
Journal of Software Engineering and Applications, 2020, 13, 206-217
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.139014 Sep. 30, 2020 206 Journal of Software Engineering and Applications

Current Issues in Software Re-Usability:
A Critical Review of the Methodological
& Legal Issues

Tariq Saeed

Department of Information Science, College of Computer Science and Engineering, Taibah University,
Madinah Almunwarah, Kingdom of Saudi Arabia

Abstract

The main objective of this research is to discuss the current legal and metho-
dological issues in the field of software Re-Usability. Though there are
enormous online forums discussing such issues via Q&A but this paper is an
attempt to raise the awareness about the legal issues, which a software engi-
neer may trap into. The paper discussed the current issues with software reu-
sability within the legal and methodological context. This paper applied an
extensive literature review to critically appraise the past studies to come to a
collective conclusion. Prior to discussing the issues, the benefits of reuse were
mentioned, including the saving of time and cost for users. But legally the
reuse of software assets creates complexities for the user in relation to meet-
ing all the licensing requirements and dealing with the liability in case of a
breach. Methodologically, there are major barriers to reused software when it
comes to technical competence and managerial issues such as a lack of re-
sources. Even when reusing software to save time, and leverage off the specia-
lization of other authors, the end-user must also have the technical expertise
to search, adapt and merge these reusable assets into the larger software in-
frastructure. The review ultimately shows the high barriers still remain to
software reuse which could mean that smaller developers and businesses will
still be reluctant to fully utilize open-source components to the best advan-
tage.

Keywords

Software Engineering, Software Re-Usability, Legal Issues,
Methodological Issues

How to cite this paper: Saeed, T. (2020)
Current Issues in Software Re-Usability: A
Critical Review of the Methodological &
Legal Issues. Journal of Software Engineer-
ing and Applications, 13, 206-217.
https://doi.org/10.4236/jsea.2020.139014

Received: January 4, 2020
Accepted: June 7, 2020
Published: September 30, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.139014
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.139014
http://creativecommons.org/licenses/by/4.0/

T. Saeed

DOI: 10.4236/jsea.2020.139014 207 Journal of Software Engineering and Applications

1. Introduction

The paper considers the reuse of software components as a primary criterion for
successful future software development. As a result, previous studies have been
directed towards evaluating the extent to which a software component is reusa-
ble, taking into account both the benefits and issues related to reuse. These stu-
dies can be broken down into two main categories, firstly the studies which fol-
low an expert-based approach as their methodology, and second where researchers
rely on the data driven methodologies which focus mainly on open-source soft-
ware systems [1] [2]. The discussion of software reuse started with Douglas
Mcllroy in 1968, who proposed the mass production of software using reusable
components [3]. Though, Mcllroy at the time was not able to forecast that the
software market would become dominated by several technology bemouths such
as HP, Microsoft and Apple. Recently the expansion of open-source software
(OSS) forums has presented developers with an opportunity to share their code,
and assets among each other to collaborate and improve their software [4].

Reusability of software has grown in importance as technological development
increases the complexity of B2B and B2C technology products. Customers are
demanding more functionality, pushing businesses to invest heavily into the di-
gitalization of their business models [5]. To allow such a process to be viable for
smaller businesses with little technical knowledge, software reusability has al-
lowed systems to be created by piecing together already developed components
from other authors. It shows that reusability has major advantages when it
comes to speed and reduced cost, and ultimately expands the potential for
non-technical businesses to leverage the expertise of others to offer new, digital
solutions to users. But this comes with several issues which can be combined in-
to two groups in this study; namely (1) legal, and (2) methodological which will
be evaluated.

2. Software Re-Use

Software components are parts of a system or application. Components are a
means of breaking the complexity of software into manageable parts. Each
component hides the complexity of its implementation behind an interface.
Components can be swapped in and out like the interchangeable parts of a ma-
chine. Software reuse is regularly discussed in the form of assets, and throughout
this piece the term assets will be used frequently to refer to software reuse. These
reusable assets can also be referred to as building blocks [4]. Assets can be work
products of any kind, and do not just encompass the source code, but also in-
cludes interfaces, test plans, architectures. Businesses are attracted to software
reuse as it allows for collaboration which ultimately can be used to create val-
ue-added potential [6]. Assets can be split into several categories, from technical
or management nature, long grained or fine-grained, simple to composite. Le-
verage is a term which is also referred to in several past studies [7] [8]. Leverage
is said to occur when the reuse of one asset allows for the reuse of a chain, or

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 208 Journal of Software Engineering and Applications

other assets which are downstream in the development process [4] and [8]
showcased how reuse within the APP market was prevalent between smaller de-
velopers, studying APP’s on the Android store. The authors noted that “thou-
sands of mobile apps across five different categories in the Android Market” [8]
were considered, showing that almost 23% of the classes inherit from a base class
in the Android API, and 27% of the classes inherit from a domain specific base
class. Most importantly, it was concluded that 61% of all mobile APP’s had si-
milarities with another, while 217 APP’s are reused completely by another mo-
bile APP in the same category.

In another paper the authors noted how the number of APP’s had increased
exponentially between 2007 and 2012, reaching over 1 Million at the time.
However, the main reason behind such was the widespread reuse of underlying
APP infrastructure which allowed non-experts to release their own APP’s. This
environment was supported by the increasingly open-access nature of APP
software, allowing all to access and use. But this made developers more depen-
dent on the quality of the apps and libraries that they reuse [9].

Prior to discussing the issues of software reuse a quick summary of the main
benefits should be mentioned to showcase why software reuse continues to grow
in popularity and is worthwhile the study. The main benefits are related to cost
and time savings by reusing specific components rather than building them from
the beginning [10]. To summarize reuse can increase productivity, shorten
time-to-market for developments, improve software quality by reusing compo-
nents developed by specialists, reduce maintenance cost, leverage technical skills
and knowledge, and improve system functionality [11]. Apart from productivity
gains, component reuse allows a business to reduce the critical path in the deli-
very information systems applications, reducing the time to market, moving into
a stage of revenue generation sooner. Pitney Bowes became an early adopted of
reused components in their applications and in 1996 documented tremendous
labor savings from reusing software as opposed to developing all in-house [12].

3. Legal Issues

Reuse is a common and mostly advocated practice for software development.
Significant efforts have been invested into facilitating it, leading to the wide-
spread integration of open source components into proprietary software sys-
tems. But there are vulnerabilities which can increase as reusability increases es-
pecially into systems with insecure coding practices, or when an asset is reused
more and more, creating a larger surface area for a cyber-attack [13]. The coun-
terargument to this is that reused software can become more secure through its
maturity and extensive vetting by other users. [14] investigated 301 open-source
projects through a holistic multiple case-study methodology. What was con-
cluded was that security vulnerabilities increase as the project size of the reusable
software increases, especially when the user doesn’t have a deep technical under-
standing over what they are necessarily using; i.e. code, infrastructure. Many
may use reused assets for convenience and with such fail to properly understand

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 209 Journal of Software Engineering and Applications

the code which has created them, or the process involved within their construc-
tion. Thus, the new user opens vulnerabilities in their system, especially if mul-
tiple reusable components are used and adapted for their final version. Security
vulnerabilities ultimately link to legal issues as any cyber-attack, and subsequent
loss of customer data, or business continuity may lead to legal challenges from
customers, and thus a financial cost [15]. [14] summarized their findings with
the comment “code reuse is neither a frightening werewolf introducing an ex-
cessive number of vulnerabilities nor a silver bullet for avoiding them”. Legal is-
sues surrounding software reuse can be summarized into three types of protec-
tion, namely patents, trademarks and author law. All three of these protections
can be used in different forms to protect the intellectual property of the creator.

Ownership has always remained an issue to greater software re-usability. Ma-
jor technology businesses are keen to keep their ecosystems under their own
control, because their future financial performance could be hindered by their
components becoming open source. To protect their assets businesses such as
Apple place patents over the technology, over their software components. It
places legal protection over their software making it impossible to be re-used
within other businesses. Author law is discussed given the protection that it pro-
vides over creative elements of someone’s work. While patents may be used to
protect intellectual property and innovation, author law can be used to protect
creative processes such as a poem, a song, or even source code for software.
Though, globally, there is no set guidelines which define all components of soft-
ware and thus there is confusion over issues such as how long author law lasts
after a product is released; can it be adapted; who is liable among other [16].

Open-source software (hereafter OSS) also has complexities when it comes to
the licenses which are attached to a specific component. There are several li-
censes which could be attached to OSS; from the Apache License 2.0 to the MIT
License among many others. Many of these licensing regimes share the same
elements (see Thompson & Jena, 2005), such as no royalties to be paid; no re-
strictions on the application of the software and creation of modifications or de-
rivatives work permitted. The entire purpose of open source licensing is to limit
restrictions and promote public availability; accordingly, there is no restriction
on OSS being used for commercial purposes [17] [18]. But in using the OSS
within their software, the developer becomes obliged under certain licensing
terms which were attached to the utilized OSS components. This study has pre-
sented several theoretical examples, the main being that the user of the reused
component may be required to display certain copyright notices related to the
components reused in their version. To add, the user may also be required to
make available certain code which could show their modifications and allow
others to then use this.

These issues are a serious barrier for many developers seeking to build-upon
reused components to create their own modified software. While they are willing
to use reused software to build the base for their own version, many developers
may then be reluctant to share their own intellectual property with others, essen-

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 210 Journal of Software Engineering and Applications

tially make that OSS in the process. In some cases, it means the developers that
use OSS may require legal assistance to ensure they comply with all the licensing
agreements. Failure to do this can result in legal action from the original author,
and so OSS assets should be caveated with the note that they are still under the
legal ownership of the author who has the right to take legal action if deemed
necessary [19]. This can be a time-consuming process when a developer uses
several reused components in their final version from several different authors.
Many may steer away from OSS, instead choosing to develop the components
in-house as this is then their own intellectual property under their own control
and subject only to their regulation. As well as copyright rules, [20] also noted
copyleft. Copyleft, also cited in [21] and [22] is the process of granting the right
to freely use the intellectual property under the assumption that the user will do
the same with their modifications. It supports the argument from [19] that a le-
gal issue with greater adoption of reusing is licensing agreement which may
force the user to share their modifications, something which they look to protect
for business success.

Legal issues also incorporate liability [23]. Software does not also perform as
expected and given the rising issue of cyber security and theft, businesses are in-
creasingly looking at components which can be added to their technology to
improve security, especially around the holding of consumer-related data given
GDPR regulation. OSS has become a way for businesses to improve their own
security quickly and in a cost-effective manner, noted by several authors includ-
ing [24]. But if the security assets put in place fail the main issue is who will be
liable, the business which is using the asset in their software, or the original au-
thor of that asset [25]. Trust is also an important concept to note. A user needs
to have trust that the assets they are reusing are compliant with all licensing
conditions. Given that these assets can be taken and modified and modified fur-
ther means that open-source forums can have multiple versions available to use
all tied up within a web of modifications and multiple developers being involved
[24]. It becomes hard to understand whether all these modifications have been
done legally and in compliance with all licensing requirements. Ultimately for a
user to reuse this they need to have significant trust that the asset is legal or have
a significant team of people able to check the origin of the code, and its modifi-
cations over time. It is having the resources available to ensure that there is no
unlawful plagiarism within the software being reused which could lead to legal
challenges, costs and implications within the future (Table 1).

4. Methodological Issues

While the main benefit of software reuse is the reduction in time needed to suc-
cessfully bring software to fruition a methodological issue to such may be that
the software being reused may not be designed in a manner conductive to the
task it is required for, requiring that ad hoc modification is applied [26]. Many
of the studies cited here used a methodology in which they study the code in

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 211 Journal of Software Engineering and Applications

Table 1. Legal issues of software re-usability.

Legal Issue Literature Summary

Ownership

Making software available for open-source usage has benefitted businesses in
reducing their workload, costs, and need for knowledge, expertise and
resources during the development process [24]. Though without tracking past
ownership, and enhancements to OSS a user may be reluctant to use themselves.
There is also an issue related to whether the end user, after enhancing the OSS
to meet their own specifications would need to then make this openly available,
potentially impacting on their business competitive advantage [17] [18].

Licensing
Regimes
of OSS

The main issues around licensing are
1) Copyleft [21] [22],
2) Caveats attached to OSS and the potential for the owner, or author to
take legal action if any are violated [25] [26].

Liability

While reused software can help businesses expand their capabilities beyond
their own knowledge by leveraging of others developments, there are significant
gaps over who would be liable if something went wrong within the business
due to a software asset which has been reused [23]. Businesses may be reluctant
to use reused components without full assurance then are protected, though
studies from [8] [9] show strong growth in the usage of reused components
suggesting that while liability is an issue to overcome, it is being overcome
in most cases, mainly by the risk being accepted by the business as the
benefits are greater than the costs.

software to find similarities which prove reuse. [27] choose to survey 128 devel-
opers over their experience with software reuse. It was found that 72% of the
developers questioned cited complexity as a key barrier to software reuse. The
complexity of old code essentially made it unusable.

An emergent pattern within software reuse has been that developers are only
writing the visible application code which forms the tip of the APP, which diffe-
rentiates the design and the way in which the APP or software interacts within
the user [28]. The bulk of the back-office code and components are now reused
in multiple APP’s, in a mix-and-match fashion [28]. The process of software
reuse is not simple. There is high technical need for any developer seeking to
reuse software within their application. The developer would need to undergo a
process of component searching, understanding and adaption to their own
needs. For an entry-level developer with little understanding over programming
this can be a daunting experience and the logistical challenges involved with
searching and adapting an asset to reuse could be a significant issue [29] [30].

The availability of open-source software has increased exponentially which
had led to the creation of large repositories where software could be stored and
viewed by others [31]. However, while [32] cites this as a major benefit to soft-
ware reuse in general, [33] discusses how the expansion of different product va-
riants is a challenge for developers, crowding out the market with multiple op-
tions confusing a would-be developer on which makes the best option (Figure
1). Reuse might also hinder new ideas and the making of innovations. Balance
between innovation and reuse should be determined by the company’s strategy.
Earlier work from [34] had created a list of obstacles to software reuse, summa

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 212 Journal of Software Engineering and Applications

Figure 1. Illustration of the software re-use process. Created for this study.

rized into nine key problems; namely technical (structure mismatch, steep
learning curves), managerial problems (infrastructure clash, turf battles, inade-
quate resources) and cultural or psychological issues (apathy, fear, “not invented
here syndrome”, ivory tower). It must be remembered that even if software is
developed through reusing specific components, they still need to be maintained
and updated accordingly. Reuse can add complexity by creating dependencies
between developers and businesses [35]. Some of the mentioned problems with
the dependencies identified by one of the respondents are web of dependencies,
coordination cost, process and tool divergence and integration cost.

[36] summarized the difficulties in fully utilizing OSS as meeting the necessary
pre-conditions. These included proper training of all software developers and
testers to deal with OSS, including documentation, thorough programming
guidelines, testing and programming and software design. The user of the asset
needed to ensure they had the resources able to take these reusable components
and merge them into their own infrastructure successfully. It has been noted that
most reusable assets need to be changed once then are with another user to meet
their individual specifications, meaning that technical knowledge is vital [37].
[38] also supported the findings of Kim (2005), focusing their study into the use
of software reuse within SME’s. The key findings were while increase reuse rates
among SME’s increased productivity and reduce total costs, it had little impact
on the time to market given that SME’s needed significant time to ensure that
they were: 1) compliant with all legal aspects of using the reusable assets, and 2)
they had developed the technical knowledge internally to adapt and maintain
this software. Though the current literature is positive over OSS and shows that
many of the methodological issues are overcome due to the developer commu-
nity which is created by sharing software. The main factors that make OSS more
reliable are: 1) that developers are usually also users of the software, as well as
members of a community of developers, 2) public availability of the source code
and fast bug removal practices since thousands of independent programmers
testing and fixing bugs of the software [39].

The development environment is also a potential issue restricting access to
reusing software [40]. Well documented software/system architectures are es-
sential to support decision-making about reuse, required to correctly integrate

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 213 Journal of Software Engineering and Applications

the different assets, thus reducing testing time [40]. Reuse is still possible with-
out documentation as long as domain expertise within the team remains ade-
quate, though without documentation there are legacy issues if key members of
the development team leave the business, taking with them their knowledge and
expertise. This is an important unsolved issue with legacy systems where experts
have left and business and the documentation is out of sync, leaving a significant
gap within the team over how to maintain and evolve the system [40] [41] [42].
The stability of the business and its software must be considered here, with sta-
bility vital to ensure business continuity [43] (Table 2).

Table 2. Methodological issues of software re-usability.

Methodological Issue Literature Summary

In-house Expertise

While reusing software allows a business to leverage off the
expertise of others, there is still the need for in-house
expertise to understand, adapt and implement these
reused components cited in [35] [37] [38] [39] showing
agreement among researchers.

Meeting pre-conditions
for utilizing OSS

Proper training of all software developers and testers to deal
with OSS, including documentation, thorough programming
guidelines, testing and programming and software design [36],
with elements of this noted by [29] [30]. Again there is
agreement within the literature that these issues will
impact all users of reused software components.

Crowded OSS Market

Open-source software has increased exponentially which had
led to the creation of large repositories where software
could be stored and viewed by others. Makes it harder to
search through all options and make a choice [31] [33].

Not-invented-here-syndrome
Stance adopted by some that avoids using or buying already
existing products, research, standards, or knowledge
because of their external origins [5] [43].

5. Conclusions

This piece has provided a systematic review of past literature related to software
reuse; specifically summarizing legal and methodological issues. Many studies
agree that the expansion of software reuse has supported the expansion of soft-
ware options, as well as the number of APP’s available to consumers. Reusing
software reduces the resources needed to create an APP; i.e. resources such as
time and cost.

Legally the main challenge for software reuse is ensuring compliance with
global regulation related to patents, trademarks and author law. While patents
and trademarks largely follow an accepted practice of registered intellectual
property, author’s law is more complex and there is confusion over what it ap-
plies to, for how long, and how this would impact on legal issues such as liability.
Methodologically there are several issues to wider adoption of software reuse
such as have the internal expertise to fully understand the code, or asset being
used; however, many of the studies considered in this piece are largely positive

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 214 Journal of Software Engineering and Applications

over using OSS to spur innovation and improve the productivity and security of
assets, benefitting all who use OSS (Table 3).

Table 3. Summary of literature into software reuse issues.

Study Methodology Key Findings

[43] Surveys

Effective reuse depends not only on finding and
reusing components, but also on the ways those
components are combined. The researcher refers
to this process as “packaging”, noting how it can be
technical difficult to match up the packaging and
ensure a system using reused components works as
intended. Unfortunately, these styles and packaging
distinctions are often implicit; as a consequence,
components with appropriate functionality may
fail to work together.

[44] Surveys (51 Questions)

Well documented software/system architectures are
essential to support decision-making about reuse,
required to correctly integrate the different assets,
thus reducing testing time. A business needs to be
well prepared to identify, handle and adapt reused
software for their own business needs. There needs
to be that technical expertise within the business,
or there is the risk that a business is using reused
components which they do not fully understand;
leading to issues related to reliability,
legal protection, security and performance.

[44]
Testing reliability of reused
software components

Highlighted that some software components used
in software are not fully functional, and used in
a way which was not intended. Issue is that
those using these reused components or
assets may not fully understand them.

[45]
Analysis of 24 software reuse
projects between 1994-1997 in
European countries

A third of the projects tracked ultimately failed.
Three main causes of failure were
1) not introducing reuse-specific processes,
2) not modifying non-reuse processes, and
3) not considering human factors. The root cause
of these issues was a lack of commitment from top
management along with the belief that the
business did not need to further adapt or engineer
these reused components to fit their business needs;
instead believing they could simply be taken
from a repository and used.

[21] Extensive literature review

Legal issues surrounding software reuse can be
summarize into three types of protection,
namely patents, trademarks and author law.
Businesses may shy away from using reused
components because of the legal risks, and the
financial repercussions there could be.

Acknowledgements

The author would like to express his cordial thanks to Prof. M. Z. Khanand Dr.
Wadi Boulila for their valuable comments on the initial drafts.

https://doi.org/10.4236/jsea.2020.139014

T. Saeed

DOI: 10.4236/jsea.2020.139014 215 Journal of Software Engineering and Applications

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Frakes, W.B. and Fox, C.J. (1995) Sixteen Questions about Software Reuse. Com-

munications of the ACM, 38, 75-67. https://doi.org/10.1145/203241.203260

[2] Coulange, B. (2012) Software Reuse. Springer Science & Business Media, London.

[3] Mcllroy, M.D. (1968) Mass Produced Software Components. Proceedings of NATO
Software Engineering Conference, Garmisch, Germany, October 1968, 138-155.

[4] Ezran, M., Morisio, M. and Tully, C. (2012) Practical Software Reuse. Springer
Science & Business Media, London.

[5] Walton, P. and Maiden, N., Eds. (2019) Integrated Software Reuse: Management
and Techniques. Routledge, London. https://doi.org/10.4324/9780429455520

[6] Keswani, R., Joshi, S. and Jatain, A. (2014) Software Reuse in Practice. Proceedings
of the 2014 Fourth International Conference on Advanced Computing & Commu-
nication Technologies, Rohtak, India, 8-9 February 2014, 159-162.
https://doi.org/10.1109/ACCT.2014.57

[7] Land, R., Sundmark, D., Lüders, F., Krasteva, I. and Causevic, A. (2009) Reuse with
Software Components—A Survey of Industrial State of Practice. In: Edwards, S.H.
and Kulczycki, G., Eds., Formal Foundations of Reuse and Domain Engineering.
ICSR 2009. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
150-159. https://doi.org/10.1007/978-3-642-04211-9_15

[8] Ruiz, I.J.M., Nagappan, M., Adams, B. and Hassan, A.E. (2012) Understanding
Reuse in the Android Market. 2012 20th IEEE International Conference on Pro-
gram Comprehension (ICPC), Passau, Germany, 11-13 June 2012, 113-122.
https://doi.org/10.1109/ICPC.2012.6240477

[9] Mojica, I.J., Adams, B., Nagappan, M., Dienst, S., Berger, T. and Hassan, A.E. (2013)
A Large-Scale Empirical Study on Software Reuse in Mobile Apps. IEEE Software,
31, 78-86. https://doi.org/10.1109/MS.2013.142

[10] Hauge, Ø., Ayala, C. and Conradi, R. (2010) Adoption of Open Source Software in
Software-Intensive Organizations—A Systematic Literature Review. Information
and Software Technology, 52, 1133-1154.
https://doi.org/10.1016/j.infsof.2010.05.008

[11] Morisio, M., Ezran, M. and Tully, C. (2002) Success and Failure Factors in Software
Reuse. IEEE Transactions on Software Engineering, 28, 340-357.
https://doi.org/10.1109/TSE.2002.995420

[12] Mandal, A. and Pal, S.C. (2012) Emergence of Component Based Software Engi-
neering. International Journal of Software Engineering and Knowledge Engineering,
2, 311-315.

[13] Ayala, C.P., Cruzes, D., Hauge, O. and Conradi, R. (2011) Five Facts on the Adop-
tion of Open Source Software. IEEE Software, 28, 95-99.
https://doi.org/10.1109/MS.2011.32

[14] Gkortzis, A., Feitosa, D. and Spinellis, D. (2019) A Double-Edged Sword? Software
Reuse and Potential Security Vulnerabilities. In: Peng, X., Ampatzoglou, A. and
Bhowmik, T., Eds., Reuse in the Big Data Era. ICSR 2019. Lecture Notes in Com-
puter Science, Springer, Cham, 187-203.

https://doi.org/10.4236/jsea.2020.139014
https://doi.org/10.1145/203241.203260
https://doi.org/10.4324/9780429455520
https://doi.org/10.1109/ACCT.2014.57
https://doi.org/10.1007/978-3-642-04211-9_15
https://doi.org/10.1109/ICPC.2012.6240477
https://doi.org/10.1109/MS.2013.142
https://doi.org/10.1016/j.infsof.2010.05.008
https://doi.org/10.1109/TSE.2002.995420
https://doi.org/10.1109/MS.2011.32

T. Saeed

DOI: 10.4236/jsea.2020.139014 216 Journal of Software Engineering and Applications

https://doi.org/10.1007/978-3-030-22888-0_13

[15] Von Krogh, G., Haefliger, S., Spaeth, S. and Wallin, M.W. (2012) Carrots and
Rainbows: Motivation and Social Practice in Open Source Software Development.
Management Information Systems Quarterly, 36, 649-676.
https://doi.org/10.2307/41703471

[16] Succi, G., Succi, G. and Ronchetti, M. (1996) Legal Issues Regarding Software Use
and Reuse within the European Union Legislation. Journal of Computing and In-
formation Technology, 4, 179-186.

[17] Lim, W.C. (1996) Legal and Contractual Issues in Software Reuse. Proceedings of
Fourth IEEE International Conference on Software Reuse, Orlando, FL, 23-26 April
1996, 156-164.

[18] German, D. and Di Penta, M. (2012) A Method for Open Source License Com-
pliance of Java Applications. IEEE Software, 29, 58-63.
https://doi.org/10.1109/MS.2012.50

[19] Kashima, Y., Hayase, Y., Yoshida, N., Manabe, Y. and Inoue, K. (2011) An Investi-
gation into the Impact of Software Licenses on Copy-and-Paste Reuse among OSS
Projects. 2011 18th Working Conference on Reverse Engineering, Limerick, Ireland,
17-20 October, 2011, 28-32. https://doi.org/10.1109/WCRE.2011.14

[20] Kennedy, D.M. (2001) A Primer on Open Source Licensing Legal Issues: Copyright,
Copyleft and Copyfuture. Saint Louis University Public Law Review, 20, Article 7.

[21] Fitzgerald, B. and Bassett, G., Eds. (2003) Legal Issues Relating to Free and Open
Source Software. Essays in Technology Policy and Law, 11-36.

[22] Rosen, L. (2005) Open Source Licensing. Vol. 692, Prentice Hall, London.

[23] McGowan, D. (2001) Legal Implications of Open-Source Software. University of Il-
linois Law Review, 241. https://doi.org/10.2139/ssrn.243237

[24] Wu, Y. (2019) Large-Scale Analysis of Software Reuse for Code and License
Changes. Osaka University, Osaka.

[25] Singh, S., Singh, S. and Singh, G. (2010) Reusability of the Software. International
journal of computer applications, 7, 38-41. https://doi.org/10.5120/1338-1703

[26] Holmes, R., and Walker, R.J. (2013). Systematizing Pragmatic Software Reuse. ACM
Transactions on Software Engineering and Methodology (TOSEM), 21, 1-44.
https://doi.org/10.1145/2377656.2377657

[27] Agresti, W.W. (2011) Software Reuse: Developers’ Experiences and Perceptions.
Journal of Software Engineering and Applications, 4, 48-58.
https://doi.org/10.4236/jsea.2011.41006

[28] Frakes, W.B. and Tortorella, M. (2008) Foundational Issues in Software Reuse and
Reliability. Department of Industrial and Systems Engineering, Rutgers University,
Working Paper 04-002.

[29] Mikkonen, T. and Taivalsaari, A. (2019) Software Reuse in the Era of Opportunistic
Design. IEEE Software, 36, 105-111. https://doi.org/10.1109/MS.2018.2884883

[30] Hooper, J.W. and Chester, R.O. (1991) Software Reuse: Guidelines and Methods,
Springer Science and Business Media, London.
https://doi.org/10.1007/978-1-4615-3764-9

[31] Deshpande, A. and Riehle, D. (2008) The Total Growth of Open Source. In: Russo,
B., Damiani, E., Hissam, S., Lundell, B. and Succi, G., Eds., Open Source Develop-
ment, Communities and Quality. OSS 2008. IFIP—The International Federation for
Information Processing, Springer, Boston, MA, 197-209.

https://doi.org/10.4236/jsea.2020.139014
https://doi.org/10.1007/978-3-030-22888-0_13
https://doi.org/10.2307/41703471
https://doi.org/10.1109/MS.2012.50
https://doi.org/10.1109/WCRE.2011.14
https://doi.org/10.2139/ssrn.243237
https://doi.org/10.5120/1338-1703
https://doi.org/10.1145/2377656.2377657
https://doi.org/10.4236/jsea.2011.41006
https://doi.org/10.1109/MS.2018.2884883
https://doi.org/10.1007/978-1-4615-3764-9

T. Saeed

DOI: 10.4236/jsea.2020.139014 217 Journal of Software Engineering and Applications

https://doi.org/10.1007/978-0-387-09684-1_16

[32] AlMarzouq, M., Zheng, L., Rong, G. and Grover, V. (2005) Open Source: Concepts,
Benefits and Challenges. Communications of the Association for Information Sys-
tems, 16, 756-784. https://doi.org/10.17705/1CAIS.01637

[33] Thompson, C.W. and Jena, R. (2005) Digital Licensing [Software Reuse]. IEEE In-
ternet Computing, 9, 85-88. https://doi.org/10.1109/MIC.2005.77

[34] Joshua, J.V., Alao, D.O., Okolie, S.O. and Awodele, O. (2013) Software Ecosystem:
Features, Benefits and Challenges. International Journal of Advanced Computer
Science and Applications, 4, 242-247.

[35] Reifer, D.J. (2001) Implementing a Practical Reuse Program for Software Compo-
nents. In: Heineman, G.T. and Councill, W.T., Eds., Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, 453-466.

[36] Shiva, S.G. and Abou Shala, L. (2007) Software Reuse: Research and Practice. Fourth
International Conference on Information Technology (ITNG’07), Las Vegas, NV,
2-4 April 2007, 603-609. https://doi.org/10.1109/ITNG.2007.182

[37] Kim, W. (2005) On Issues with Component-Based Software Reuse. The Journal of
Object Technology, 4, 45-50. https://doi.org/10.5381/jot.2005.4.7.c5

[38] Khalid, H. (2017) Software Reuse: Component-Based Development Issues. Interna-
tional Journal of Scientific & Engineering Research, 8, 201-205.

[39] Ha, W., Sun, H. and Xie, M. (2012) Reuse of Embedded Software in Small and Me-
dium Enterprises. 2012 IEEE International Conference on Management of Innova-
tion & Technology (ICMIT), Sanur Bali, 11-13 June 2012, 394-399.
https://doi.org/10.1109/ICMIT.2012.6225838

[40] Pandey, R.K. and Tiwari, V. (2011) Reliability Issues in Open Source Software. In-
ternational Journal of Computer Applications, 34, 34-38.

[41] Jha, M. and O’Brien, L. (2009) Identifying Issues and Concerns in Software Reuse in
Software Product Lines. International Conference on Software Reuse, Springer, Ber-
lin, Heidelberg, 181-190.

[42] Jha, S., Jha, M., O’Brien, L. and Wells, M. (2014) Integrating Legacy System into Big
Data Solutions: Time to Make the Change. Asia-Pacific World Congress on Com-
puter Science and Engineering, Nadi, 4-5 November, 2014, 1-10.
https://doi.org/10.1109/APWCCSE.2014.7053872

[43] Dantas, F. and Garcia, A. (2010) Software Reuse versus Stability: Evaluating Ad-
vanced Programming Techniques. 2010 Brazilian Symposium on Software Engi-
neering, Salvador, Bahia, 27 September-1 October 2010, 40-49.
https://doi.org/10.1109/SBES.2010.13

[44] Griss, M.L. (1993) Software Reuse: From Library to Factory. IBM Systems Journal,
32, 548-566. https://doi.org/10.1147/sj.324.0548

[45] Jha, M., O’Brien, L. and Maheshwari, P. (2008) Identify Issues and Concerns in
Software Reuse. Proceedings of Second International Conference on In-formation
Processing, Banglore, India, 8-10 August 2008, 307-314.

https://doi.org/10.4236/jsea.2020.139014
https://doi.org/10.1007/978-0-387-09684-1_16
https://doi.org/10.17705/1CAIS.01637
https://doi.org/10.1109/MIC.2005.77
https://doi.org/10.1109/ITNG.2007.182
https://doi.org/10.5381/jot.2005.4.7.c5
https://doi.org/10.1109/ICMIT.2012.6225838
https://doi.org/10.1109/APWCCSE.2014.7053872
https://doi.org/10.1109/SBES.2010.13
https://doi.org/10.1147/sj.324.0548

	Current Issues in Software Re-Usability: A Critical Review of the Methodological & Legal Issues
	Abstract
	Keywords
	1. Introduction
	2. Software Re-Use
	3. Legal Issues
	4. Methodological Issues
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

