
Journal of Software Engineering and Applications, 2020, 13, 179-190
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.139012 Sep. 21, 2020 179 Journal of Software Engineering and Applications

Assessment and Prediction of Software
Reliability in Mobile Applications

Osama Barack, Liguo Huang

Department of Computer Science, Southern Methodist University, Dallas, TX, USA

Abstract
Software reliability is an important quality attribute, and software reliability
models are frequently used to measure and predict software maturity. The
nature of mobile environments differs from that of PC and server environ-
ments due to many factors, such as the network, energy, battery, and compa-
tibility. Evaluating and predicting mobile application reliability are real chal-
lenges because of the diversity of the mobile environments in which the ap-
plications are used, and the lack of publicly available defect data. In addition,
bug reports are optionally submitted by end-users. In this paper, we propose
assessing and predicting the reliability of a mobile application using known
software reliability growth models (SRGMs). Four software reliability models
are used to evaluate the reliability of an open-source mobile application
through analyzing bug reports. Our experiment proves it is possible to use
SRGMs with defect data acquired from bug reports to assess and predict the
software reliability in mobile applications. The results of our work enable
software developers and testers to assess and predict the reliability of mobile
software applications.

Keywords
Software Reliability Modeling, Mobile Application, Mobile Environment,
Bug Report

1. Introduction

Software reliability is a measure for controlling and maintaining the processes of
the software development life cycle (SDLC) to develop reliable software. This
measure is used during the testing process until the process’s exit criteria are
met. In addition, software reliability helps to maintain and predict the correct-
ness of the software [1]. Software reliability engineering was introduced to aid in

How to cite this paper: Barack, O. and
Huang, L.G. (2020) Assessment and Pre-
diction of Software Reliability in Mobile
Applications. Journal of Software Engi-
neering and Applications, 13, 179-190.
https://doi.org/10.4236/jsea.2020.139012

Received: August 14, 2020
Accepted: September 18, 2020
Published: September 21, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.139012
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.139012
http://creativecommons.org/licenses/by/4.0/

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 180 Journal of Software Engineering and Applications

analyzing and measuring the quality of software applications. It presents the
quality of the software running without producing defects [2] [3]. Researchers
and practitioners have been improving software reliability models to assess the
reliability of different types of software.

Measuring and predicting the reliability of a mobile application are real chal-
lenges due to the following reasons. First, the nature of mobile environments is
different from that of PC and server environments. Second, in mobile environ-
ments, new functionalities and features are introduced, such as energy, network,
incompatibility, modified and limited Graphical User Interface (GUI), interrup-
tion, and notification, which produce new types of defects [4]. Third, mobile
operating systems and devices are divers. Fourth, the high demand for mobile
applications from users has made the development process fast and the functio-
nality of mobile application more complex [5]. Finally, after a mobile application
is released, failures occur in mobile devices. In addition to testing, software devel-
opers partially rely on bug reports, which are optionally submitted by end-users.

To assess software reliability in mobile applications, researchers are required
to spend more time and effort to evaluate the efficacy of software reliability.
Considering the characteristics of mobile applications while measuring their
software reliability will produce more accurate results and analyses.

Predicting mobile application failures is as important to software developers
as to companies and research organizations. Therefore, we propose measuring
the reliability of mobile applications and producing more accurate results based
on defects that are extracted from bug reports.

The remainder of this paper is structured as follows: Section 2 presents related
work. Section 3 describes the proposed method for measuring and predicting the
reliability of a mobile application. Section 4 provides a case study applying sev-
eral SRGMs to the data sets of an open-source mobile application. Section 5 dis-
cusses and analyzes the evaluation and prediction in the reliability of the selected
data sets. Finally, Section 6 contains the conclusions and future work.

2. Related Work

Due to the high demand of complex heterogeneous software, software reliability
models have become more useful to assess and predict the correctness of the
software. Lyu [6] presented software reliability models in practice to help re-
searchers and practitioners quantitatively address the characteristics of the
SDLC. In addition, these models guide developers and testers to understand and
apply software reliability techniques.

Tian et al. [7] evaluated the reliability of web applications after determining
their defects and usage. In addition, the possibility of enhancing web application
reliability was inspected. The author used the characteristics of web applications
as a base to classify web defects. The website workload was measured and cha-
racterized at different levels and perspectives, and combined with the failure in-
formation about the website to evaluate the operational reliability. The experi-
ment results indicate the efficacy and benefits of the authors’ approach.

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 181 Journal of Software Engineering and Applications

Many SRGMs for estimating and predicting the reliability of software have
been developed and introduced. However, some of these models show inaccu-
rate results, such as delayed S-shape and the exponential type, which indicates
that these models may not fit when spending effort that is not constant on test-
ing to detect faults. Therefore, Huang et al. [8] reviewed the logistic testing effort
function that can be used to describe the amount of testing effort spent on soft-
ware testing. In addition, the author proposed how to integrate the logistic test-
ing-effort function into software reliability models. The proposed models show
more accurate results compared to the traditional SRGMs.

Software as a Service (SaaS) is a software distribution model that is provided
through cloud computing. Alannsary and Tian [9] proposed a method for mea-
suring and predicting the reliability of SaaS. The authors analyzed web server log
files to extract failure data. The input domain reliability model was used to
measure the operational reliability. SRGMs were used to measure the growth in
SaaS reliability.

The Application Programming Interface (API) is an interface, which is used to
allow clients and servers to interact. Bokhary and Tian [10] proposed a frame-
work for measuring the reliability of APIs. The authors followed a three-stage
approach to collect available failure data, and then the API reliability was esti-
mated. In addition, the authors introduced a case study based on Google Map
APIs and showed the effectiveness and success of the proposed framework.

New technologies have been added to mobile phones due to the high demand
of end-users. Consequently, the predicted field failure rate has deviated from the
actual rate. Therefore, developing new methods for predicting the failure rate
before the release has become a challenge for researchers and practitioners. Pe-
rera [11] presented a reliability prediction method to overcome the inapplicable
traditional reliability prediction methods and deliver more accurate results.

The number of lines of code of software applications in mobile devices has in-
creased to millions. Development organizations must produce predictable
fault-free software products. Almering et al. [12] presented an empirical study to
assess the reliability of software and validate SRGMs during the integration and
test phases. In addition, the capability of the prediction model was compared to
predictions by experts. Moreover, obtaining solid reliability assessment and pre-
diction before software release using SRGMs was shown to be possible.

Researchers have proposed studies to assess the software reliability of mobile
operating systems and applications. Ivanov et al. [13] presented a comparison
between the reliability of three operating systems in mobile environments by ap-
plying SRGMs. In addition, Meskini [14] evaluated the reliability of three mobile
applications by applying SRGMs to failure data extracted from mobile devices.
However, to successfully assess and predict software reliability, the characteris-
tics of mobile environments must be considered. Therefore, to achieve more ac-
curate results in this work, we propose applying software reliability growth
models to defect data extracted from bug reports.

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 182 Journal of Software Engineering and Applications

3. Methodology

The evolution of mobile software development started with the development of
applications for mobile devices with a few thousand lines of code. Today, mobile
applications have become more complex due to the high demand from end-users.
Software engineering and software quality are involved to ensure the accuracy of
the new functionalities and features of mobile applications. This introduces new
requirements which need to be considered to improve the stability and reliability
of mobile applications.

The nature of mobile environments is different from that of PC and server
environments. In addition, mobile application developers rarely share applica-
tion defect data generated during the testing phase. Therefore, due to the lack of
failure data for mobile applications, we propose using bug reports to analyze de-
fect data and measure, assess, and predict application reliability. The proposed
method consists of the following:
 Phase 1: Extract mobile application defects from the bug report repository.
 Phase 2: Analyze the bug reports found to discard those that are not related

to software reliability, such as defects that originate from the mobile operat-
ing system or hardware.

 Phase 3: Weigh each bug report based on its classification as shown in Table
1.

 Phase 4: Relate the date of each bug report to the total number of days since
the release day of the mobile application.

 Phase 5: Assess and evaluate the reliability of the selected mobile application
and predict its future reliability using SRGMs.

 Phase 6: Use the purification rate and the standard error of the estimate for
assurance.

4. Case Study

Measuring and predicting reliability in mobile applications are carried out
through the testing stage, collecting defect data from the bug report repository,
and applying the most commonly used SRGMs. In this work, we select an
open-source mobile application as a case study because its failure data is availa-
ble for developers and end-users to present the adequacy of the selected SRGMs
in mobile applications.

Table 1. Suggested bug report weight.

Importance Weight

Critical

1
High

Medium

Low

Wishlist 0

Undecided Defect validity ratio

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 183 Journal of Software Engineering and Applications

4.1. Defect Data Set

The bug reports are extracted from a web application called Launchpad [15].
This web application provides end-user developers the ability to upload, develop,
and maintain open-source software applications. The Launchpad repository has
42,947 projects and 1,779,680 bug reports. Launchpad classifies bug reports
based on importance and status. For importance, the bug reports are classified as
critical, high, medium, low, wishlist, and undecided. For status, the bug reports
are classified as new, incomplete, invalid, confirmed, in progress, fix committed,
fix released, under consideration for removal, triaged, and won’t fix. For this
study, we chose an open-source mobile application called Telegram [16] [17]
which is a cloud-based instant messaging and voice-over IP service. Telegram in
Launchpad has two versions. Version 1 has 114 bug reports from 5 September
2014 to 7 April 2016 and version 2 has 136 bug reports from 8 April 2016 to 4
December 2019.

We weigh each bug report based on its validity. Valid bug reports whose im-
portance levels range from critical to low are weighted 1. Wishlist bug reports
are weighted 0 because they are not considered valid defects. Undecided bug re-
ports could be valid 1 or wishlist 0. Therefore, we calculate the weight of an un-
decided bug report based on the ratio of the valid bug reports to the total of valid
and wishlist bug reports as illustrated in Table 2 and Table 3.

The following equation is used to determine the undecided bug report weight:

weight ,C H M LU
C H M L W

+ + +
=

+ + + +
 (1)

where C is critical, H is high, M is medium, L is low, W is wishlist, and U is un-
decided.

Table 2. Weighted bug reports: Version 1.

Importance Number of bug reports Weight

Critical 2 1

High 13 1

Medium 22 1

Low 9 1

Wishlist 25 0

Undecided 43 0.65

Table 3. Weighted bug reports: Version 2.

Importance Number of bug reports Weight

Critical 3 1

High 8 1

Medium 11 1

Low 0 1

Wishlist 3 0

Undecided 111 0.88

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 184 Journal of Software Engineering and Applications

Applying Equation (1), we get the following ratio of the undecided bug report
for version 1 of the Telegram application:

2 13 22 9 0.65.
71

+ + +
= (2)

The ratio of the undecided bug report for version 2 of The Telegram applica-
tion is calculated as follows:

3 8 11 0.88.
25

+ +
= (3)

4.2. Modeling SRGMs

The main goal of introducing many software reliability growth models is to as-
sess and analyze reliability growth through software testing and related defect
arrival and removal. Non-homogeneous Poisson process (NHPP) software relia-
bility models were developed to overcome the inconsistency of failure occur-
rence intervals. The NHPP models assume defects that are discovered during the
testing phase are removed without introducing new defects, and the mobile ap-
plication used in the field environment is the same as that used during the test-
ing phase. In this case study, we use the following three commonly used SRGMs
and Song’s newly proposed model et al. [18]:
 The Goel-Okumoto model by Goel and Okumoto [19] is one of the most

frequently used of the NHPP models and is defined as:

() ()1 e ,btm t N −= − (4)

where N is the estimated total defects, and b is a constant.
 The S-shaped model by Yamada et al. [20]) is also an NHPP model, which

predicts the cumulative defects in each given time (t) with constants 0b >
and 0N > and is defined as:

() ()()1 1 e ,btm t N bt −= − + (5)

where b and N can be estimated from observation data.
 The Musa-Okumoto model by Musa et al. [3] is a logarithmic execution time

model. This model is a different type of NHPP model and is defined as:

() ()0
1 log 1 ,rm r λ φ
φ

= + (6)

where r is the measurement of the CPU-time execution, 0λ is the intensity of
the initial failure, and φ is a model parameter.
 A newly proposed model, which was presented by Song et al. [18] to measure

software reliability while considering the uncertainty of operating systems
and learn-curve in the fault detection rate function, is as follows:

() 1 ,
eln

1

bt
m t N

a
a

α

β

β

 
 
 = −  + +   +  

 (7)

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 185 Journal of Software Engineering and Applications

where 0α ≥ and 0β ≥ are constant.

5. Discussion and Analysis

After the selected SRGMs are applied to the weighted defect data sets, the relia-
bility assessment and prediction of the case study are analyzed and discussed.

5.1. Reliability Assessment

After we weight each bug report for a valid defect, we plot the cumulative
weighted defects over calendar time for Telegram version 1 and version 2. In the
plot, the y-axis represents the cumulative number of defects, and x-axis represents
the cumulative arrival day for each defect. Figure 1 shows the distribution of all
bug reports, and Figure 2 shows the valid and weighted bug reports over time
for both versions of the Telegram application. Version 1 contains 114 bug re-
ports with a total of 76.6 cumulative defects. Version 2 contains 136 bug reports
with a total of 119.68 cumulative defects. Figure 3 shows the fitted Goel-Okumoto,
S-shaped, Musa-Okumoto, and Song’s model on the number of defects over time.
Table 4 and Table 5 show the SRGM equation for the total number of defects
over time.

Figure 1. Bug reports distribution over time for version 1 (Left) and version 2 (Right).

Figure 2. Valid bug reports distribution for version 1 (Left) and version 2 (Right).

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 186 Journal of Software Engineering and Applications

Figure 3. SRGMs fitted on valid failures for version 1 (Left) and version 2 (Right).

Table 4. SRGM equations fitted on valid failures for version 1.

SRGM Equation

Goel-Okumoto () 0.00017340.0205675 1 e ttµ = −  

S-shaped () ()()0.00024048016 1 1 0.0002404 e tt tµ −= − +

Musa-Okumoto () ()()1 0.026714ln 0.05578 0.026714 1tµ τ = − ∗− +

Song’s model ()

0.03675

0.03675

91926 1
1926 e9 ln

1 1926

ttµ

 
 
 = −
 + +  +  

Table 5. SRGM equations fitted on valid failures for version 2.

SRGM Equation

Goel-Okumoto () ()0.005897113.9 1 e ttµ −= −

S-shaped () ()()0.01591103.43603 1 1 0.01591 e tt tµ −= − +

Musa-Okumoto () ()()1 0.02788ln 0.02788 1.23059 1tµ τ = ∗ +

Song’s model ()

0.2705

0.2705

9197.211 1
197.211 e9 ln

1 197.211

ttµ

 
 
 = −
 + +  +  

As SRGMs are used to measure the growth in software reliability, there is a

need to understand and evaluate the change in reliability. This is achieved
through calculating the purification level ρ : The closer ρ is to 1, the more re-
liability growth in the application. When all failures are removed, ρ will be-
come 1. This implies that the greater the ρ value, the more reliability growth
we will have [21]:

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 187 Journal of Software Engineering and Applications

0

0 0

1 ,τ τλ λ λ
ρ

λ λ
−

= = − (8)

where the initial or peak failure rate for the models is represented by 0λ . The
final failure rate is represented by τλ .

For further investigation and assurance of the results, we calculate the stan-
dard error of estimate (SEOE) to measure the accuracy of the SRGM predictions.
The SEOE is defined as follows:

()2

,est

Y Y
N

σ
′−

= ∑ (9)

where estσ is the standard error of the estimate, Y is an actual defect, Y ′ is a
predicted defect, and N is the total number of defects. The numerator is the sum
of the squared differences between the actual defects and the predicted defects.

Table 6 lists the ρ values of the selected SRGMs for both versions of the
mobile application, representing the potential reliability improvement estimated
by the SRGMs.

Continuous testing and fault removal will lead to a decrease in the failure rate,
or what is referred to as improvement in potential reliability, to be between 89.4%
and 98.6% in version 1, which is not that significant. However, the decrease in
the failure rate for version 2 is between 93.8% and 99.4%.

Table 6 also shows the SEOE for the SRGMs in version 1 is between 0.28 and
0.775, and version 2 is between 0.288 and 0.735. This indicates the prediction is
close to the real data based on the calculated small values as shown in the results.

5.2. Reliability Prediction

To test the prediction of the selected SRGMs, we use the undecided bug report
weight for each version as a percentage to select the number of failures. For ver-
sion 1, we use first 65% of the defects to predict the last 35%. For version 2, we
use the first 88% of the defects to predict the last 12%. Figure 4 shows the pre-
diction of the selected SRGMs where the vertical line separates the selected fail-
ures from the predicted failures. In addition, Table 7 and Table 8 show the fit-
ted model equations for the selected SRGMs. The results show that the models’
predictions are not far from the actual failures. Therefore, developers can use
known SRGMs to evaluate and predict the reliability of mobile applications.

Table 6. Purification and SEOE values of selected SRGMs.

SRGM
Version 1 Version 2

ρ SEOE ρ SEOE

Goel-Okumoto 0.972 0.4 0.994 0.228

S-shaped 0.967 0.43 0.938 0.735

Musa-Okumoto 0.986 0.28 0.98 0.423

Song’s model 0.894 0.775 0.975 0.469

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 188 Journal of Software Engineering and Applications

Figure 4. SRGMs fitted on partial valid failures for version 1 (Left) and version 2 (Right).

Table 7. SRGM equations fitted on partial valid failures for version 1.

SRGM Equation

Goel-Okumoto () ()0.00010710.0455790 1 e ttµ = −

S-shaped () ()()0.002512135.9 1 1 0.002512 e tt tµ −= − +

Musa-Okumoto () ()()1 0.02648ln 0.02648 0.05618 1tµ τ = − − ∗ +

Song’s model ()

0.0519

0.0519

9789.9226 1
789.9226 e9 ln

1 789.9226

ttµ

 
 
 = −
 + +  +  

Table 8. SRGM equations fitted on partial valid failures for version 2.

SRGM Equation

Goel-Okumoto () ()0.00636109.46932 1 e ttµ −= −

S-shaped () ()()0.0191192.79993 1 1 0.01911 e tt tµ −= − +

Musa-Okumoto () ()()1 0.02134ln 0.02134 0.92742 1tµ τ = ∗ +

Song’s model ()

0.2669

0.2669

9200.4941 1
200.4941 e9 ln

1 200.4941

ttµ

 
 
 = −
 + +  +  

6. Conclusions

Software reliability is a measure for controlling and maintaining the develop-
ment processes with the goal of developing reliable software. Researchers and
practitioners have been improving software reliability models to assess the relia-
bility of different types of software. Measuring and predicting the reliability of a
mobile application are real challenges due to the differences between the nature
of mobile environments, and PC and server environments.

https://doi.org/10.4236/jsea.2020.139012

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 189 Journal of Software Engineering and Applications

Predicting mobile application failures is as important to software developers
as to companies and research organizations. Therefore, to attain an accurate
evaluation of software reliability for mobile applications, their characteristics
should be considered.

In this work, we proposed measuring the reliability of mobile applications
based on defects extracted from bug reports. The proposed process is composed
of six steps. First, extract and characterize the bug reports for an open-source
mobile application. Second, analyze the bug reports to discard ones that are not
related to software reliability. Third, weight the bug reports based on their classi-
fication. Fourth, relate the date of each bug report to the total number of days
since the release day of the mobile application. Fifth, assess and evaluate the re-
liability of the selected mobile application and predict its future reliability using
SRGMs. Finally, use the purification rate and the SEOE for assurance and pro-
vide the fitted SRGM equations.

The results demonstrated that the reliability of mobile applications can be
evaluated and predicted using SRGMs through defect data extracted from bug
reports. This enables developers to evaluate and predict the reliability of mobile
applications.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Shanmugam, L. and Florence, L. (2012) An Overview of Software Reliability Mod-

els. International Journal of Advanced Research in Computer Science and Software
Engineering, 2, 10.

[2] Muss, J.D., Iannino, A. and Okumoto, K. (1987) Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, Inc., Pennsylvania Plaza, New York City.

[3] Musa, J.D., Iannino, A. and Okumoto, K. (1990) Software Reliability. Advances in
Computers, 30, 85-170. https://doi.org/10.1016/S0065-2458(08)60299-5

[4] Barack, O. and Huang, L. (2019) Adaptation of Orthogonal Defect Classification for
Mobile Applications. Proceedings of the 28th International Conference on Software
Engineering and Data Engineering, 64, 119-128.

[5] Vithani, T. and Kumar, A. (2014) Modeling the Mobile Application Development
Lifecycle. Proceedings of the International Multi Conference of Engineers and
Computer Scientists, Vol. 1, Hong Kong, 12-14 March 2014.

[6] Lyu, M.R., et al. (1996) Handbook of Software Reliability Engineering. Vol. 222,
IEEE Computer Society Press, Washington DC.

[7] Tian, J., Rudraraju, S. and Li, Z. (2004) Evaluating Web Software Reliability Based
on Workload and Failure Data Extracted from Server Logs. IEEE Transactions on
Software Engineering, 30, 754-769. https://doi.org/10.1109/TSE.2004.87

[8] Huang, C.-Y., Kuo, S.-Y. and Lyu, M.R. (2007) An Assessment of Testing-Effort
Dependent Software Reliability Growth Models. IEEE Transactions on Reliability,
56, 198-211. https://doi.org/10.1109/TR.2007.895301

https://doi.org/10.4236/jsea.2020.139012
https://doi.org/10.1016/S0065-2458(08)60299-5
https://doi.org/10.1109/TSE.2004.87
https://doi.org/10.1109/TR.2007.895301

O. Barack, L. G. Huang

DOI: 10.4236/jsea.2020.139012 190 Journal of Software Engineering and Applications

[9] Alannsary, M.O. and Tian, J. (2016) Measurement and Prediction of SaaS Reliability
in the Cloud. 2016 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), Vienna, Austria, 1-3 August 2016, 123-130.
https://doi.org/10.1109/QRS-C.2016.20

[10] Bokhary, A. (2017) Measuring Cloud Service Reliability by Weighted Defects over
the Number of Clients as a Proxy for Usage. Proceedings of the 32nd International
Conference on Computers and Their Applications (CATA), Honolulu, HI, 20-22
March 2017, 63-70.

[11] Perera, U.D. (2006) Reliability Index—A Method to Predict Failure Rate and Moni-
tor Maturity of Mobile Phones. RAMS’06. Annual Reliability and Maintainability
Symposium, Newport Beach, CA, 23-26 January 2006, 234-238.

[12] Almering, V., van Genuchten, M., Cloudt, G. and Sonnemans, P.J.M. (2007) Using
Software Reliability Growth Models in Practice. IEEE Software, 24, 82-88.
https://doi.org/10.1109/MS.2007.182

[13] Ivanov, V., Reznik, A. and Succi, G. (2018) Comparing the Reliability of Software
Systems: A Case Study on Mobile Operating Systems. Journal of Information Sciences,
423, 398-411. https://doi.org/10.1016/j.ins.2017.08.079

[14] Meskini, S., Nassif, A.B. and Capretz, L.F. (2013) Reliability Models Applied to Mo-
bile Applications. 2013 IEEE 7th International Conference on Software Security and
Reliability Companion, Gaithersburg, MD, 18-20 June 2013, 155-162.
https://doi.org/10.1109/SERE-C.2013.30

[15] Canonical Ltd. https://launchpad.net/

[16] Herrmann, Tiago Telegram Application. https://launchpad.net/telegram-app

[17] Herrmann, Tiago. https://bugs.launchpad.net/telegram-app

[18] Song, K.Y, Chang, I.H. and Pham, H. (2019) NHPP Software Reliability Model with
Inflection Factor of the Fault Detection Rate Considering the Uncertainty of Soft-
ware Operating Environments and Predictive Analysis. Symmetry, 11, 521.
https://doi.org/10.3390/sym11040521

[19] Okumoto, K. and Goel, A.L. (1984) Optimum Release Time for Software Systems
Based on Reliability and Cost Criteria. Journal of Systems and Software, 1, 315-318.
https://doi.org/10.1016/0164-1212(79)90033-5

[20] Yamada, S., Ohba, M. and Osaki, S. (1983) S-Shaped Reliability Growth Modeling
for Software Error Detection. IEEE Transactions on Reliability, 32, 475-484.
https://doi.org/10.1109/TR.1983.5221735

[21] Tian, J. (1995) Integrating Time Domain and Input Domain Analyses of Software
Reliability Using Tree-Based Models. IEEE Transactions on Software Engineering,
21, 945-958. https://doi.org/10.1109/32.489071

https://doi.org/10.4236/jsea.2020.139012
https://doi.org/10.1109/QRS-C.2016.20
https://doi.org/10.1109/MS.2007.182
https://doi.org/10.1016/j.ins.2017.08.079
https://doi.org/10.1109/SERE-C.2013.30
https://launchpad.net/
https://launchpad.net/telegram-app
https://bugs.launchpad.net/telegram-app
https://doi.org/10.3390/sym11040521
https://doi.org/10.1016/0164-1212(79)90033-5
https://doi.org/10.1109/TR.1983.5221735
https://doi.org/10.1109/32.489071

	Assessment and Prediction of Software Reliability in Mobile Applications
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Methodology
	4. Case Study
	4.1. Defect Data Set
	4.2. Modeling SRGMs

	5. Discussion and Analysis
	5.1. Reliability Assessment
	5.2. Reliability Prediction

	6. Conclusions
	Conflicts of Interest
	References

