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Abstract 
Software programs are always prone to change for several reasons. In a soft-
ware product line, the change is more often as many software units are car-
ried from one release to another. Also, other new files are added to the reused 
files. In this work, we explore the possibility of building a model that can pre-
dict files with a high chance of experiencing the change from one release to 
another. Knowing the files that are likely to face a change is vital because it 
will help to improve the planning, managing resources, and reducing the cost. 
This also helps to improve the software process, which should lead to better 
software quality. Also, we explore how different learners perform in this con-
text, and if the learning improves as the software evolved. Predicting change 
from a release to the next release was successful using logistic regression, J48, 
and random forest with accuracy and precision scored between 72% to 100%, 
recall scored between 74% to 100%, and F-score scored between 80% to 100%. 
We also found that there was no clear evidence regarding if the prediction 
performance will ever improve as the project evolved. 
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1. Introduction 

Predicting the change in software as a product line SPL is vital in the develop-
ment cycle. In the development cycle, it takes one year for a new release to be 
deployed. Before that, the new release goes under the testing period to report is-
sues or bugs. In the testing time, it is imperative to predict what files are likely to 
face change (any change). These units should be given more attention, which 
helps to plan well and reduce cost by correctly estimating resources to be allo-

How to cite this paper: Alshehri, Y.A. 
(2020) Can We Predict the Change in Code 
in a Software Product Line Project? Journal 
of Software Engineering and Applications, 
13, 91-103. 
https://doi.org/10.4236/jsea.2020.136007 
 
Received: March 28, 2020 
Accepted: May 25, 2020 
Published: May 28, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.136007
https://www.scirp.org/
https://orcid.org/0000-0003-1134-4514
https://doi.org/10.4236/jsea.2020.136007
http://creativecommons.org/licenses/by/4.0/


Y. A. Alshehri 
 

 

DOI: 10.4236/jsea.2020.136007 92 Journal of Software Engineering and Applications 
 

cated for the next release. 
The predicted change of a software unit can be minor or significant. Our goal 

in this research is to detect the change regardless of the nature of the size of 
change. To achieve that, we used machine learning models to learn from files of 
the current release and use them to predict the change in the next release. We 
use static code metrics to predict the change. Static code metrics explain the main 
features of a software unit, such as the complexity, number of methods, and co-
hesion of different classes. Change metrics are not used to predict the change on 
the next release because change metrics may help to define the nature of the 
change but not necessarily can predict if the change will occur. 

The way we observe the change to a software unit (i.e., file or class) is based 
on the change in the lines of code. If the software unit encountered added or de-
leted lines of code, that would make the software unit a change prone unit (i.e., 
classified as changed). If the software unit did not face any added or deleted lines, 
the unit would be classified as not changed. We can determine if a file experienced 
change or not by observing the Code churn metric, which is the total number of 
added and deleted lines. When the value of this metric is zero, it means that the 
file has never been changed. In this paper, we measure the ability of our model 
to predict the next release by learning from the current release. We will test the 
performance of different algorithms to explore how the results are consistent with 
each other. Lastly, we explore the performance across all releases are different, 
and if they are affected by the evolution of the project. The research questions we 
address in this work are in the following list: 
– RQ1: Can we predict the change in a software product line project? 
– RQ2: What releases of the Eclipse project provide good learning to algo-

rithms? Does the size of the dataset improve the training? 
– RQ3: Does predicting change improve as the product evolved? 
– RQ4: Does any of the machine learning algorithm performs better than others? 

The rest of the paper is organized as follows: Related work is discussed next in 
Section 2. Then, we explain the data mining approach of this work in Section 3, 
including machine learning algorithms, metrics, datasets, and performance me-
trics. We discuss the results in Section 4. Threats to validity are explained in Sec-
tion 5, and the paper is concluded in Section 6. 

2. Related Works 

There are several features related to change in the code. It can be represented 
through the number of lines added or deleted to a file, the number of authors 
contributed to the file, the number of revisions, or the number of refactoring. 
These features have been successfully used [1]-[8] to predict software fault prone-
ness. In this research, we are interested in using one of the change metrics to 
predict any change associated with software files. The metric we can use for this 
purpose is the code churn metric. The code churn metric represents the total 
number of lines added and deleted to a software class. This metric was used to 
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predict software faults in [2] [6]. In this study, static code metrics are used as 
input metrics to predict the change. Static code metrics were also used, along 
with change metrics to predict software faults. In this section, we highlight re-
lated works that are targeted the study of software change proneness and used 
the metric as a response variable but not as a predictor. Some studies did a sta-
tistical analysis to investigate the relationship between different classes and bad 
smell [9] [10] [11]. Other studies applied prediction models to predict the change 
in software. Abdi et al. [12] used some machine learning algorithms (e.g., J48, 
Jrip, PART, and NBTree) to predict the change in open source projects. Tsanta-
lis et al. [13] predicted the likelihood of change on software when functions. 

Can we predict the change of the code in a software product line project3are 
added to classes using logistic regressions and measuring the performance using 
accuracy, sensitivity, false-positive ratio, and false-negative ratio. Genetic pro-
gramming algorithm with object-oriented metrics was used to predict the change 
in [14]. Object-oriented metrics were also used with 19 projects, including Ec-
lipse in [15]. Code smell related information was used to improve change pre-
diction in [16]. 

This work aims to investigate how prediction models can work on the soft-
ware line project. Eclipse is the chosen project for this work as we have access to 
seven consecutive releases from Eclipse (Eclipse 2.0, 2.1, 3.0, Europa, Ganymede, 
Galileo, and Helios). There are some other releases between Eclipse3.0 and Eu-
ropa that we did not have access to in this work.  

In this work, we explore the ability of models to learn from a dataset and test 
change on the following release. This approach should help to identify files that 
are likely to experience change from the next release. Predicting these files can 
be helpful in improving code quality ahead of time by identifying files that are 
likely to experience the change and learn why they need to be changed.  

Also, we use the most known algorithms to conduct these experiments. This is 
particularly important to explore the generalizability of the performance of learn-
ing and testing of these algorithms on these datasets and identify any challenges 
we may have when using them or if one algorithm is performing better than 
others. 

Lastly, we explore if the performance improved due to the evolution of the 
project. In this sense, we need to see how the performance differs from the old 
releases to recent ones. 

3. Methodology  

This section discusses the data mining methodology applied in this research. 
This includes the type of learners used for prediction, datasets and sampling 
process, metrics definitions, and performance metrics used to evaluate learners. 
The model is trained in a release (release n) and tested on the following release 
(release n + 1). This means that we should have a total of six tested models on six 
releases. We cannot test on release n because this would require access to release 
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n − 1, which we do not have. This process is iterated four times as we are using 
four algorithms to train our models. The total number of experiments of this 
work is twenty-four, which is the product of six releases by four algorithms. The 
outcome of each experiment is four performance measures (i.e., accuracy, recall, 
precision, and F-score). 

3.1. Learners 

Several learners (e.g., logistic regression, decision tree, and Naive Bayes) have 
been used in the software fault proneness area [17]. Many of the top learners 
provided performances that are not significantly different from each other [18]. 
Our selection of algorithms is based on three main factors: The popularity of al-
gorithms, algorithms fit the data, and algorithms are easy to implement. In this 
section, we briefly explain some of the learners we used in this study. LR models 
describe the probability of the existence of a condition (i.e., fault-prone or 
fault-free) based on a given set of variables iX . The set of variables is described 
based on a linear function and then placed into the logit model to calculate the 
probability ranged between 0 and 1, as shown in Equation (1). 

0 1 1 2 2 i iY X X Xβ β β β= + + + +                    (1) 

where Y is the response variable (fault prone, fault free), and Xi is the indepen-
dent variable (i.e., metric). 

Naive Bayes classification works based on Bayesian rules, as defined by Equa-
tion (2). The classifier is famous for its simplicity and fast computation. The clas-
sifier works up a set of input metrics (numerical or categorical) as if they are in-
dependent of each other. The probability of the response variable is calculated, 
as shown in Equation (2). 

( ) ( ) ( )1| |n
k k i kip X Y p Y p X Y

=
= ∏                   (2) 

where Y is the response variable (i.e., change prone, non-change prone), and X is 
the independent variable, k is the number of classes (in our case is two classes), 
and n is the number of input metrics. 

Decision tree J48 works by splitting data based on the most significant splitter 
(i.e., metric). The splitter is chosen based on the impurity or uncertainty of the 
data under this subset of data. The decision of splitting is based on calculating 
the information gain, as shown in Equations (3) and (4). The information gain 
subtracts the prior entropy of the selected metric iX . The classifier continues 
splitting data until a tree is formed, starting from the root (i.e., all metrics) and 
ending with leaves or terminal nodes (i.e., metrics that were not split). 

[ ] ( ) ( )1 log 2c
j jjH D P c P c

=
= −∑                   (3) 

( ) [ ] [ ], i igain D A H D HX D= −                    (4) 

where C is the desired class, and H[D] is the entropy. 
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Random forest is an ensemble tree-based learning algorithm, developed by [19]. 
Other ensemble classifiers inspired the algorithm (e.g., bagging, random split se-
lection). The algorithm creates multiple trees and takes a majority voting on the 
predicted class instead of on a single tree decision [20]. 

3.2. Datasets 

In this area, different datasets are used [17]. Eclipse is one of the software projects 
that are used by 50% of studies reported in [17]. In this study, we use seven re-
leases of the Eclipse project (i.e., Eclipse 2.0, 2.1, 3.0, Europa, Ganymede, Galileo, 
and Helios). The size of the releases is shown in Table 1. In the table, the per-
centage of change prone files is also presented for each release. The change prone 
files are the file that had at least one line added, or one line deleted from the file 
during the development process. The change prone files of early releases (e.g., 
Eclipse 2.0, 2.1, 3.0) are remarkably high (74% for Eclipse 2.0, 89% for Eclipse 
2.1, and 72% for Eclipse 3.0). Then, the percentage of change is dropped to 38% 
in Europa, 31% in Ganymede, 17% in Galileo, and 14% in Helios. 

3.3. Metrics 

Static code metrics are associated with the change in software [21]. Therefore, 
we used only static code metrics. Other earlier works used static code metrics 
(e.g., [22] [23] [24] [25]). Hall et al. [17] found that static code metrics were used 
by 38% of studies. The earlier work [26] extracted static code metrics used in this 
work, and [27] extracted the change metrics of this work. Out of all change 
metrics, we used the Code churn metric and used it in the binary format (i.e., 
changed/not changed). Changed files are all files that experienced added or de-
leted lines. Unchanged files are files that had not experienced any change at all. 
All static metrics are defined in Table 2. 

3.4. Performance Metrics 

Performance metrics are used to measure the performance capabilities of all 
learners in predicting classes (change prone or not). In this study, we used four 
major performance measures, accuracy, recall, precision, and F-score. All these 
measures are extracted from the confusion matrix (see Table 3).  
 
Table 1. Number of files and change prone files of every release. 

Release Year Number of files Percentage of change prone files 

Eclipse 2.0 2002 5016 74% 

Eclipse 2.1 2003 6494 89% 

Eclipse 3.0 2004 9547 72% 

Europa 2007 31,484 38% 

Ganymede 2008 32,648 31% 

Galileo 2009 22,154 17% 

Helios 2010 32,513 14% 
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Table 2. Metrics definitions. 

Metric Definition 

Lines of code LOC Total number of lines in a file 

Statements Any lines of code terminated by “;” 

Percent branch 
statements 

Percentage of statements causing a break in sequential execution, 
e.g., if, for, try, throw 

Methods call statements All method calls in statements and logical expressions 

Percent Lines with 
Comments 

Percentage of comments lines 

Classes and Interfaces 
Total number of classes and interfaces, including anonymous  
inner classes 

Methods per Class The total method count divided by the total classes 

Ave Statements per 
Method 

Total number of statements found inside of methods divided  
by the number 

Max Complexity Complexity value of the most complex method 

Average Complexity 
Sum of all method complexity values divided by the number  
of methods 

Ave Block Depth Sum of all method block depths divided by the number of methods 

 
Table 3. Confusion matrix. 

 
Actual class 

 Change prone Non-Change prone 

Predicted class 
Change prone True positive TP False Positive FP 

Non-change prone False Negative FN True Negative TN 

 
Accuracy can measure the total number of correct classifications over the 

miss-classified instances (Equation (5)). Recall measures the rate of the correct 
classification over the number of instances that are classified as (change prone), 
which is the total number of true positive and the false negative as in Equation (6). 
Precision measures the correct classified instances over the number of instances 
that are predicted as (change prone), which is the total number of true positive 
and the false positive instances as in Equation (7). F-score (see Equation (8)) is 
the harmonic mean of recall and precision. 

TP TNOverall accuracy
TP TN FP FN

+
=

+ + +
                  (5) 

TPRecall
TP FN

=
+

                          (6) 

TPPrecision
TP FP

=
+

                         (7) 

2 Recall Precision F-score
Recall Precision
× ×

=
+

                     (8) 
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4. Results and Discussion 

The results discussed in this section are to check the performance of the predic-
tion models, which we developed to predict files that are likely to experience 
change. The results help to find if the models’ performances are good enough to 
detect any change across all tested releases. Also, the results identify if one algo-
rithm is significantly working better than others or if all algorithms perform with 
no differences. Lastly, we explore if the performance is affected by the evolution of 
the software project. In other words, we explore if the last release is significantly 
higher than previous releases. 

The results shown in this section are for Eclipse 2.1, 3.0, Europa, Ganymede, 
Galileo, and Helios. We trained the prediction models using four algorithms us-
ing static code metrics on a release and test on the next release. Therefore, Ec-
lipse 2.0 results are not reported in this section, because Eclipse 2.0 was used on-
ly for training the model that was tested on Eclipse 2.1. 

The overall accuracy results for all algorithms on all tested releases are re-
ported in Figure 1. If we excluded the NB performance, we find a consistent 
pattern of all algorithms on all releases. The logistic algorithm performed higher 
than other algorithms with Eclipse 2.1. Other than that, differences are not sig-
nificant. Differences between the logistic performance of different algorithms on 
Ganymede, Galileo, and Helios are minor. These releases have been tested after 
training on large datasets (i.e., Europa, Ganymede, and Galileo). 

Accuracy is not always enough measure for a model performance. This be-
cause the confusion matrix may face many instances that are reported as false 
positive or false negative and still show a high accuracy. We need to check the 
recall and precision of each model, which can help to understand a clear pictures 
and amount of false negative and false positive identified. False positive are un-
changed files that were identified as changed files. False negative is changed files 
that were identified as unchanged. 

The recalls are shown in Figure 2. With exception of NB, all algorithms dem-
onstrate high recalls in all releases. Naive Bayes algorithm started with incredibly 
low performance in Eclipse 2.1, then a slightly increase was detected in Eclipse 
3.0 and Europa. The performance is sharply increase with Ganymede release and 
remained high for subsequent releases. This indicates that NB perform high on 
models that are trained on large datasets. High recalls indicated that the number of 
false negative events are low and all changed files are predicted. 

All recalls are reported between 70% to 100% and logistic regression provided 
the highest recall compared to all other algorithms. Decision tree J48 came second 
and random forest at the third place. NB provided incredibly low recalls when 
trained on small datasets, as shown in the first three releases. 

With respect to the precision, the results of all algorithms on all releases are 
presented in Figure 3. All algorithms scored precisions between 72% to 100%. 
Eclipse2.1, Europa, Ganymede, and Helios reported the highest precisions. High 
precision means that there are less events reported false positive. 
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Figure 1. Accuracy of all algorithms on eclipse releases. 
 

 
Figure 2. Recall of all algorithms on eclipse releases. 
 

Both recall and precision are important measures. In some occasions, we may 
face high reading of one of them and low reading from the other. Therefore, it is 
important to report a third measure which gives us an indication of both. This 
metric is called the F-score, which reports the harmonic mean of the two measures. 

The F-score results of all algorithms on all releases are reported in Figure 4. 
Naive Bayes reported low F-scores on Eclipse 2.1, 3.0, and Europa. NB on other re-
leases and all algorithms on all releases reported F-scores between 80% to 100%. 

https://doi.org/10.4236/jsea.2020.136007


Y. A. Alshehri 
 

 

DOI: 10.4236/jsea.2020.136007 99 Journal of Software Engineering and Applications 
 

 
Figure 3. Precision of all algorithms on eclipse releases. 
 

 
Figure 4. F-score of all algorithms on eclipse releases. 
 

There is no clear pattern regarding the performance of a specific dataset. Ex-
cept for NB, all algorithms perform at an almost similar level in all datasets with 
no clear distinction. The performance of NB increases as the software evolved. 
This increase is associated with an increase in the size of the training set. 

The results of the two research questions RQ1, RQ2, RQ3, and RQ4 are listed 
below: 
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– RQ1: Can we predict the change in a software product line project?  
Predicting changed or unchanged files require a balanced distribution of the 

number of changed and unchanged files. In this study, we managed to predict 
changed files in Eclipse 2.1 and 3.0, and we predicted unchanged files in Europa, 
Ganymede, Galileo, and Helios. When changed or unchanged files are rare events, 
then predicting any of them will be unsuccessful due to bad classification. To 
overcome this problem, we need to apply the oversampling method to get a ba-
lanced distribution. 
– RQ2: What releases of the Eclipse project provide good learning to algo-

rithms? Does the size of the dataset improve the training? 
We found that all datasets provide similar learning because the performance 

of all tested release is almost at the same level of performance. Only one algo-
rithm (i.e., Naive Bayes) provided different patterns as the learner works well 
when learning from large datasets (e.g., Europa, Ganymede, Galileo, and Helios). 
The algorithm provided a low level of accuracy, recall, precision, and F-score 
when the algorithm trained on small datasets (e.g., Eclipse 2.0, Eclipse 2.1, Ec-
lipse 3.0). 
– RQ3: Does predicting change improve as the product evolved?  

When we used the naive Bayes algorithm, the performance (accuracy, recall, 
and F-score) increased linearly started at 35% accuracy of the first release until it 
reached 90% accuracy in the last release. The same pattern exists with the recall 
and F-score. The reason could be due to the sensitivity of the NB algorithm to 
dataset size and has nothing to do with the evolution of the project. 
– RQ4: Does any of the machine learning algorithms perform better than oth-

ers?  
In terms of accuracy, logistic regression performed better than other algorithms 

on three releases but without a significant difference. 

5. Threats to Validity 

This research took all steps to ensure that no threat affects the internal, construct, 
conclusion, and external validity. 

Internal validity is concerned with the quality of the data. The confidence in 
the data is high as we conduct sanity checks on them to ensure their quality, and 
they reflect the actual source files. 

The construct validity is concerned with that the experiment measured what is 
intended to measure. We explained what we intended to measure in the intro-
ductory part with some research questions. We developed the experimentation 
on this basis, and we gathered all results, we explained to them and addressed all 
research questions clearly at the end of the work. We predicted changed files in 
Eclipse 2.0, 2.1, and 3.0. In other releases, we reported the performance of the 
models when they predict unchanged files because they were the majority class. 
When predicting unchanged files, this means we decided that these groups of 
files will not require change. 
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To ensure the conclusion validity, we applied the algorithms that are common 
in the area. We provided that the algorithms are fit for the data we used. Our 
response variable is dichotomous, and the input metrics are in numerical and 
dichotomous format. The models were evaluated using very common measures, 
which can help to address all research questions mentioned in the introduction. 

External validity can be violated if we claim the generalizability of the results. 
Our results are valid for the specific releases used from the Eclipse project. We 
do not generalize the results on other software projects. 

6. Conclusions 

In this work, we predicted the change in software files in one of the software 
product line projects (i.e., Eclipse). We used four algorithms, trained on six re-
leases, and tested on six releases. The training release is the release right before 
the tested release. We found that predicting changed and unchanged files are 
possible for all releases. The only problem that could face the software manager 
is that the balanced distribution of the two classes of the response variable. We 
found that all algorithms are performing at the same level, except for naive Bayes 
algorithm when trained small datasets. Lastly, we found that there is not enough 
evidence to prove that the evolution of the project improves learning. 

Our future work will consider predicting the level of change and the type of 
change that software files are likely to face at every release of Eclipse. Also, we 
need to consider methods to improve performance (e.g., parameter tuning). We 
will apply to replicate the work on other software projects to explore the genera-
lizability. Further, we will apply explanatory work to quantify the contribution of 
explanatory metrics on the response variable. 
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