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Abstract 
Serverless Computing or Functions-as-a-Service (FaaS) is an execution model 
for cloud computing environments where the cloud provider executes a piece 
of code (a function) by dynamically allocating resources. When a function 
has not been executed for a long time or is being executed for the first time, a 
new container has to be created, and the execution environment has to be in-
itialized resulting in a cold start. Cold start can result in a higher latency. We 
propose a new computing and execution model for cloud environments 
called Result-as-a-Service (RaaS), which aims to reduce the computational 
cost and overhead while achieving high availability. In between successive 
calls to a function, a persistent function can help in successive calls by pre-
computing the functions for different possible arguments and then distribut-
ing the results when a matching function call is found. 
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1. Introduction 

Serverless Computing or Functions-as-a-Service (FaaS) is an execution model 
for cloud computing environments where the cloud provider executes a piece of 
code (a function) by dynamically allocating resources [1] [2]. In the serverless 
computing model, the code is structured into functions. The functions are trig-
gered by events such as an HTTP request to an API gateway, a record written to 
a database, a new file uploaded to cloud storage, a new message inserted into a 
messaging queue, a monitoring alert, and a scheduled event. When a function is 
triggered by an event, the cloud provider launches a container and executes the 
function within the container. Some important concepts related to serverless 
computing are described as follows: 
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• Push and Pull Models of Invocation: Functions in a serverless offering are 
invoked by event sources, which can be a Cloud service or a custom applica-
tion that publishes events. The event-based invocation has two modes: push 
and pull. 

• Concurrent Execution: Concurrent execution refers to the number of ex-
ecutions of the functions which are happening at the same time. Cloud pro-
viders set limits on concurrent executions. 

• Execution Duration: Cloud providers set a time-out limit under which a 
function execution must complete. If the function takes a long time to ex-
ecute than the timeout limit, the function execution is terminated. 

• Container Reuse: Cloud providers typically use containers for executing the 
functions in their serverless offerings. A container helps in isolating the ex-
ecution of a function from other functions. When a function is invoked for 
the first time (or after a long time), a container is created, the execution en-
vironment is initialized, and the function code is loaded. The container is 
reused for subsequent invocations of the same function that happen within a 
certain period. 

• Cold and Warm Functions: When a function has not been executed for a 
long time or is being executed for the first time, a new container has to be 
created, and the execution environment has to be initialized. This is called a 
cold start. Cold start can result in a higher latency as a new container has to 
be initialized. The cloud provider may reuse the container for subsequent 
invocations of the same functions within a short period. In this case, the 
function is said to be warm and takes much less time to execute than a cold 
start. 

The key contributions of this work are 1) a new computing and execution 
model for cloud environments called Result-as-a-Service (RaaS) is proposed over 
FaaS, which aims to reduce the computational cost and overhead while achieving 
high availability, 2) an approach for optimizing FaaS offerings by introducing a 
library of “persistent helper functions” is proposed, 3) an analytical model and 
an algorithm for maximizing the performance in a serverless offering is pre-
sented, and 4) an implementation case study using persistent helper functions is 
presented. 

2. Related Work 

AWS Lambda [3], Azure Functions [4] and Google Cloud Functions [5] are 
examples of popular commercial FaaS offerings. Popular open source serverless 
frameworks include OpenFaaS [6], Kubeless [7], Fission [8] and Apache 
OpenWhisk [9]. 

Serverless offerings have limitations such as cold starts and timeout limits. 
Other challenges include provisioning and requesting overhead, pricing models 
[10] [11], and orchestration [12] [13]. 

In [14], Azari and Koc have presented an approach for partitioning tasks be-
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tween hardware and software to improve performance. We have adapted this 
approach for modeling speedup from using persistent helper functions in a RaaS 
offering. 

3. Proposed Approach 

We propose a method for optimizing FaaS offerings by introducing a library of 
persistent helper functions that are not billed like the functions in a FaaS. The 
persistent helper functions can “turbo” boost the execution by prefetching data 
and precomputing logic. In between successive calls to a function, a persistent 
function can help in successive calls by precomputing the outcomes for different 
possible arguments and then distributing the results when a matching function 
call is found. This makes function calls faster and also reduces load since com-
mon computation is shared by the cloud provider across millions of calls that 
can share the common precomputed values. Different third parties can compete 
to provide helper functions that different retail users can leverage, thus creating 
a Persistent Functions marketplace, much like an “app store” [15]. 

There are two reasons why RaaS is favored over FaaS. Firstly, as a conse-
quence of cost-savings when scaling, the proposed pricing model is detached 
from the computational process expected by the on-demand request and is likely 
to be much lower when users are incurring on the shared service rather than in-
dividual functions with the same purpose. Secondly, we demonstrate the 
round-trip latency is significantly reduced after the precomputation of the ex-
pected values, thereby achieving high availability on request. The new model 
aims to meet the requirements of low-latency applications such as smart meter-
ing, smart cities, autonomous vehicles, wearable devices, among others, to re-
duce the cost of compute-intensive tasks. 

An app store of persistent helper functions from third parties and cloud pro-
viders can help accelerate and optimize the use of serverless applications in the 
cloud context. Sophisticated identification, linkage, and lifecycle licensing mod-
ules allow applications and helper functions to be scaled, priced competitively, 
and also allow privacy through authentication and encryption. 

3.1. RaaS: FaaS Offering with Persistent Helpers 

In this section, we present a new computing and execution model for cloud en-
vironments called Result-as-a-Service (RaaS). RaaS is an enhancement over FaaS 
as it reduces the computational cost and overhead while achieving high availa-
bility through the use of persistent helper functions. Figure 1 shows the archi-
tecture of a RaaS offering. The components in the RaaS architecture are as fol-
lows: 
• Load Balancer: Load balancer routes events/requests to servers, which ulti-

mately invokes the functions which are executed within containers running 
on the servers. If a server has a hot container for a function already running, 
the request is routed to that server. 
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• RaaS Server: Figure 2 shows the architecture of a RaaS server, which ex-
ecutes functions within containers and returns a response to clients. Func-
tions are invoked by event sources. The event-based invocation has two 
modes: push and pull. The server also handles CRUD (create, read, update 
and delete) operations for setting up functions. When a server runs a func-
tion for the first time, it caches the function image and starts a hot container. 
If a container is already running, the server routes the function call to the 
running container. The response from a function execution is then sent back 
to the load balancer. The server maintains a pool of containers for persistent  

 

 
Figure 1. Architecture of a RaaS offering. 

 

 
Figure 2. RaaS Server architecture with support for persistent helper function. 
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helper functions, which are independent of the containers which execute the 
functions. 

• Packaging Functions & Persistent Helpers: The source code of functions 
and persistent helpers is packaged as a container image. A container registry 
(or functions distribution service) maintains a record of all the functions reg-
istered with the RaaS offering. Similarly, a catalog of persistent helper func-
tions in the RaaS offering is maintained. 

3.2. Features of Persistent Helper Functions 

• Stateful: A key differentiating factor of persistent helper functions from ex-
isting FaaS offerings is that the persistent helper functions can be stateful, 
whereas functions are stateless and any state information has to be separately 
maintained in a state database. 

• Billing & Subscription Models: Persistent helper functions can have differ-
ent billing and subscription models. For example, the number of requests or 
events processed, duration or time period, amount of computing and mem-
ory resources used, and amount of data processed can be independently con-
figured. The third parties providing persistent helper functions can share 
royalty with the cloud provider that provides the serverless offering. 

• Continuous Training: Persistent helper functions can be continuously 
trained and optimized independently of the functions which use the persis-
tent helper functions. 

• Distribution and Management: Persistent helper functions are made availa-
ble through a functions store (like an app store). Developers can choose per-
sistent helper functions from the functions store and select among various 
subscription, billing and licensing models. Each instance of a persistent hel-
per function is identified by a unique ID and may be used by one or more 
functions. The user is provided a dashboard that shows the status of persis-
tent helper functions instantiated by the user, their cost and other runtime 
expenses and workload utilization. 

• Scaling: Persistent helper functions are scaled elastically. There is a load ba-
lancer frontend to the persistent helper functions manager. It spawns new 
helper instances and goes through a lifecycle approach to support functions. 

• Execution: The persistent helper functions could be executed on GPU or 
ASICs to speed up the execution. 

• Sharing: The persistent helper functions can be shared across multiple functions. 
• Configuration and Customization: The persistent helper functions can be 

configured or customized to be used in different functions. 
• Third Party Libraries: The persistent helper functions may use a third-party 

library or may be developed by the user. 

3.3. Modeling Speed-Up from Persistent Helper 

A function in a serverless offering is represented as a Control Data Flow Graph 
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(CDFG), as shown in Figure 3. There are two types of nodes in a CDFG: data 
flow nodes and decision nodes. A data flow node is a piece of code that has a 
single entry point, single exit point and no condition, whereas, a decision node is 
a piece of code which has at least one condition. Nodes can be persisted and the 
profitvalue determines the benefit from persistence in memory or database. For 
each node in the CDFG, the actual execution time (Ti') and the execution time of 
a persisted version (Ti) is determined. The profit value for each node is the dif-
ference (Ti'−Ti). 

We present an algorithm to partition portions of a function (nodes in CDFG 
representation of a function) into two sets—persisted and not-persisted, as fol-
lows: 

Set of nodes which are not persisted:  

{ }1 2 3, , ,NPset n n n= 
                     (1) 

Set of nodes which are persisted: 

{ }PHset =                          (2) 

Set of Profit Values for nodes:  

{ }PVset =                           (3) 

Memory Used:  

0UM =                            (4) 

Total Memory available: TM                   (5) 

for in  in NPset :                       (6) 

Pi Ti Ti′= −                           (7) 

( ){ }, iPVset PVset Pi n= +                     (8) 

( )PVset Sort PVset=  by Pi                    (9) 

 

 
Figure 3. Example of a Control Data Flow Graph for modeling speed up in a RaaS offering. 
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while U TM M< :                      (10) 

for ( ), iPi n  in PVset :                    (11) 

if ( )U ni TM M M+ < :                     (12) 

{ }iPHset PHset n= +                      (13) 

{ }iNPset NPset n= −                      (14) 

U U niM M M= +                        (15) 

The goal of this algorithm is to maximize the performance by using persistent 
helper functions given constraints such as memory used, database read/write 
capacity used or database size. The speedup from using persistent helpers can 
then be computed as follows: 

( )( )A B C
Speedup

A
− +

=
 

where, A = Total time for execution of all nodes if no persistence is used; B = 
Total time for execution of nodes in the persisted set; C = Total time for execu-
tion of nodes in the non-persisted set; 

4. Implementation Case Study 

To evaluate the proposed approach, we developed a reference application for 
sentiment analysis of social media posts such as tweets from Twitter as shown in 
Figure 4. A custom listener component fetches tweets using the Twitter API and 
posts the tweets to an API gateway endpoint which triggers a function in a ser-
verless offering to compute sentiment of each tweet. The computed sentiments 
are stored in a database. A web application presents the sentiment analysis re-
sults. 

Different approaches can be used to compute sentiment of tweets such as a 
sentiment analysis function that uses a sentiment lexicon, a third-party library 
such as Python TextBlob, or a web-based NLP service such as AWS Compre-
hend. In the FaaS version of the function where no persistence is used, one of the 
above three approaches is used to analyze each tweet. Whereas in the RaaS ver-
sion, a persistent helper service is set up, which stores the computed sentiments 
in memory or a database, and the function which processes the tweets uses this 
service. Whenever there is a request from the function to persistent helper to 
compute sentiment, the persistent helper service checks if the tweet has been 
evaluated before. If the sentiment is not found in memory or database, it is  

 

 
Figure 4. Reference application for social media sentiment analysis. 
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computed and stored. Otherwise, if the sentiment had previously been com-
puted, the stored results are returned, thus saving time by avoiding a redundant 
repeated computation. 

We developed and deployed a series of functions into AWS Lambda and 
tested two different conditions: 1) single tweet text and 2) random tweet text. 
The functions ran in a cold and warm state, each with different memory sizes. 
We used AWS Comprehend to analyze the text and derive the sentiment and 
used AWS API Gateway as the RESTful API to handle incoming GET request 
from the client. 

5. Experimental Results 

To evaluate the performance of RaaS approach over FaaS we measured the run 
times of the functions in RaaS and FaaS versions of the reference application 
shown in Figure 4. 

For the FaaS version, we used a Lambda function set up in the AWS Lambda 
service, which computes sentiments using the AWS Comprehend service. Whe-
reas in the RaaS version, we used a Lambda function set up in the AWS Lambda 
service along with a persistent helper service that computes and stores senti-
ments in memory. 

We evaluated the cold run and warm run performance of the functions in the 
FaaS and RaaS versions. The cold runs measure the behavior of functions when 
provisioned for the very first time. We took a number of measurements of func-
tion run times by varying the container memory size. Figure 5 shows the cold 
and warm run performance for FaaS and RaaS versions. For reference, we also 
show the predicted performance with persistence, which is estimated using the 
model described in Section 3.3. As seen from the cold and warm run charts, the 
predicted performance closely matches the actual performance. 

Figure 6 shows the results for an alternative implementation of persistent 
helper service that computes and stores sentiments in a NoSQL database instead 
of memory. For the single tweet text condition, we extracted a single tweet from 
a training dataset that contains 5000 tweets. Our first test consisted of sentiment 
analysis on the text without persisting the data, and as performed in both a cold  

 

 
Figure 5. Cold and Warm run performance: no persistence vs persistence in memory. 
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Figure 6. Cold and Warm run performance: no persistence vs persistence on database. 
 

and warm state. For the second test, the text was persisted in the database for 
both cold and warm states. In the random test condition, we used the training 
dataset to randomly sample the sentiment analysis in both states. 

In both the cold and warm run experiments (with persistence in memory and 
in database), we observed that the average run time improves by increasing the 
memory allocated. This happens because the CPU capacity allocated to contain-
ers executing the functions also increases as the memory allocated is increased. 
AWS Lambda states that every time memory is doubled, the CPU capacity is also 
doubled. Further, we observed that the RaaS approach (with persistence) out-
performs the FaaS approach (no persistence). 

6. Conclusion and Future Work 

We presented an approach for optimizing FaaS offerings by introducing persistent 
helper functions, which can boost the execution by prefetching data and precom-
puting logic. Future work will focus on extending an open-source serverless offer-
ing such as OpenFaaS to support persistent helper functions and creating a dash-
board to display the status of persistent helper functions instantiated by the user, 
their cost along with other runtime expenses and workload utilization. 
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