece of
code (a function) by dynamically allocating resources [1] [2]. In the serverless
computing model, the code is structured into functions. The functions are trig-
gered by events such as an HTTP request to an API gateway, a record written to
a database, a new file uploaded to cloud storage, a new message inserted into a
messaging queue, a monitoring alert, and a scheduled event. When a function is
triggered by an event, the cloud provider launches a container and executes the
function within the container. Some important concepts related to serverless
computing are described as follows:

How to cite this paper: Bahga, A., Madi-
setti, V.K. and Corporan, J.R. (2020) Re-
sult-as-a-Service (RaaS): Persistent Helper
Functions in a Serverless Offering. Journal
of Software Engineering and Applications,
13, 278-287.
https://doi.org/10.4236/jsea.2020.1310018

Received: September 21, 2020
Accepted: October 24, 2020
Published: October 27, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.1310018
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.1310018
http://creativecommons.org/licenses/by/4.0/

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 279 Journal of Software Engineering and Applications

• Push and Pull Models of Invocation: Functions in a serverless offering are
invoked by event sources, which can be a Cloud service or a custom applica-
tion that publishes events. The event-based invocation has two modes: push
and pull.

• Concurrent Execution: Concurrent execution refers to the number of ex-
ecutions of the functions which are happening at the same time. Cloud pro-
viders set limits on concurrent executions.

• Execution Duration: Cloud providers set a time-out limit under which a
function execution must complete. If the function takes a long time to ex-
ecute than the timeout limit, the function execution is terminated.

• Container Reuse: Cloud providers typically use containers for executing the
functions in their serverless offerings. A container helps in isolating the ex-
ecution of a function from other functions. When a function is invoked for
the first time (or after a long time), a container is created, the execution en-
vironment is initialized, and the function code is loaded. The container is
reused for subsequent invocations of the same function that happen within a
certain period.

• Cold and Warm Functions: When a function has not been executed for a
long time or is being executed for the first time, a new container has to be
created, and the execution environment has to be initialized. This is called a
cold start. Cold start can result in a higher latency as a new container has to
be initialized. The cloud provider may reuse the container for subsequent
invocations of the same functions within a short period. In this case, the
function is said to be warm and takes much less time to execute than a cold
start.

The key contributions of this work are 1) a new computing and execution
model for cloud environments called Result-as-a-Service (RaaS) is proposed over
FaaS, which aims to reduce the computational cost and overhead while achieving
high availability, 2) an approach for optimizing FaaS offerings by introducing a
library of “persistent helper functions” is proposed, 3) an analytical model and
an algorithm for maximizing the performance in a serverless offering is pre-
sented, and 4) an implementation case study using persistent helper functions is
presented.

2. Related Work

AWS Lambda [3], Azure Functions [4] and Google Cloud Functions [5] are
examples of popular commercial FaaS offerings. Popular open source serverless
frameworks include OpenFaaS [6], Kubeless [7], Fission [8] and Apache
OpenWhisk [9].

Serverless offerings have limitations such as cold starts and timeout limits.
Other challenges include provisioning and requesting overhead, pricing models
[10] [11], and orchestration [12] [13].

In [14], Azari and Koc have presented an approach for partitioning tasks be-

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 280 Journal of Software Engineering and Applications

tween hardware and software to improve performance. We have adapted this
approach for modeling speedup from using persistent helper functions in a RaaS
offering.

3. Proposed Approach

We propose a method for optimizing FaaS offerings by introducing a library of
persistent helper functions that are not billed like the functions in a FaaS. The
persistent helper functions can “turbo” boost the execution by prefetching data
and precomputing logic. In between successive calls to a function, a persistent
function can help in successive calls by precomputing the outcomes for different
possible arguments and then distributing the results when a matching function
call is found. This makes function calls faster and also reduces load since com-
mon computation is shared by the cloud provider across millions of calls that
can share the common precomputed values. Different third parties can compete
to provide helper functions that different retail users can leverage, thus creating
a Persistent Functions marketplace, much like an “app store” [15].

There are two reasons why RaaS is favored over FaaS. Firstly, as a conse-
quence of cost-savings when scaling, the proposed pricing model is detached
from the computational process expected by the on-demand request and is likely
to be much lower when users are incurring on the shared service rather than in-
dividual functions with the same purpose. Secondly, we demonstrate the
round-trip latency is significantly reduced after the precomputation of the ex-
pected values, thereby achieving high availability on request. The new model
aims to meet the requirements of low-latency applications such as smart meter-
ing, smart cities, autonomous vehicles, wearable devices, among others, to re-
duce the cost of compute-intensive tasks.

An app store of persistent helper functions from third parties and cloud pro-
viders can help accelerate and optimize the use of serverless applications in the
cloud context. Sophisticated identification, linkage, and lifecycle licensing mod-
ules allow applications and helper functions to be scaled, priced competitively,
and also allow privacy through authentication and encryption.

3.1. RaaS: FaaS Offering with Persistent Helpers

In this section, we present a new computing and execution model for cloud en-
vironments called Result-as-a-Service (RaaS). RaaS is an enhancement over FaaS
as it reduces the computational cost and overhead while achieving high availa-
bility through the use of persistent helper functions. Figure 1 shows the archi-
tecture of a RaaS offering. The components in the RaaS architecture are as fol-
lows:
• Load Balancer: Load balancer routes events/requests to servers, which ulti-

mately invokes the functions which are executed within containers running
on the servers. If a server has a hot container for a function already running,
the request is routed to that server.

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 281 Journal of Software Engineering and Applications

• RaaS Server: Figure 2 shows the architecture of a RaaS server, which ex-
ecutes functions within containers and returns a response to clients. Func-
tions are invoked by event sources. The event-based invocation has two
modes: push and pull. The server also handles CRUD (create, read, update
and delete) operations for setting up functions. When a server runs a func-
tion for the first time, it caches the function image and starts a hot container.
If a container is already running, the server routes the function call to the
running container. The response from a function execution is then sent back
to the load balancer. The server maintains a pool of containers for persistent

Figure 1. Architecture of a RaaS offering.

Figure 2. RaaS Server architecture with support for persistent helper function.

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 282 Journal of Software Engineering and Applications

helper functions, which are independent of the containers which execute the
functions.

• Packaging Functions & Persistent Helpers: The source code of functions
and persistent helpers is packaged as a container image. A container registry
(or functions distribution service) maintains a record of all the functions reg-
istered with the RaaS offering. Similarly, a catalog of persistent helper func-
tions in the RaaS offering is maintained.

3.2. Features of Persistent Helper Functions

• Stateful: A key differentiating factor of persistent helper functions from ex-
isting FaaS offerings is that the persistent helper functions can be stateful,
whereas functions are stateless and any state information has to be separately
maintained in a state database.

• Billing & Subscription Models: Persistent helper functions can have differ-
ent billing and subscription models. For example, the number of requests or
events processed, duration or time period, amount of computing and mem-
ory resources used, and amount of data processed can be independently con-
figured. The third parties providing persistent helper functions can share
royalty with the cloud provider that provides the serverless offering.

• Continuous Training: Persistent helper functions can be continuously
trained and optimized independently of the functions which use the persis-
tent helper functions.

• Distribution and Management: Persistent helper functions are made availa-
ble through a functions store (like an app store). Developers can choose per-
sistent helper functions from the functions store and select among various
subscription, billing and licensing models. Each instance of a persistent hel-
per function is identified by a unique ID and may be used by one or more
functions. The user is provided a dashboard that shows the status of persis-
tent helper functions instantiated by the user, their cost and other runtime
expenses and workload utilization.

• Scaling: Persistent helper functions are scaled elastically. There is a load ba-
lancer frontend to the persistent helper functions manager. It spawns new
helper instances and goes through a lifecycle approach to support functions.

• Execution: The persistent helper functions could be executed on GPU or
ASICs to speed up the execution.

• Sharing: The persistent helper functions can be shared across multiple functions.
• Configuration and Customization: The persistent helper functions can be

configured or customized to be used in different functions.
• Third Party Libraries: The persistent helper functions may use a third-party

library or may be developed by the user.

3.3. Modeling Speed-Up from Persistent Helper

A function in a serverless offering is represented as a Control Data Flow Graph

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 283 Journal of Software Engineering and Applications

(CDFG), as shown in Figure 3. There are two types of nodes in a CDFG: data
flow nodes and decision nodes. A data flow node is a piece of code that has a
single entry point, single exit point and no condition, whereas, a decision node is
a piece of code which has at least one condition. Nodes can be persisted and the
profitvalue determines the benefit from persistence in memory or database. For
each node in the CDFG, the actual execution time (Ti') and the execution time of
a persisted version (Ti) is determined. The profit value for each node is the dif-
ference (Ti'−Ti).

We present an algorithm to partition portions of a function (nodes in CDFG
representation of a function) into two sets—persisted and not-persisted, as fol-
lows:

Set of nodes which are not persisted:

{ }1 2 3, , ,NPset n n n= 
 (1)

Set of nodes which are persisted:

{ }PHset = (2)

Set of Profit Values for nodes:

{ }PVset = (3)

Memory Used:

0UM = (4)

Total Memory available: TM (5)

for in in NPset : (6)

Pi Ti Ti′= − (7)

(){ }, iPVset PVset Pi n= + (8)

()PVset Sort PVset= by Pi (9)

Figure 3. Example of a Control Data Flow Graph for modeling speed up in a RaaS offering.

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 284 Journal of Software Engineering and Applications

while U TM M< : (10)

for (), iPi n in PVset : (11)

if ()U ni TM M M+ < : (12)

{ }iPHset PHset n= + (13)

{ }iNPset NPset n= − (14)

U U niM M M= + (15)

The goal of this algorithm is to maximize the performance by using persistent
helper functions given constraints such as memory used, database read/write
capacity used or database size. The speedup from using persistent helpers can
then be computed as follows:

()()A B C
Speedup

A
− +

=

where, A = Total time for execution of all nodes if no persistence is used; B =
Total time for execution of nodes in the persisted set; C = Total time for execu-
tion of nodes in the non-persisted set;

4. Implementation Case Study

To evaluate the proposed approach, we developed a reference application for
sentiment analysis of social media posts such as tweets from Twitter as shown in
Figure 4. A custom listener component fetches tweets using the Twitter API and
posts the tweets to an API gateway endpoint which triggers a function in a ser-
verless offering to compute sentiment of each tweet. The computed sentiments
are stored in a database. A web application presents the sentiment analysis re-
sults.

Different approaches can be used to compute sentiment of tweets such as a
sentiment analysis function that uses a sentiment lexicon, a third-party library
such as Python TextBlob, or a web-based NLP service such as AWS Compre-
hend. In the FaaS version of the function where no persistence is used, one of the
above three approaches is used to analyze each tweet. Whereas in the RaaS ver-
sion, a persistent helper service is set up, which stores the computed sentiments
in memory or a database, and the function which processes the tweets uses this
service. Whenever there is a request from the function to persistent helper to
compute sentiment, the persistent helper service checks if the tweet has been
evaluated before. If the sentiment is not found in memory or database, it is

Figure 4. Reference application for social media sentiment analysis.

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 285 Journal of Software Engineering and Applications

computed and stored. Otherwise, if the sentiment had previously been com-
puted, the stored results are returned, thus saving time by avoiding a redundant
repeated computation.

We developed and deployed a series of functions into AWS Lambda and
tested two different conditions: 1) single tweet text and 2) random tweet text.
The functions ran in a cold and warm state, each with different memory sizes.
We used AWS Comprehend to analyze the text and derive the sentiment and
used AWS API Gateway as the RESTful API to handle incoming GET request
from the client.

5. Experimental Results

To evaluate the performance of RaaS approach over FaaS we measured the run
times of the functions in RaaS and FaaS versions of the reference application
shown in Figure 4.

For the FaaS version, we used a Lambda function set up in the AWS Lambda
service, which computes sentiments using the AWS Comprehend service. Whe-
reas in the RaaS version, we used a Lambda function set up in the AWS Lambda
service along with a persistent helper service that computes and stores senti-
ments in memory.

We evaluated the cold run and warm run performance of the functions in the
FaaS and RaaS versions. The cold runs measure the behavior of functions when
provisioned for the very first time. We took a number of measurements of func-
tion run times by varying the container memory size. Figure 5 shows the cold
and warm run performance for FaaS and RaaS versions. For reference, we also
show the predicted performance with persistence, which is estimated using the
model described in Section 3.3. As seen from the cold and warm run charts, the
predicted performance closely matches the actual performance.

Figure 6 shows the results for an alternative implementation of persistent
helper service that computes and stores sentiments in a NoSQL database instead
of memory. For the single tweet text condition, we extracted a single tweet from
a training dataset that contains 5000 tweets. Our first test consisted of sentiment
analysis on the text without persisting the data, and as performed in both a cold

Figure 5. Cold and Warm run performance: no persistence vs persistence in memory.

https://doi.org/10.4236/jsea.2020.1310018

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 286 Journal of Software Engineering and Applications

Figure 6. Cold and Warm run performance: no persistence vs persistence on database.

and warm state. For the second test, the text was persisted in the database for
both cold and warm states. In the random test condition, we used the training
dataset to randomly sample the sentiment analysis in both states.

In both the cold and warm run experiments (with persistence in memory and
in database), we observed that the average run time improves by increasing the
memory allocated. This happens because the CPU capacity allocated to contain-
ers executing the functions also increases as the memory allocated is increased.
AWS Lambda states that every time memory is doubled, the CPU capacity is also
doubled. Further, we observed that the RaaS approach (with persistence) out-
performs the FaaS approach (no persistence).

6. Conclusion and Future Work

We presented an approach for optimizing FaaS offerings by introducing persistent
helper functions, which can boost the execution by prefetching data and precom-
puting logic. Future work will focus on extending an open-source serverless offer-
ing such as OpenFaaS to support persistent helper functions and creating a dash-
board to display the status of persistent helper functions instantiated by the user,
their cost along with other runtime expenses and workload utilization.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Bahga, A. and Madisetti, V. (2019) Cloud Computing Solutions Architect: A

Hands-On Approach. VPT, ISBN: 9780996025591.

[2] Leitner, P., Wittern, E., Spillner, J. and Hummer, W. (2019) A Mixed-Method Em-
pirical Study of Function-as-a-Service Software Development in Industrial Practice.
Journal of Systems and Software, 149, 340-359

[3] AWS Lambda. https://aws.amazon.com/lambda/

[4] Azure Functions. https://azure.microsoft.com/en-us/services/functions/

https://doi.org/10.4236/jsea.2020.1310018
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/

A. Bahga et al.

DOI: 10.4236/jsea.2020.1310018 287 Journal of Software Engineering and Applications

[5] Google Cloud Functions. https://cloud.google.com/functions/

[6] OpenFaas. https://github.com/openfaas/faas

[7] Kubeless. https://github.com/kubeless/kubeless

[8] Fission. https://github.com/fission/fission

[9] Apache OpenWhisk. https://github.com/apache/openwhisk

[10] Baldini, I., et al. (2017) Serverless Computing: Current Trends and Open Problems.
In: Chaudhary, S., Somani, G. and Buyya, R., Eds, Research Advances in Cloud
Computing, Springer, Singapore, 1-20.

[11] van Eyk, E., et al. (2018) A SPEC RG Cloud Group’s Vision on the Performance
Challenges of FaaS Cloud Architectures. Companion of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering, Berlin, 9-13 April 2018, 21-24.

[12] Tosatto, A., Ruiu, P. and Attanasio, A. (2015) Container-Based Orchestration in
Cloud: State of the Art and Challenges. 2015 Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems, Santa Catarina, 8-10 July
2015, 70-75.

[13] Peinl, R., Holzschuher, F. and Pfitzer, F. (2016) Docker Cluster Management for the
Cloud-Survey Results and Own Solution. Journal of Grid Computing, 14, 265-282.
https://doi.org/10.1007/s10723-016-9366-y

[14] Azari, E. and Koc, H. (2015) Improving Performance through Path-Based Hard-
ware/Software Partitioning. Fifth International Conference on Digital Information
Processing and Communications (ICDIPC), Sierre, 7-9 October 2015, 54-59.

[15] Madisetti, V. and Bahga, A. (2019) Persistent Helpers for Functions as a Service
(FaaS) in Cloud Computing Environments. US Provisional Patent Application No.
62884690.

https://doi.org/10.4236/jsea.2020.1310018
https://cloud.google.com/functions/
https://github.com/openfaas/faas
https://github.com/kubeless/kubeless
https://github.com/fission/fission
https://github.com/apache/openwhisk
https://doi.org/10.1007/s10723-016-9366-y

	Result-as-a-Service (RaaS): Persistent Helper Functions in a Serverless Offering
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed Approach
	3.1. RaaS: FaaS Offering with Persistent Helpers
	3.2. Features of Persistent Helper Functions
	3.3. Modeling Speed-Up from Persistent Helper

	4. Implementation Case Study
	5. Experimental Results
	6. Conclusion and Future Work
	Conflicts of Interest
	References

