
Journal of Software Engineering and Applications, 2020, 13, 91-103
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.136007 May 28, 2020 91 Journal of Software Engineering and Applications

Can We Predict the Change in Code
in a Software Product Line Project?

Yasser Ali Alshehri

Computer Science and Engineering Department, Yanbu University College, Royal Commission, Yanbu, Saudi Arabia

Abstract
Software programs are always prone to change for several reasons. In a soft-
ware product line, the change is more often as many software units are car-
ried from one release to another. Also, other new files are added to the reused
files. In this work, we explore the possibility of building a model that can pre-
dict files with a high chance of experiencing the change from one release to
another. Knowing the files that are likely to face a change is vital because it
will help to improve the planning, managing resources, and reducing the cost.
This also helps to improve the software process, which should lead to better
software quality. Also, we explore how different learners perform in this con-
text, and if the learning improves as the software evolved. Predicting change
from a release to the next release was successful using logistic regression, J48,
and random forest with accuracy and precision scored between 72% to 100%,
recall scored between 74% to 100%, and F-score scored between 80% to 100%.
We also found that there was no clear evidence regarding if the prediction
performance will ever improve as the project evolved.

Keywords
Software Change Proneness, Software Quality, Machine Learning, Decision
Tree J48, Logistic Regression, Naïve Bayes, Random Forest, Data Mining

1. Introduction

Predicting the change in software as a product line SPL is vital in the develop-
ment cycle. In the development cycle, it takes one year for a new release to be
deployed. Before that, the new release goes under the testing period to report is-
sues or bugs. In the testing time, it is imperative to predict what files are likely to
face change (any change). These units should be given more attention, which
helps to plan well and reduce cost by correctly estimating resources to be allo-

How to cite this paper: Alshehri, Y.A.
(2020) Can We Predict the Change in Code
in a Software Product Line Project? Journal
of Software Engineering and Applications,
13, 91-103.
https://doi.org/10.4236/jsea.2020.136007

Received: March 28, 2020
Accepted: May 25, 2020
Published: May 28, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.136007
https://www.scirp.org/
https://orcid.org/0000-0003-1134-4514
https://doi.org/10.4236/jsea.2020.136007
http://creativecommons.org/licenses/by/4.0/

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 92 Journal of Software Engineering and Applications

cated for the next release.
The predicted change of a software unit can be minor or significant. Our goal

in this research is to detect the change regardless of the nature of the size of
change. To achieve that, we used machine learning models to learn from files of
the current release and use them to predict the change in the next release. We
use static code metrics to predict the change. Static code metrics explain the main
features of a software unit, such as the complexity, number of methods, and co-
hesion of different classes. Change metrics are not used to predict the change on
the next release because change metrics may help to define the nature of the
change but not necessarily can predict if the change will occur.

The way we observe the change to a software unit (i.e., file or class) is based
on the change in the lines of code. If the software unit encountered added or de-
leted lines of code, that would make the software unit a change prone unit (i.e.,
classified as changed). If the software unit did not face any added or deleted lines,
the unit would be classified as not changed. We can determine if a file experienced
change or not by observing the Code churn metric, which is the total number of
added and deleted lines. When the value of this metric is zero, it means that the
file has never been changed. In this paper, we measure the ability of our model
to predict the next release by learning from the current release. We will test the
performance of different algorithms to explore how the results are consistent with
each other. Lastly, we explore the performance across all releases are different,
and if they are affected by the evolution of the project. The research questions we
address in this work are in the following list:
– RQ1: Can we predict the change in a software product line project?
– RQ2: What releases of the Eclipse project provide good learning to algo-

rithms? Does the size of the dataset improve the training?
– RQ3: Does predicting change improve as the product evolved?
– RQ4: Does any of the machine learning algorithm performs better than others?

The rest of the paper is organized as follows: Related work is discussed next in
Section 2. Then, we explain the data mining approach of this work in Section 3,
including machine learning algorithms, metrics, datasets, and performance me-
trics. We discuss the results in Section 4. Threats to validity are explained in Sec-
tion 5, and the paper is concluded in Section 6.

2. Related Works

There are several features related to change in the code. It can be represented
through the number of lines added or deleted to a file, the number of authors
contributed to the file, the number of revisions, or the number of refactoring.
These features have been successfully used [1]-[8] to predict software fault prone-
ness. In this research, we are interested in using one of the change metrics to
predict any change associated with software files. The metric we can use for this
purpose is the code churn metric. The code churn metric represents the total
number of lines added and deleted to a software class. This metric was used to

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 93 Journal of Software Engineering and Applications

predict software faults in [2] [6]. In this study, static code metrics are used as
input metrics to predict the change. Static code metrics were also used, along
with change metrics to predict software faults. In this section, we highlight re-
lated works that are targeted the study of software change proneness and used
the metric as a response variable but not as a predictor. Some studies did a sta-
tistical analysis to investigate the relationship between different classes and bad
smell [9] [10] [11]. Other studies applied prediction models to predict the change
in software. Abdi et al. [12] used some machine learning algorithms (e.g., J48,
Jrip, PART, and NBTree) to predict the change in open source projects. Tsanta-
lis et al. [13] predicted the likelihood of change on software when functions.

Can we predict the change of the code in a software product line project3are
added to classes using logistic regressions and measuring the performance using
accuracy, sensitivity, false-positive ratio, and false-negative ratio. Genetic pro-
gramming algorithm with object-oriented metrics was used to predict the change
in [14]. Object-oriented metrics were also used with 19 projects, including Ec-
lipse in [15]. Code smell related information was used to improve change pre-
diction in [16].

This work aims to investigate how prediction models can work on the soft-
ware line project. Eclipse is the chosen project for this work as we have access to
seven consecutive releases from Eclipse (Eclipse 2.0, 2.1, 3.0, Europa, Ganymede,
Galileo, and Helios). There are some other releases between Eclipse3.0 and Eu-
ropa that we did not have access to in this work.

In this work, we explore the ability of models to learn from a dataset and test
change on the following release. This approach should help to identify files that
are likely to experience change from the next release. Predicting these files can
be helpful in improving code quality ahead of time by identifying files that are
likely to experience the change and learn why they need to be changed.

Also, we use the most known algorithms to conduct these experiments. This is
particularly important to explore the generalizability of the performance of learn-
ing and testing of these algorithms on these datasets and identify any challenges
we may have when using them or if one algorithm is performing better than
others.

Lastly, we explore if the performance improved due to the evolution of the
project. In this sense, we need to see how the performance differs from the old
releases to recent ones.

3. Methodology

This section discusses the data mining methodology applied in this research.
This includes the type of learners used for prediction, datasets and sampling
process, metrics definitions, and performance metrics used to evaluate learners.
The model is trained in a release (release n) and tested on the following release
(release n + 1). This means that we should have a total of six tested models on six
releases. We cannot test on release n because this would require access to release

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 94 Journal of Software Engineering and Applications

n − 1, which we do not have. This process is iterated four times as we are using
four algorithms to train our models. The total number of experiments of this
work is twenty-four, which is the product of six releases by four algorithms. The
outcome of each experiment is four performance measures (i.e., accuracy, recall,
precision, and F-score).

3.1. Learners

Several learners (e.g., logistic regression, decision tree, and Naive Bayes) have
been used in the software fault proneness area [17]. Many of the top learners
provided performances that are not significantly different from each other [18].
Our selection of algorithms is based on three main factors: The popularity of al-
gorithms, algorithms fit the data, and algorithms are easy to implement. In this
section, we briefly explain some of the learners we used in this study. LR models
describe the probability of the existence of a condition (i.e., fault-prone or
fault-free) based on a given set of variables iX . The set of variables is described
based on a linear function and then placed into the logit model to calculate the
probability ranged between 0 and 1, as shown in Equation (1).

0 1 1 2 2 i iY X X Xβ β β β= + + + + (1)

where Y is the response variable (fault prone, fault free), and Xi is the indepen-
dent variable (i.e., metric).

Naive Bayes classification works based on Bayesian rules, as defined by Equa-
tion (2). The classifier is famous for its simplicity and fast computation. The clas-
sifier works up a set of input metrics (numerical or categorical) as if they are in-
dependent of each other. The probability of the response variable is calculated,
as shown in Equation (2).

() () ()1| |n
k k i kip X Y p Y p X Y

=
= ∏ (2)

where Y is the response variable (i.e., change prone, non-change prone), and X is
the independent variable, k is the number of classes (in our case is two classes),
and n is the number of input metrics.

Decision tree J48 works by splitting data based on the most significant splitter
(i.e., metric). The splitter is chosen based on the impurity or uncertainty of the
data under this subset of data. The decision of splitting is based on calculating
the information gain, as shown in Equations (3) and (4). The information gain
subtracts the prior entropy of the selected metric iX . The classifier continues
splitting data until a tree is formed, starting from the root (i.e., all metrics) and
ending with leaves or terminal nodes (i.e., metrics that were not split).

[] () ()1 log 2c
j jjH D P c P c

=
= −∑ (3)

() [] [], i igain D A H D HX D= − (4)

where C is the desired class, and H[D] is the entropy.

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 95 Journal of Software Engineering and Applications

Random forest is an ensemble tree-based learning algorithm, developed by [19].
Other ensemble classifiers inspired the algorithm (e.g., bagging, random split se-
lection). The algorithm creates multiple trees and takes a majority voting on the
predicted class instead of on a single tree decision [20].

3.2. Datasets

In this area, different datasets are used [17]. Eclipse is one of the software projects
that are used by 50% of studies reported in [17]. In this study, we use seven re-
leases of the Eclipse project (i.e., Eclipse 2.0, 2.1, 3.0, Europa, Ganymede, Galileo,
and Helios). The size of the releases is shown in Table 1. In the table, the per-
centage of change prone files is also presented for each release. The change prone
files are the file that had at least one line added, or one line deleted from the file
during the development process. The change prone files of early releases (e.g.,
Eclipse 2.0, 2.1, 3.0) are remarkably high (74% for Eclipse 2.0, 89% for Eclipse
2.1, and 72% for Eclipse 3.0). Then, the percentage of change is dropped to 38%
in Europa, 31% in Ganymede, 17% in Galileo, and 14% in Helios.

3.3. Metrics

Static code metrics are associated with the change in software [21]. Therefore,
we used only static code metrics. Other earlier works used static code metrics
(e.g., [22] [23] [24] [25]). Hall et al. [17] found that static code metrics were used
by 38% of studies. The earlier work [26] extracted static code metrics used in this
work, and [27] extracted the change metrics of this work. Out of all change
metrics, we used the Code churn metric and used it in the binary format (i.e.,
changed/not changed). Changed files are all files that experienced added or de-
leted lines. Unchanged files are files that had not experienced any change at all.
All static metrics are defined in Table 2.

3.4. Performance Metrics

Performance metrics are used to measure the performance capabilities of all
learners in predicting classes (change prone or not). In this study, we used four
major performance measures, accuracy, recall, precision, and F-score. All these
measures are extracted from the confusion matrix (see Table 3).

Table 1. Number of files and change prone files of every release.

Release Year Number of files Percentage of change prone files

Eclipse 2.0 2002 5016 74%

Eclipse 2.1 2003 6494 89%

Eclipse 3.0 2004 9547 72%

Europa 2007 31,484 38%

Ganymede 2008 32,648 31%

Galileo 2009 22,154 17%

Helios 2010 32,513 14%

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 96 Journal of Software Engineering and Applications

Table 2. Metrics definitions.

Metric Definition

Lines of code LOC Total number of lines in a file

Statements Any lines of code terminated by “;”

Percent branch
statements

Percentage of statements causing a break in sequential execution,
e.g., if, for, try, throw

Methods call statements All method calls in statements and logical expressions

Percent Lines with
Comments

Percentage of comments lines

Classes and Interfaces
Total number of classes and interfaces, including anonymous
inner classes

Methods per Class The total method count divided by the total classes

Ave Statements per
Method

Total number of statements found inside of methods divided
by the number

Max Complexity Complexity value of the most complex method

Average Complexity
Sum of all method complexity values divided by the number
of methods

Ave Block Depth Sum of all method block depths divided by the number of methods

Table 3. Confusion matrix.

Actual class

 Change prone Non-Change prone

Predicted class
Change prone True positive TP False Positive FP

Non-change prone False Negative FN True Negative TN

Accuracy can measure the total number of correct classifications over the

miss-classified instances (Equation (5)). Recall measures the rate of the correct
classification over the number of instances that are classified as (change prone),
which is the total number of true positive and the false negative as in Equation (6).
Precision measures the correct classified instances over the number of instances
that are predicted as (change prone), which is the total number of true positive
and the false positive instances as in Equation (7). F-score (see Equation (8)) is
the harmonic mean of recall and precision.

TP TNOverall accuracy
TP TN FP FN

+
=

+ + +
 (5)

TPRecall
TP FN

=
+

 (6)

TPPrecision
TP FP

=
+

 (7)

2 Recall Precision F-score
Recall Precision
× ×

=
+

 (8)

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 97 Journal of Software Engineering and Applications

4. Results and Discussion

The results discussed in this section are to check the performance of the predic-
tion models, which we developed to predict files that are likely to experience
change. The results help to find if the models’ performances are good enough to
detect any change across all tested releases. Also, the results identify if one algo-
rithm is significantly working better than others or if all algorithms perform with
no differences. Lastly, we explore if the performance is affected by the evolution of
the software project. In other words, we explore if the last release is significantly
higher than previous releases.

The results shown in this section are for Eclipse 2.1, 3.0, Europa, Ganymede,
Galileo, and Helios. We trained the prediction models using four algorithms us-
ing static code metrics on a release and test on the next release. Therefore, Ec-
lipse 2.0 results are not reported in this section, because Eclipse 2.0 was used on-
ly for training the model that was tested on Eclipse 2.1.

The overall accuracy results for all algorithms on all tested releases are re-
ported in Figure 1. If we excluded the NB performance, we find a consistent
pattern of all algorithms on all releases. The logistic algorithm performed higher
than other algorithms with Eclipse 2.1. Other than that, differences are not sig-
nificant. Differences between the logistic performance of different algorithms on
Ganymede, Galileo, and Helios are minor. These releases have been tested after
training on large datasets (i.e., Europa, Ganymede, and Galileo).

Accuracy is not always enough measure for a model performance. This be-
cause the confusion matrix may face many instances that are reported as false
positive or false negative and still show a high accuracy. We need to check the
recall and precision of each model, which can help to understand a clear pictures
and amount of false negative and false positive identified. False positive are un-
changed files that were identified as changed files. False negative is changed files
that were identified as unchanged.

The recalls are shown in Figure 2. With exception of NB, all algorithms dem-
onstrate high recalls in all releases. Naive Bayes algorithm started with incredibly
low performance in Eclipse 2.1, then a slightly increase was detected in Eclipse
3.0 and Europa. The performance is sharply increase with Ganymede release and
remained high for subsequent releases. This indicates that NB perform high on
models that are trained on large datasets. High recalls indicated that the number of
false negative events are low and all changed files are predicted.

All recalls are reported between 70% to 100% and logistic regression provided
the highest recall compared to all other algorithms. Decision tree J48 came second
and random forest at the third place. NB provided incredibly low recalls when
trained on small datasets, as shown in the first three releases.

With respect to the precision, the results of all algorithms on all releases are
presented in Figure 3. All algorithms scored precisions between 72% to 100%.
Eclipse2.1, Europa, Ganymede, and Helios reported the highest precisions. High
precision means that there are less events reported false positive.

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 98 Journal of Software Engineering and Applications

Figure 1. Accuracy of all algorithms on eclipse releases.

Figure 2. Recall of all algorithms on eclipse releases.

Both recall and precision are important measures. In some occasions, we may
face high reading of one of them and low reading from the other. Therefore, it is
important to report a third measure which gives us an indication of both. This
metric is called the F-score, which reports the harmonic mean of the two measures.

The F-score results of all algorithms on all releases are reported in Figure 4.
Naive Bayes reported low F-scores on Eclipse 2.1, 3.0, and Europa. NB on other re-
leases and all algorithms on all releases reported F-scores between 80% to 100%.

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 99 Journal of Software Engineering and Applications

Figure 3. Precision of all algorithms on eclipse releases.

Figure 4. F-score of all algorithms on eclipse releases.

There is no clear pattern regarding the performance of a specific dataset. Ex-
cept for NB, all algorithms perform at an almost similar level in all datasets with
no clear distinction. The performance of NB increases as the software evolved.
This increase is associated with an increase in the size of the training set.

The results of the two research questions RQ1, RQ2, RQ3, and RQ4 are listed
below:

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 100 Journal of Software Engineering and Applications

– RQ1: Can we predict the change in a software product line project?
Predicting changed or unchanged files require a balanced distribution of the

number of changed and unchanged files. In this study, we managed to predict
changed files in Eclipse 2.1 and 3.0, and we predicted unchanged files in Europa,
Ganymede, Galileo, and Helios. When changed or unchanged files are rare events,
then predicting any of them will be unsuccessful due to bad classification. To
overcome this problem, we need to apply the oversampling method to get a ba-
lanced distribution.
– RQ2: What releases of the Eclipse project provide good learning to algo-

rithms? Does the size of the dataset improve the training?
We found that all datasets provide similar learning because the performance

of all tested release is almost at the same level of performance. Only one algo-
rithm (i.e., Naive Bayes) provided different patterns as the learner works well
when learning from large datasets (e.g., Europa, Ganymede, Galileo, and Helios).
The algorithm provided a low level of accuracy, recall, precision, and F-score
when the algorithm trained on small datasets (e.g., Eclipse 2.0, Eclipse 2.1, Ec-
lipse 3.0).
– RQ3: Does predicting change improve as the product evolved?

When we used the naive Bayes algorithm, the performance (accuracy, recall,
and F-score) increased linearly started at 35% accuracy of the first release until it
reached 90% accuracy in the last release. The same pattern exists with the recall
and F-score. The reason could be due to the sensitivity of the NB algorithm to
dataset size and has nothing to do with the evolution of the project.
– RQ4: Does any of the machine learning algorithms perform better than oth-

ers?
In terms of accuracy, logistic regression performed better than other algorithms

on three releases but without a significant difference.

5. Threats to Validity

This research took all steps to ensure that no threat affects the internal, construct,
conclusion, and external validity.

Internal validity is concerned with the quality of the data. The confidence in
the data is high as we conduct sanity checks on them to ensure their quality, and
they reflect the actual source files.

The construct validity is concerned with that the experiment measured what is
intended to measure. We explained what we intended to measure in the intro-
ductory part with some research questions. We developed the experimentation
on this basis, and we gathered all results, we explained to them and addressed all
research questions clearly at the end of the work. We predicted changed files in
Eclipse 2.0, 2.1, and 3.0. In other releases, we reported the performance of the
models when they predict unchanged files because they were the majority class.
When predicting unchanged files, this means we decided that these groups of
files will not require change.

https://doi.org/10.4236/jsea.2020.136007

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 101 Journal of Software Engineering and Applications

To ensure the conclusion validity, we applied the algorithms that are common
in the area. We provided that the algorithms are fit for the data we used. Our
response variable is dichotomous, and the input metrics are in numerical and
dichotomous format. The models were evaluated using very common measures,
which can help to address all research questions mentioned in the introduction.

External validity can be violated if we claim the generalizability of the results.
Our results are valid for the specific releases used from the Eclipse project. We
do not generalize the results on other software projects.

6. Conclusions

In this work, we predicted the change in software files in one of the software
product line projects (i.e., Eclipse). We used four algorithms, trained on six re-
leases, and tested on six releases. The training release is the release right before
the tested release. We found that predicting changed and unchanged files are
possible for all releases. The only problem that could face the software manager
is that the balanced distribution of the two classes of the response variable. We
found that all algorithms are performing at the same level, except for naive Bayes
algorithm when trained small datasets. Lastly, we found that there is not enough
evidence to prove that the evolution of the project improves learning.

Our future work will consider predicting the level of change and the type of
change that software files are likely to face at every release of Eclipse. Also, we
need to consider methods to improve performance (e.g., parameter tuning). We
will apply to replicate the work on other software projects to explore the genera-
lizability. Further, we will apply explanatory work to quantify the contribution of
explanatory metrics on the response variable.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Alshehri, Y.A., Goseva-Popstojanova, K., Dzielski, D.G. and Devine, T. (2018) Ap-

plying Machine Learning to Predict Software Fault Proneness Using Change Me-
trics, Static Code Metrics, and a Combination of Them. SoutheastCon 2018, St. Pe-
tersburg, 19-22 April 2018, 1-7. https://doi.org/10.1109/SECON.2018.8478911

[2] Bell, R.M., Ostrand, T.J. and Weyuker, E.J. (2011) Does Measuring Code Change
Improve Fault Prediction? Proceedings of the 7th International Conference on Pre-
dictive Models in Software Engineering, Banff, 20-21 September 2011, Article No. 2.
https://doi.org/10.1145/2020390.2020392

[3] Goseva-Popstojanova, K., Ahmad, M. and Alshehri, Y. (2019) Software Fault Prone-
ness Prediction with Group Lasso Regression: On Factors That Affect Classification
Performance. 2019 IEEE 43rd Annual Computer Software and Applications Confe-
rence, Volume 2, 336-343. https://doi.org/10.1109/COMPSAC.2019.10229

[4] Krishnan, S., Strasburg, C., Lutz, R.R. and GosevaPopstojanova, K. (2011) Are
Change Metrics Good Predictors for an Evolving Software Product Line? Proceed-
ings of the 7th International Conference on Predictive Models in Software Engi-

https://doi.org/10.4236/jsea.2020.136007
https://doi.org/10.1109/SECON.2018.8478911
https://doi.org/10.1145/2020390.2020392
https://doi.org/10.1109/COMPSAC.2019.10229

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 102 Journal of Software Engineering and Applications

neering, Banff, 20-21 September 2011, Article No. 7.
https://doi.org/10.1145/2020390.2020397

[5] Moser, R., Pedrycz, W. and Succi, G. (2008) A Comparative Analysis of the Efficiency
of Change Metrics and Static Code Attributes for Defect Prediction. ACM/IEEE 30th
International Conference on Software Engineering, Leipzig, May 2008, 181-190.
https://doi.org/10.1145/1368088.1368114

[6] Nagappan, N. and Ball, T. (2005) Use of Relative Code Churn Measures to Predict
System Defect Density. Proceedings of the 27th International Conference on Soft-
ware Engineering, St Louis, 15-21 May 2005, 284-292.
https://doi.org/10.1145/1062455.1062514

[7] Ostrand, T.J., Weyuker, E.J. and Bell, R.M. (2010) Programmer-Based Fault Predic-
tion. Proceedings of the 6th International Conference on Predictive Models in
Software Engineering, Timisoara, 12-13 September 2010, Article No. 19.
https://doi.org/10.1145/1868328.1868357

[8] Weyuker, E.J., Ostrand, T.J. and Bell, R.M. (2008) Do Too Many Cooks Spoil the
Broth? Using the Number of Developers to Enhance Defect Prediction Models.
Empirical Software Engineering, 13, 539-559.
https://doi.org/10.1007/s10664-008-9082-8

[9] Khomh, F., Di Penta, M. and Gueheneuc, Y.-G. (2009) An Exploratory Study of the
Impact of Code Smells on Software Change-Proneness. 2009 16th Working Confe-
rence on Reverse Engineering, Lille, 13-16 October 2009, 75-84.
https://doi.org/10.1109/WCRE.2009.28

[10] Khomh, F., Di Penta, M., Gueheneuc, Y.-G. and Antoniol, G. (2009) An Explorato-
ry Study of the Impact of Software Changeability.

[11] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R. and De Lucia, A.
(2018) On the Diffuseness and the Impact on Maintainability of Code Smells: A
Large Scale Empirical Investigation. Empirical Software Engineering, 23, 1188-1221.
https://doi.org/10.1007/s10664-017-9535-z

[12] Abdi, M.K., Lounis, H. and Sahraoui, H. (2006) Analyzing Change Impact in Object
Oriented Systems. 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, Cavtat, 29 August-1 September 2006, 310-319.
https://doi.org/10.1109/EUROMICRO.2006.20

[13] Tsantalis, N., Chatzigeorgiou, A. and Stephanides, G. (2005) Predicting the Proba-
bility of Change in Object-Oriented Systems. IEEE Transactions on Software Engi-
neering, 31, 601-614. https://doi.org/10.1109/TSE.2005.83

[14] Marinescu, C. (2014) How Good Is Genetic Programming at Predicting Changes
and Defects? 2014 16th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, Timisoara, 22-25 September 2014, 544-548.

[15] Giger, E., Pinzger, M. and Gall, H.C. (2012) Can We Predict Types of Code Changes?
An Empirical Analysis. 2012 9th IEEE Working Conference on Mining Software
Repositories, Zurich, 2-3 June 2012, 217-226.
https://doi.org/10.1109/MSR.2012.6224284

[16] Catolino, G., Palomba, F., Fontana, F.A., De Lucia, A., Zaidman, A. and Ferrucci, F.
(2020) Improving Change Prediction Models with Code Smell-Related Information.
Empirical Software Engineering, 25, 49-95.
https://doi.org/10.1007/s10664-019-09739-0

[17] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S. (2012) A systematic Li-
terature Review on Fault Prediction Performance in Software Engineering. IEEE
Transactions on Software Engineering, 38, 1276-1304.
https://doi.org/10.1109/TSE.2011.103

https://doi.org/10.4236/jsea.2020.136007
https://doi.org/10.1145/2020390.2020397
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1145/1868328.1868357
https://doi.org/10.1007/s10664-008-9082-8
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1109/EUROMICRO.2006.20
https://doi.org/10.1109/TSE.2005.83
https://doi.org/10.1109/MSR.2012.6224284
https://doi.org/10.1007/s10664-019-09739-0
https://doi.org/10.1109/TSE.2011.103

Y. A. Alshehri

DOI: 10.4236/jsea.2020.136007 103 Journal of Software Engineering and Applications

[18] Lessmann, S., Baesens, B., Mues, C. and Pietsch, S. (2008) Benchmarking Classifica-
tion Models for Software Defect Prediction: A Proposed Framework and Novel
Findings. IEEE Transactions on Software Engineering, 34, 485-496.
https://doi.org/10.1109/TSE.2008.35

[19] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324

[20] Liaw, A. and Wiener, M. (2002) Classification and Regression by Random Forest. R
News, 2, 18-22. https://doi.org/10.1109/SYNASC.2014.78

[21] Gune, A., Koru, S. and Liu, H.F. (2007) Identifying and Characterizing Change-Prone
Classes in Two Large-Scale Open-Source Products. Journal of Systems and Soft-
ware, 80, 63-73. https://doi.org/10.1016/j.jss.2006.05.017

[22] Alshayeb, M. and Li, W. (2003) An Empirical Validation of Object-Oriented Me-
trics in Two Different Iterative Software Processes. IEEE Transactions on Software
Engineering, 29, 1043-1049. https://doi.org/10.1109/TSE.2003.1245305

[23] Li, W. and Henry, S. (1993) Object-Oriented Metrics That Predict Maintainability.
Journal of Systems and Software, 23, 111-122.
https://doi.org/10.1016/0164-1212(93)90077-B

[24] Romano, D. and Pinzger, M. (2011) Using Source Code Metrics to Predict Change-
prone Java Interfaces. 2011 27th IEEE International Conference on Software Main-
tenance, Williamsburg, 25-30 September 2011, 303-312.
https://doi.org/10.1109/ICSM.2011.6080797

[25] Zhou, Y.M., Leung, H. and Xu, B.W. (2009) Examining the Potentially Confound-
ing Effect of Class Size on the Associations between Object-Oriented Metrics and
Change-Proneness. IEEE Transactions on Software Engineering, 35, 607-623.
https://doi.org/10.1109/TSE.2009.32

[26] Devine, T., Goseva-Popstojanova, K., Krishnan, S. and Lutz, R.R. (2014) Assessment
and Cross-Product Prediction of Software Product Line Quality: Accounting for
Reuse across Products, Over Multiple Releases. Automated Software Engineering,
23, 1-50. https://doi.org/10.1007/s10515-014-0160-4

[27] Krishnan, S., Strasburg, C., Lutz, R.R., GosevaPopstojanova, K. and Dorman, K.S.
(2013) Predicting Failure-Proneness in an Evolving Software Product Line. Infor-
mation and Software Technology, 55, 1479-1495.
https://doi.org/10.1016/j.infsof.2012.11.008

https://doi.org/10.4236/jsea.2020.136007
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/SYNASC.2014.78
https://doi.org/10.1016/j.jss.2006.05.017
https://doi.org/10.1109/TSE.2003.1245305
https://doi.org/10.1016/0164-1212(93)90077-B
https://doi.org/10.1109/ICSM.2011.6080797
https://doi.org/10.1109/TSE.2009.32
https://doi.org/10.1007/s10515-014-0160-4
https://doi.org/10.1016/j.infsof.2012.11.008

	Can We Predict the Change in Code in a Software Product Line Project?
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Methodology
	3.1. Learners
	3.2. Datasets
	3.3. Metrics
	3.4. Performance Metrics

	4. Results and Discussion
	5. Threats to Validity
	6. Conclusions
	Conflicts of Interest
	References

