
Journal of Software Engineering and Applications, 2020, 13, 191-205 
https://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

 

DOI: 10.4236/jsea.2020.139013  Sep. 29, 2020 191 Journal of Software Engineering and Applications  
 

 
 
 

Evaluation of an Evolutionary Algorithm to 
Dynamically Alter Partition Sizes in Web 
Caching Systems 

Richard Hurley, Graeme Young 

Department of Computer Science, Trent University, Peterborough, ON, Canada 

 
 
 

Abstract 
There has been an explosion in the volume of data that is being accessed from 
the Internet. As a result, the risk of a Web server being inundated with re-
quests is ever-present. One approach to reducing the performance degrada-
tion that potentially comes from Web server overloading is to employ Web 
caching where data content is replicated in multiple locations. In this paper, 
we investigate the use of evolutionary algorithms to dynamically alter parti-
tion size in Web caches. We use established modeling techniques to compare 
the performance of our evolutionary algorithm to that found in statical-
ly-partitioned systems. Our results indicate that utilizing an evolutionary al-
gorithm to dynamically alter partition sizes can lead to performance im-
provements especially in environments where the relative size of large to 
small pages is high. 
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1. Introduction 

Today’s Internet is a vast network of interconnected computing devices, through 
which information is shared at an extremely high volume and speed. Over time, 
the amount of data transferred between computing devices has increased dra-
matically. To put it into perspective, the modern Internet consists of an envi-
ronment of video streaming, online television, massively multiplayer online 
games, and live music streaming. Contrast this to an early Internet of utilitarian, 
sparse Web pages featuring little more than a few paragraphs of plain text and 

How to cite this paper: Hurley, R. and 
Young, G. (2020) Evaluation of an Evolu-
tionary Algorithm to Dynamically Alter 
Partition Sizes in Web Caching Systems. 
Journal of Software Engineering and Ap-
plications, 13, 191-205. 
https://doi.org/10.4236/jsea.2020.139013 

 
Received: June 29, 2020 
Accepted: September 26, 2020 
Published: September 29, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.139013
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.139013
http://creativecommons.org/licenses/by/4.0/


R. Hurley, G. Young 
 

 

DOI: 10.4236/jsea.2020.139013 192 Journal of Software Engineering and Applications 
 

perhaps several small images. When juxtaposing that environment with the 
aforementioned modern one, the increased demand on network infrastructure 
becomes obvious. Although technology has attempted to keep pace with the in-
crease in demand, the risk of a Web server being inundated with more requests 
than it can handle is an ever-present one. The amount of data circulated through 
the Internet has been doubling every six months [1]. 

Not only is there a huge volume of information shared through the Internet, 
the information tends to vary quite significantly based on the amount necessary 
to transmit [2]. Atypical Web page could consist of text, image, sound, and video 
files (or any combination of the aforementioned objects) all of which are of po-
tentially different sizes. For this work, Webpages will be simplified and divided 
into two categories: small pages and large pages. 

With the sharing or transferring of objects between computing devices comes 
the issue of managing and mitigating delays that may arise from physical dis-
tance, network loads, and/or the amount of information transmitted [3] [4]. 
While Web caching, the process of storing and managing Web pages in multiple 
locations, does not directly address the issue of page size, it can however address 
the issue of multiple concurrent accesses. 

A typical Internet architecture consists of groups of computing devices shar-
ing large volumes of information at a high speed. In its most basic form, the en-
vironment can be thought of being comprised of two classes of devices: servers 
(provide the information), and clients (request the information) [5]. When a 
client requests a Web page, the server relays a copy of that page to the client and 
then waits for another request. However concise this approach may be in theory 
it does not reflect the complex reality of the Internet with multiple clients ac-
cessing a server at any given time, and servers containing multiple pages that 
may be requested. A direct result of this is that as the number of requests to a 
server increases, the server takes longer to respond to each individual request 
due to the increased load (number of requests in a given amount of time). Web 
caching has been used in these networks to alleviate the load placed on servers 
by reducing the number of requests actually being processed by the server [6] [7] 
[8]. 

Physically, a Web cache is a storage medium that contains copies of Web pag-
es (or objects) from a Web server, with page content determined, at least in part, 
by what pages are requested by clients. By storing copies of Web pages requested 
by clients, a Web cache can process future requests for those particular pages 
without involving the actual server. This is based on the assumption that those 
cached pages will be requested again at some point in the immediate to near fu-
ture by other clients [7]. Web caches may be located in the client itself, in a 
proxy server, or in a physically separate device somewhere on the Internet [9]. In 
addition to physical location, it is also possible that several distributed caches, 
each one of which contains copies of Web pages from the server. 

Previous research has shown that partitioning Web caches has led to perfor-
mance improvements over systems that do not partition [10] [11]. Partitioning 
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is a technique where a Webcache is divided into two fixed-sized partitions which 
are then allocated for specific-sized Webpages (e.g., one could have a partition 
for large pages and a partition for small pages). Much of the work done on parti-
tioning Web caches has been limited to static partitioning where the size of the 
partitions remained fixed. In this paper, we examine dynamic partitioning where 
the size of a partition for a particular Web page type can be increased or de-
creased based on the prevalence of that type of page. The approach we will use to 
adjust the partition sizes will be based on an evolutionary algorithm [1] [12] [13] 
that attempts to optimize an objective function. 

This paper will be organized as follows: Section 2 focuses on the basic model, 
with discussion provided on the choice of parameter. In Section 3, we will give a 
detailed outline of the particular evolutionary algorithm employed in our study. 
Section 4 presents some of the experimental results generated to investigate the 
properties of our model, and its advantages/disadvantages compared to existing 
models. Finally, in Section 5, we will provide a summary of findings and sugges-
tions for future research. 

2. Model Description 

Our Web caching system model is divided into two parts: a Web page request 
reference model and a Web cache model. In this paper, we are concerned with 
the relative performance between a dynamic partitioning Web cache system and 
one which uses static partitioning. Since we are not concerned with the absolute 
performance of the system, we can make some simplifying assumptions with our 
system models. 

2.1. Web Page Request Reference Model 

The pages and objects stored in a Web cache and their request probabilities vary 
over time. Pages such as a news article, viral videos, course assignments, memes, 
etc. become popular for periods of time and then eventually are accessed less 
frequently. To capture this behavior, we use a variant of the dynamic page ref-
erence model described in [14]. 

2.1.1. Page Popularity 
The page reference model for a system with M Web pages is shown in Figure 1. 
This model assumes that a Web page can be in one of two states: normal and 
popular. Web pages in the popular state are v time more likely of being re-
quested than a page in the normal state. 

The model also assumes that there are two types of pages: conventional and 
potentially popular. Conventional pages remain in the normal state while poten-
tially popular pages alternate between the states based on an underlying Markov 
chain. The rate at which a page transitions from a normal to popular state is λ1 
and from popular to normal is λ2 with the time spent in either state is assumed 
to be exponentially distributed. Finally, we let M0 < M denote the number of po-
tentially popular pages that are present in the system. With this type of model,  
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Figure 1. Dynamic page reference model. 
 
the model is able to generate page requests with high coefficients of variation, an 
attribute that has historically shown to be desirable in such systems [15]. 

2.1.2. Page Size 
To simplify our Web page reference model, we assume that there are only two 
different sizes of Web pages, large or small (with a large page being k times the 
size of a small page). Small pages have a service time (time to retrieve a copy of 
the page from the Web server) that is assumed to be exponentially distributed 
with a mean rate of μ−1, and large pages have a exponentially distributed service 
time of kμ−1. 

With the increased presence of images and videos, Web pages are increasing 
in size, however, the majority of Web pages are still relatively small (less than 
1000 KB) [16]. As a result, we assume that the probability of requesting a small 
page p is 0:9 making the probability of requesting large pages 1 − p. 

2.2. Web Cache Model 

Our Web cache model is comprised of a page replacement model, an architec-
tural model, and a storage mode1. 

2.2.1. Page Replacement Model 
One of the main components of a caching system is the page replacement algo-
rithm which is responsible for discarding pages in the Web cache once it be-
comes full to make room for new pages. Although there are several different 
page replacement algorithms, we use Least Recently Used (LRU) [17] which se-
lects the least-recently used page (determined from the last accessed timestamp) 
to be removed. Since we are concerned with relative performance, using the 
same replacement algorithm for our systems under investigation will not create 
any unfairness. 
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2.2.2. Architectural Model 
Our work expands on a Web cache model that was introduced by [18], and is 
shown in Figure 2. The Web caching system model has a finite population of N 
clients interacting a Web cache which is partitioned into a small page cache par-
tition (SPCP), and a large page cache partition (LPCP). 

Page requests are generated by the clients after an exponential think time (z) 
and sent to the Web cache. When the Web cache receives a page request, the 
cache first checks if there is a copy stored locally. If the page is found, it is simply 
returned to the client. However, if no copy of the requested page can be found, 
the request will be sent to the originating Web server, a copy is made at the Web 
cache, and the Web page is returned to the client. If the appropriate partition for 
the page size of the request is full at the Web cache, LRU is used to select a page 
for removal. 

It is assumed that if the request cannot be satisfied by the Web cache and must 
be retrieved from the originating Web server, the processing time is to be μ−1 
(this includes the service time and propagation delay). If the request can be sa-
tisfied by the Web cache, then the processing time is assumed to be 0.5μ−1. If the 
request is for a large Web page, all the times are assumed to be k times larger. 

2.2.3. Storage Model 
We consider two variations of the cache storage model: a statically partitioned 
cache and a dynamically partitioned cache. The key difference is that the stati-
cally partitioned cache assumes that the partition sizes (measured in terms of the 
number of small pages that can be stored) remain fixed throughout the duration 
of the simulation while the partition sizes in the dynamically partitioned caching 
system vary according to an evolutionary algorithm. For either case, a parti-
tioned cache in general treats large and small pages differently. From Figure 2, it 
can be seen that the cache is split into two separate areas: one for large pages and 
one for small pages. It is assumed that the ratio of space reserved for large pages 
is (PL). Whenever a small page is brought into its partition, the available amount  
 

 

Figure 2. Web caching architecture model. 
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of storage in that partition is decreased by1. Similarly, when a large page is 
brought into its partition, the available amount of memory in that partition is 
decreased by k (the reverse occurs when a page is removed from its partition). If 
a partition is full, and the size of the partition cannot be adjusted through the 
evolutionary algorithm, then the LRU (Least Recently Used) algorithm is used to 
free enough space for that page to then be cached. 

3. Evolutionary Algorithm 

Evolutionary algorithms, as the name implies, are a class of algorithms for solv-
ing complex problems using processes that mimic those found in nature, specif-
ically the processes of evolution [12]. The natural processes replicated in evolu-
tionary algorithms include: mutation, breeding, natural selection, and evolution. 
In our research, we apply evolutionary programming which uses selection, con-
trolled through a tournament, to determine candidate elements for successive 
generation [19] (see Figure 3). Each trial solution in the Web cache population 
faces competition against a preselected number of opponents and receives a win 
if it is at least as good as the competition. The selection process eliminates those 
elements with the least number of wins (much like survival of the fittest). 

Evolutionary programming makes use of mutation to invoke variety in the 
population. The mutation operation simply changes aspects of the population 
according to a statistical distribution, with the severity of the mutations being 
reduced as the global optimum is approached. In a dynamic environment such 
as a Web cache system, a global optimum may not be possible since the behavior 
of the system constantly changes. 

Of particular interest in this research is to examine an evolutionary algorithm 
that is dynamic in nature: that is, develop an algorithm that can perform ad-
justments while the system is in operation (in our case, at the point when pages 
are required to be stored in a Webcache). Such predictive systems are well suited 
to be used in an Internet environment where Web pages and object can over 
time and as well, users change habits change [12]. 
 

 

Figure 3. Evolutionary programming cycle. 

https://doi.org/10.4236/jsea.2020.139013


R. Hurley, G. Young 
 

 

DOI: 10.4236/jsea.2020.139013 197 Journal of Software Engineering and Applications 
 

One issue that arises from the use of an evolutionary algorithm in the context 
of a dynamic system is the determination of an optimum solution. In a relatively 
static environment, a fixed optimum solution can usually be determined since 
the underlying factors do not change significantly. However, in a dynamic Web 
environment the underlying factors change constantly and as a result, the opti-
mum solution changes as well, making a fixed best solution impossible [12]. 

In order for an evolutionary algorithm to function, parameters must be pro-
vided that can be altered, or mutated, as required. In our model, these consists 
of: 
 SPStart: defined to be the starting size of small page partition (must be less 

than or equal to maximum cache size and greater than or equal to 1). 
 SPAltAmt: defined to be the amount to change small page partition size by 

maxChange units during any single mutation. For our system, we choose 
maxChangeto be 4 as this provides a reasonable balance between the time to 
converge on a solution and the accuracy of solutions provided. 

 SPMin: minimum size of small page partition (must be less than or equal to 
maximum cache size and greater than or equal to 1). 

 LPStart: starting size of large page partition (this is set to whatever is left over 
from maximum cache size once small partition start size has been deter-
mined). 

 LPMin: minimum size of large page partition (this is set to whatever is left 
over from maximum cache size once minimum small partition size has been 
determined). 

When a change of maxChange units is to be applied, the actual amount of 
change is determined based on a uniform distribution between 1 and max-
Change to avoid introducing a bias into the system. This is fundamental to en-
suring reliable results from the evolutionary algorithm, as the amount of the 
mutation must be random to ensure that solution spaces are searched in the 
most effective way possible. 

The algorithm used for implementing the evolutionary approach is as follows 
(for a more detailed presentation of the algorithm, please see [13]): 

1) A panel of judges is created (a best solution to which candidates in the cur-
rent genetic pool are compared). The decision as to how many judges to include 
is based on the number of candidates in the genome pool (the collection of solu-
tions that will be compared to the judges). A value too large will result in an ex-
cessive amount of time to converge on a solution. Too small a number could re-
sult in the algorithm prematurely converging on a solution. For our algorithm, 
we use two judges and a genome pool of five. 

a) On the first iteration, to get the algorithm started, random solutions are 
provided to the judges with SPMin, LPMin, SPStart, and LPStart being set to 
uniform random values between 0% and 50% of the total cache size (this allows 
free space in the cache to be reallocated from one partition to another by the 
evolutionary algorithm). 
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b) A simulation run is performed for solutions represented by the judges to 
gather statistics that will then be compared to those generated by candidate solu-
tions in the next step. 

c) Five candidate genomes (i.e., trial solutions) are generated with SPStart, 
LPStart, SPMin, and LPMin initially set to uniform random values between 0% 
and 50%. Each of these candidates is measured against the current judges to de-
termine fitness (i.e., if a candidate exhibits better performance than one of the 
judge, the candidate replaces the judge in the next generation). Fitness is deter-
mined based on performance measures such as cache hit rate. 

2) On each successive generation, for each candidate in the pool: 
a) A new cache partition assignment is generated, using the traits encoded in 

the current candidate genome (SPMin, LPMin, SPStart, LPStart). 
b) These traits are mutated in the candidates by randomly determining for 

each of SPM in and SPStart, if the mutation will be positive or negative, and the 
amount of the mutation (1 ≤ amtChange ≤ maxChange). 

c) A simulation run is initiated using the new cache partition assignment. 
d) Fitness results for the current candidate are then compared to that of the 

judges to see if any of the judges should be replaced. 
3) Step 2 is then repeated (with the performance measures for each of the 

candidates and judges reset before the next generation) until there are five con-
secutive generations that show no change in the status of the judges. At this 
point, we assume we have the best obtainable solution for cache partition as-
signments in the best performing judge. 

4. Results 

The results from this study were generated using a discrete event simulation. 
The focus of the work is on applying an evolutionary algorithm to a Web cach-
ing problem and determining its ability to explore a large solution space in an 
efficient manner. We did examine the impact that the parameters of our evolu-
tionary algorithm had on the performance of system and found that varying the 
number of judges, number of candidates, ratio of the number of candidates to 
number of judge, and mutation degree did not have a significant impact on sys-
tem performance (other than to vary the number of generations required to 
achieve convergence).For a more detailed examination of these experiments, 
please see [13]). 

In this paper, we will examine the impact of the cache size (C), relative size of 
large to small pages (k), percentage of small pages (p), number of Web pages 
(M), and the relative performance benefits of a Web caching system that utilizes 
dynamically-controlled partition sizes against to a system that used statical-
ly-assigned partition sizes. The performance measures of interest for our study is 
the hit rate of the Web caches. To reduce the number of experiments, we ex-
amine the system under three different loading scenarios: low system utilization 
(server utilization ≈ 50%), medium system utilization (server utilization ≈ 70%), 
and high system utilization (server utilization ≈ 90%). 
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We begin with Figure 4 which examines which examines the effects that va-
rying the relative size of large to small pages (k) has on the hit rate for various 
cache sizes in a system under a medium load(the trends for low and high loads 
were similar and not shown in this paper). 

The results indicate that varying the relative size of large to small pages (k) 
does not have a significant impact on the performance of our dynamically parti-
tioned Web caching system. The most likely reason for this is that the percentage 
of small pages in the Web cache is initially assumed to be high and so increases 
in hit rate come mainly from the expansion of the small page partition. Thus, the 
actual net effect of changes to storage space (through alterations to k) for large 
pages would not have a significant impact on the resulting hit rate. Figure 4 
shows that the maximum decrease we see in hit rate occurs when the cache size 
is 35%, and results in a decreases of only 3.9% as k is increased from 2 to 10. The 
graph does indicate, however, that increasing the percentage of Web pages 
cached does lead to an increase in hit rate as one would expect (up to 43% in 
model). 

We believe that the dynamic nature of partition sizes achieved by our evolu-
tionary model may provide some measure of stability as k fluctuates, at least 
with respect to the performance measure of hit rate. Further evidence of this can 
be observed in Figure 5, where we investigate the effect on hit rate of altering the 
percentage of small pages (p) for various values of k in a medium load system. 
From Figure 5, we can observe that the hit rate, while varying the probability of 
a page being small (a larger value of p would lead to a higher hit rate as more 
Web pages are small), does not change significantly based on k. This helps to 
confirm the theory that our evolutionary algorithm focuses on hit rate, which we 
can observed from the next graph (Figure 6), works to the detriment of large 
page-related metrics such as byte hit rate. 

Byte hit rate measures the number of bytes satisfied by the cache, in relation 
to the total number of bytes requested. A larger value of k indicates that the rela-
tive size of a large page increases resulting in a decrease in the byte hit rate.  
 

 

Figure 4. Effects of relative size of large pages (k) on hit rate (medium load) for various 
cache sizes (C), µ = 1, v = 10, z = 100, p = 0.9, M0 = 10%, M = 1000. 
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Figure 5. Effects of relative size of large pages (k) on Hit Rate (medium load) for various 
percentages of large pages (p), µ = 1, v = 10, z = 100, C = 25%, M0 = 10%, M = 1000. 
 

 

Figure 6. Effects of relative size of large pages (k) on byte hit rate (medium load) for var-
ious percentages of large pages (p), µ = 1, v = 10, z = 100, C = 25%, M0 = 10%, M = 1000. 
 
Similar trends were observed in systems with low and high loads and therefore 
not presented here. 

We now examine the effects that the number of Web pages has on the per-
formance of the system. In Figure 7, we show the impact that increasing the 
number of Web pages has on hit rate for select values of the relative size of large 
pages (k) in a medium load system. From Figure 7, we can see that the number 
of Web pages present used in the model does not significantly alter the behavior 
of the system: the hit rate experiences an increase of about 3.6% as the number 
of pages (M) is increased. We can also see that the value of the relative size of 
large to small pages (k) does not seem to impact the hit rate as the number of 
pages increases(for byte hit rate, larger values of k would lead to a lower value as 
fewer pages could be kept in the cache [13]). This allows us to run our model  
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Figure 7. Effects of the number of web pages (M) on hit rate (medium load) for various 
percentages of large pages (p), µ = 1, v = 10, z = 100, C = 25%, p = 0.9, M0 = 10%. 
 

with a reduced number of Web pages and be able to extrapolate the trends to 
larger systems while lowering the amount of time necessary to generate results. 

Lastly, we compare the performance of our dynamically-partitioned Web 
caching system to statically-partitioned systems (the partition sizes for the large 
and small pages remain fixed for the duration of the simulation). Also, for inter-
est, we will include the results those of a single-partition cache (large and small 
Web pages share the same cache). The purpose of these experiments is to gauge 
the effectiveness of the evolutionary aspect of our model, relative to a system 
which does not employ such a strategy. We compare the results for the three 
loading scenarios (low, medium and high) in an environment where the relative 
size of a large to small pages (k) is 2 and 10. The results are shown in Figure 8 
and Figure 9. 

As can be observed in Figure 8 and Figure 9, the resulting hit rates differ by a 
significant amount between the various static solutions, the evolutionary algo-
rithm solution, and the single-partition solution. We can see from Figure 8 that 
the single-partition cache system tends to outperform our evolutionary algo-
rithm when the ratio of large to small pages is low (k = 2). When partitioning is 
involved, our dynamically-partitioned system outperforms the randomly-chosen 
static solutions. We believe that this shows the benefits of altering partition size 
while the system is operating. It is also interesting to note that there little varia-
tion in hit rates as the load on the systems goes from low to high indicating that 
Web caching in general is not affected by the amount of user traffic. 

When we increase k to 10, the results become more beneficial for our evolu-
tionary algorithm approach. As shown in Figure 9, we can see that our dynami-
cally-partitioned system consistently provides an improvement in hit rate of up 
to 4.8% beyond that shown by the single-partition cache. This is most likely due 
to the fact that the changing of partition sizes accommodate numbers of pages 
more effectively as page sizes are increased. 
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Figure 8. Hit rates of evolutionary algorithm approach versus statically-partitioned (k = 
2), µ = 1, v = 10, z = 100, C = 25%, p = 0.9, M0 = 10%, M = 1000. 
 

 

Figure 9. Hit rates of evolutionary algorithm approach versus statically-partitioned (k = 
2), µ = 1, v = 10, z = 100, C = 25%, p = 0.9, M0 = 10%, M = 1000. 

5. Conclusions 

The selection of the partition size is an important decision in a Web caching 
system [11]. In this paper, we have investigated the use of an evolutionary algo-
rithm to dynamically control partition size in a Web cache system. We have es-
tablished that from our model, utilizing an evolutionary algorithm seems to 
outperform a statically-partitioned Web cache, and that the performance im-
provement tends to increase with the relative size of large to small pages. 

We analyzed our system under multiple loading scenarios, different values of 

https://doi.org/10.4236/jsea.2020.139013


R. Hurley, G. Young 
 

 

DOI: 10.4236/jsea.2020.139013 203 Journal of Software Engineering and Applications 
 

relative size of large to small pages, increasing ratios of larger pages, and various 
choices for the total number of Web pages. Our research showed that in terms of 
hit rate, our evolutionary algorithm appears to cope well with increases in the 
relative size of large to small pages. Byte hit rate, on the other hand, suffered 
from a decrease as the relative size of large to small pages was increased, which 
indicates that the caching strategy employed by our model tends to favor hit rate 
over byte hit rate. It also speaks to the idea that the large page partition becomes 
a limiting factor to performance as relative size of large to small pages is in-
creased. As for changes to the total number of pages, we found that system be-
havior remained relatively constant, regardless of the number of Web pages. 
This demonstrates that the number of Web pages is not a significant factor in 
algorithm behavior. 

Our last set of experiments compared a dynamically-partitioned system (using 
an evolutionary algorithm) with several statically-partition systems and a system 
without partitioning. We found that the evolutionary algorithm solution out-
performs the statically-partitioned systems and has the potential to outperform a 
traditional Web cache in terms when the relative size of large to small pages in-
creases. This finding is significant as the choice of partition size does affect per-
formance and thus, a difficult parameter to determine. Our algorithm attempts 
to adjust this value as conditions vary. 

Future research in this area could include investigating the mechanisms of the 
evolutionary algorithm such as allowing the mutation amount to become varia-
ble and providing alternative methods of comparison between judges and can-
didates to lead to further gains in performance. Data mining of cache logs could 
also be investigated to assist the evolutionary algorithm in its initial partition as-
signment in an attempt to arrive at the “optimal” solution more efficiently. 
Another area of research could involve introducing a more diverse model for 
Web pages as opposed to just large and small. A Web page could be considered 
to be composed of a number of cacheable (and uncacheable) objects each of va-
rying sizes. A more complex model for Webpages would lead to more options 
for an evolutionary algorithm. Finally, if considering the potential real-world 
application of an evolutionary algorithm for controlling partition sizes, it would 
be important to conduct a detailed examination of the overhead associated with 
utilizing the algorithm (a factor that was ignored in this research).  
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