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Abstract 
Accurate and timely monthly rainfall forecasting is a major challenge for the 
scientific community in hydrological research such as river management project 
and design of flood warning systems. Support Vector Regression (SVR) is a very 
useful precipitation prediction model. In this paper, a novel parallel co-evolution 
algorithm is presented to determine the appropriate parameters of the SVR in 
rainfall prediction based on parallel co-evolution by hybrid Genetic Algo-
rithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for 
monthly rainfall prediction. The framework of the parallel co-evolutionary 
algorithm is to iterate two GA and PSO populations simultaneously, which is 
a mechanism for information exchange between GA and PSO populations to 
overcome premature local optimum. Our methodology adopts a hybrid PSO 
and GA for the optimal parameters of SVR by parallel co-evolving. The pro-
posed technique is applied over rainfall forecasting to test its generalization 
capability as well as to make comparative evaluations with the several competing 
techniques, such as the other alternative methods, namely SVRPSO (SVR 
with PSO), SVRGA (SVR with GA), and SVR model. The empirical results 
indicate that the SVRGAPSO results have a superior generalization capability 
with the lowest prediction error values in rainfall forecasting. The SVRGAPSO 
can significantly improve the rainfall forecasting accuracy. Therefore, the 
SVRGAPSO model is a promising alternative for rainfall forecasting. 
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1. Introduction 

Monthly rainfall time series exhibit non-stationary characteristic, which can be 
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described as time series whose statist distributions change over time. The struc-
tural changes of monthly rainfall may be caused by the various processes of at-
mospheric physical change, such as atmospheric physics, temperature physics, 
pressure field and sea temperature field, etc. So accurate and timely monthly 
rainfall forecasting is one of the most difficult processes of the hydrology cycle 
for both water quantity and quality management [1] [2] [3]. Several recent re-
search studies have developed for monthly rainfall forecasting based on atmos-
pheric physics model, however, renders quantitative forecasting of rainfall ex-
tremely difficult because it involves many nonlinear variables which are inter-
connected in a very complicated way, and the volume of rainfall calculation [4] 
[5] [6]. The support vector machine (SVM) developed by Vapnik and his col-
leagues, is an important machine learning tool based on statistical learning 
theory, using the principle of structural risk minimization. With the introduc-
tion of Vapnik’s insensitivity loss function, the regression model of SVM, called 
support vector regression (SVR), has also been receiving increasing attention to 
solve nonlinear estimation problems [7] [8]. Because SVR is a specific type of 
learning algorithms, characterized by the capacity control of the decision func-
tion, the use of the kernel function and the sparsity of the solution, SVR has used 
on regression estimation, include monthly rainfall forecasting modelling. These 
unique characteristics of SVR make them a promising alternative approach to 
traditional regression estimation approaches. 

Although SVRs have been recently proposed as a new technique for machine 
learning problems, the literature about SVRs is vast and growing. When using 
SVR in regression estimation, many important questions research remain, such 
as, how to choose the optimal parameters of SVR. Optimal parameters of the 
kernel function can lead to the accuracy of the SVR regression estimation. Inap-
propriate parameters in SVR lead to over-fitting or under-fitting in the SVR re-
gression estimate for application of actual precipitation prediction. Support vec-
tor machine hyper-parameters are obtained through trial-and-error by the oper-
ators, which leads to the effects of SVR applications strongly depends upon the 
operator’s experience [7] [8] [9]. If the user is not careful, it is easy to cause 
model over-fitting. Such a model might be doing well in predicting past inci-
dents, but unable to predict future events [10] [11]. Most studies depend on the 
cross-validation set to tune the parameters of the kernel function. So, it is very 
worthwhile to develop the method selection problem to make SVR less depen-
dent on the skills of the experimenters. 

Recently, several studies have proposed the parameter optimization of Gaus-
sian kernel function by evolutionary optimization, such as Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO) [7] [8] [9] [10] [11], achieve good 
application results. In this paper, a novel Co-evolution algorithm has been pre-
sented to develop an efficient training algorithm for the parameter of SVR kernel 
function based on the standard GA and imports optimized PSO algorithm. In 
order to overcome the shortcoming of the standard PSO algorithm and GA, 
which are easily to fall into local solution and low optimization. In this paper we 
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use co-evolution of “GA-PSO”, taking GA and PSO to iterate each other, which 
the two populations can co-evolve, in order to search out high quality of associa-
tion rules in the high-dimensional data set. This investigation presented in this 
paper is motivated by a desire to improve the inefficient disadvantages of 
searching algorithms mentioned above in determining the parameters in the 
SVR model by the parallel co-evolution based on GA and PSO for monthly 
rainfall forecasting modelling. 

The present study proposed a novel parallel co-evolution algorithm of GA 
combined with PSO to optimize the SVR parameters, namely SVRGAPSO based 
on the mechanism of information interaction between GA and PSO when they 
are iterating over two populations. Our approach determines the optimal kernel 
parameter values for the SVR model in monthly rainfall forecasting. The rainfall 
data of Nannig, Guangxi, China, is predicted as a case study for our proposed 
method. An actual case of forecasting rainfall is illustrated to show the im-
provement in predictive accuracy and capability of generalization achieved by 
our proposed SVRGAPSO model. These are many monthly rainfall forecasting 
models of application different approaches; SVRGAPSO model achieves better 
generalization performance than other regression estimation approaches. The 
rest of this study is organized as follows. Section 2 describes the SVRGAPSO, 
ideas and procedures. For further illustration, different models are used to em-
ploy for rainfall forecasting analysis in Section 3, and conclusions are drawn in 
the final section. 

2. SVRGAPSO Methodology 
2.1. Support Vector Regression 

The brief ideas of SVR for the case of regression are introduced. Suppose we are 
given training data ( ) 1

, N
i i i

x y
=

, where ix  is the input vector; iy  is the output 
value and N is the total number of data dimension [12]. The linear regression 
function is formulated as follows: 

( ) ( )Tf x x bω= ∅ +                           (1) 

where x denotes the forecasting values; ( )x∅  denotes the high dimensional 
feature space, which is non-linearly mapped from the input space x; ω  is the 
coefficients and b are adjustable. The coefficients ω  and b can be estimated by 
minimizing the regularized risk function: 

( ) ( )*
* T *

1, , ,

1min , ,
2

Nb
ib

R Cεω ξ ξ
ω ξ ξ ω ω ξ ξ

=
= + +∑             (2) 

Subject to 

( )
( )

*

* 0
0

1,2,3, ,

i i i

i i i

i

i

y x b

y x b

i N

ω ε ξ

ω ε ξ

ξ
ξ

 − ⋅∅ − ≤ +

− + ⋅∅ + ≤ +


≥
 ≥
 =




                     (3) 

https://doi.org/10.4236/jsea.2019.1212032


J. S. Wu, Y. S. Xie 
 

 

DOI: 10.4236/jsea.2019.1212032 527 Journal of Software Engineering and Applications 
 

Therefore, the objective of SVR is to include training patterns inside an ε -insen- 
sitive tube while keeping the norm ω  as small as possible. The parameter ε  
is the difference between actual values and values calculated from the regression 
function. This difference can be viewed as a tube around the regression function. 
C denotes a cost function measuring empirical risk; it indicates a parameter de-
termining the trade-off between the empirical risk and the model flatness. After 
the quadratic optimization problem with inequality constraints is solved, the 
SVR is given by: 

( ) ( ) ( )* *
1, , ,N

i i i i iif x K x x bα α α α
=

= − +∑                (4) 

where iα  and *
iα  are the Lagrangian multipliers associated with the con-

straints, ( ), iK x x  is called the kernel function. As the kernel function defines 
the feature space in which the decision function is constructed, exploring useful 
kernel function constitutes a significant topic in SVR application. The most used 
kernel functions are the Gaussian radial basis functions (RBF) with of the para-
ment σ :  

( )
2

2ex, p
2

i j
i j

x x
K x x

σ

 − =
 
 

                     (5) 

By using the kernel functions, SVR can efficiently and effectively construct 
many types of nonlinear functions to compute the dot product in feature space 
for regression estimation. Gaussian RBF kernel is not only easier to implement 
but also capable of non-linearly mapping the training data into an infinite di-
mensional space. Thus, it is suitable to deal with a nonlinear relationship. 
Therefore, the Gaussian RBF kernel function is specified in this study.  

SVR based on radial basis kernel function has three parameters to be deter-
mined, where C is to trade-off between the model flatness and the degree of the 
training errors, ε is the width of the insensitive loss function, and σ is the band-
width of the Gaussian kernel function. For example, if C is too large (infinity), 
then the objective is to minimize the empirical risk only. Parameter ε controls 
the width of the ε-insensitive zone, i.e., the number of support vectors (SVs) 
employed in the regression. Larger ε value implies fewer SVs employed; thus, the 
regression function is simpler [8] [13] [14] [15]. It is well known that the fore-
casting accuracy of the SVR model depends on a good setting of hyper parame-
ters, C, ε and the kernel parameter σ. Thus, the determination of all three para-
meters selection is further an important issue. Those parameters are often diffi-
cult to be determined directly due to conceptual constraints. Proper types of 
SVR kernel function and the parameters of SVR kernel function can improve the 
SVR regression accuracy. Inappropriate parameters in SVR lead to over-fitting 
or under-fitting [14] [16].  

Afore mentioned there is no structural method or any shortage opinions on 
efficient setting of SVR parameters. Recently, the authors applied a series of 
searching algorithms to test the potentiality and the suitability involved in the 
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parameter’s selection of an SVR model. However, as mentioned above, the em-
ployed evolutionary algorithms almost lack knowledge memory functions, which 
makes it time-consuming and has a premature convergence to a local optimum 
in searching for the suitable parameters of an SVR model. Therefore, the GAPSO 
algorithm is used in the proposed SVR model to optimize the parameter selec-
tion. 

2.2. Genetic Algorithm and Particle Swarm Optimization 

Genetic algorithm is an adaptive optimization technique developed by Holland 
based on natural evolution and survival of the fittest, and works on a population 
of individuals [17]. GA has been successfully applied to solve in many optimiza-
tion problems of scientific and engineering fields, due to the versatility and ro-
bustness in solving optimization problems. However, there are two major short-
comings on GA, slow convergence and trapped into local optimum, which are 
mainly caused by the population diversity reduction [18] [19].  

PSO has been used to solve real time issues and aroused researchers’ interest 
due to its flexibility and efficiency, which is a stochastic, population-based opti-
mization algorithm introduced by James Kennedy and Russell C. Eberhart [20], 
has gained much attention and wide applications in solving continuous nonli-
near optimization problems. PSO has many advantages, such as easy exchange of 
information, storage of information, simple structure, quick convergence and 
easy implementation by all particles, nowadays PSO has gained much attention 
and wide applications in solving continuous nonlinear optimization problems. 
However, the PSO algorithm greatly depends on its initial values, and the swarm 
diversity is dropped rapidly along with the increasing of the iteration times 
which makes it been trapped in the local optimum, i.e., premature convergence, 
accordingly, the global search capacity has also been affected. Particularly, as for 
the high-dimensional multi-modal problems, premature convergence may be 
appeared easily [21] [22] [23]. 

2.3. Parallel Co-Evolution Algorithm 

Co-evolution concept is first proposed by Ehrlich and Raven who discuss the 
evolution between plants and herbivorous insects [24] [25] [26]. Its core idea is: 
the interaction of populations is indispensable conditions for survival of each 
other. In a long-term evolutionary process, they are interdependent and coordi-
nate. They improve the individual and whole performance. Co-evolution algo-
rithm adopts populations to change the mode of traditional searching optimum 
solutions, which could avoid the defects of dimension reduction method, the lo-
cal optimum and the premature convergence. In this paper, a novel parallel 
co-evolution is presented for the parameters optimization problem of GA com-
bined with PSO, taking GA and PSO to iterate each other. Combined with 
co-evolution concept, the two populations can co-evolve, in order to search out 
high quality of association rules in the high-dimensional data set. In order to 
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achieve this idea, this paper designs an information exchange mechanism, 
named interoperability. Let information pass between the two populations to 
achieve the purpose of co-evolution. 

2.4. The Developed SVRGAPSO Approach 

In this paper, real value chromosome of GAPSO directly handles the parameters 
themselves and much computation time is saved. The chromosome is comprised 
of two parts: SVR Parameter and Kernel Parameters. Real value chromosome 
{ },i iC ε  represents the valued of the penalty parameter and insensitive loss 
function, respectively. Real value chromosome { }iσ  represents the valued of 
kernel parameter. A fitness function assessing the performance for everyone 
must be designed before searching for the optimal values of the SVR parameters. 
The performance of the parameter set is measured by the mean absolute percen-
tage error (MAPE) on the last subset. Averaging the MAPE over the N trials 
gives an estimate of the expected generalization error for training sets given by 
Equation (6) 

( )1 2

1

1, , ,
ˆ11 100%

fitness N
N i i
i

i

F x x x
y y

N y=

=
 −
+ ∗ 

 
∑

           (6) 

where, ix  is the training samples, N is the number of training data samples, iy  
is the actual value, and ˆiy  the predicted value. The optimal parameter setting is 
critical to predicting the performance of SVR model. In this paper, Parallel 
Co-evolutionary algorithm based on GA combined with PSO is employed to si-
multaneously optimize SVR’s parameters and the kernel function’s parameter, 
namely SVRGAPSO. Figure 1 illustrates the process of the SVRGAPSO algo-
rithm for SVR optimization in rainfall modelling. Details of our proposed 
SVRGAPSO described as follows: 

Step1: Generate initial population. Two initial populations are randomly gen-
erated according to the target database. POP1 and POP2 use respectively the 
search strategy of PSO and GA to search for association rules. Two populations 
use the same coding rules, the fitness function, population size and the maximum 
evolution generation. This paper used real coding rules, in which the number of 
elements in an array of real numbers corresponds to transaction database field. 
The number of element values represents the attribute values of the field. 

Step2: Initialize the two populations with GA and PSO parameters: number of 
iterations, crossover probability, mutation probability, particles velocity and 
particles position. 

Step3: Input training data and calculate the fitness, which determine Gbest and 
Pbest by a simple comparison of their fitness values according to Equation (6). We 
compare fitness value of the global best individual Gpso in POP1 and best indi-
vidual Gga in POP2. Individuals with larger fitness values will replace the best 
individual of other populations, as a basis for the next generation of evolution. 
The adjustment strategies of crossover probability are shown in Equation (7): 
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Figure 1. Flowchart of the GAPSO optimization SVR for rainfall modelling. 
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where { }max 0.9cP =  and { }min 0.3cP =  respectively denote the upper and low-
er limits of crossover probability { } cP . { }max   f  is the maximum fitness value 
of individuals in the current population, { }  f  is the average fitness value of the 
current population, and { }f ′  is the larger fitness value of two cross-individual. 
In this paper, the mutation probability is related to iterations number. The ad-
justment strategies of mutation probability are shown in Equation (8):  

( )

( )

min max min
max max

max max
max min

max min max min min max

, 0

, 1
1 1

m m m
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m m
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(8) 

where { }max 0.1mP =  and { }min 0.001mP =  are the upper and lower limits of 
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{ }mP , { }max  T  is the maximum number of iterations, { }t  is the current num-
ber of iterations. In this paper, standard PSO algorithm is used to optimization 
operation for aims at continuous function to search operations. See literature 
[18] to details. 

Step4: We judge condition whether to meet the termination condition. If the 
number of iterations has reached the maximum number of iterations then the 
algorithm ends, switch to Step 5; or continue to the next step. 

Step5: The speed and location of POP1 are updated in accordance with PSO 
and GA then produce next generation. Once the termination condition is met, it 
will output the best solution and obtain the optimal parameter setting for SVR 
model. Input test samples for the prediction effect of the SVR model. 

3. Application and Experiments Analysis 

The platform adopted to develop the SVRGAPSO approach is a PC with the fol-
lowing features: Intel Core i7-8550U, 1.80 GHz CPU, 32.0GB RAM, Windows 10 
operating system and the MATLAB R2019a development environment. In this 
paper, GA and PSO parameters are set as follows: the iteration times are 100; the 
population is 40; crossover probability is 0.80; mutation probability is 0.05; the 
minimum inertia weight is 0.1; the maximum inertia weight is 0.9 and the 
learning rate is 2.0. 

3.1. Empirical Data 

Real-time ground monthly rainfall data have been obtained from January 1952 
to December 2017 form Guangxi Meteorological Bureau in Nanning of Guangxi, 
China. The data set contained 792 data points, whose training data set contained 
480 (1952-1991) data for modeling, validation set is 240 (1992-2011) for valida-
tion model, and the remaining 72 (2012-2017) data are used to test the predictive 
effect of the. Figure 2 shows the actual rainfall from January 1952 to December 
2017 in the past 66 years of Nanning, Guangxi, China. It can be seen from Fig-
ure 2 that the annual precipitation in flood season is relatively large, which the 
annual flood season is from April to September with an average precipitation of 
over 300 mm.  

3.2. Independent Variables of the Monthly Rainfall Model 

It is very important to select of independent variables for rainfall forecasting 
model. In this paper, the most commonly variable selection method in meteoro-
logical operation to select predictive independent factors is introduced. First of 
all, the candidate forecasting factors are selected from the numerical forecast 
products based on 96 h forecast field, which includes: the 17 conventional me-
teorological elements and physical elements from the T213 numerical products 
of China Meteorological Administration, the data cover the latitude from 150N 
to 300N, and longitude from 1000E to 1200E, with 10 × 10 resolution, altogether 
there are 336 grid points. We can get 76 variables as the main forecasting factors.  
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Figure 2. The actual rainfall from January 1952 to December 2017 in Nanning, Guangxi, China. 

 
This paper used the principal component analysis to obtain 12 variables as SVR’s 
input. The original meteorological data is used as real output. 

3.3. Criteria for Evaluating Model Performance 

This paper used the following evaluation metric to measure the performance of 
the proposed model: Root mean square error (RMSE), Mean absolute percentage 
error (MAPE), Coefficient of efficiency (CE), which can be found in many paper 
[8]. For the purpose of comparison by the same 12 input variables, we have also 
built other three-monthly rainfall forecasting models: pure SVR model, SVR 
with pure PSO evolutionary SVR parameters (named by SVRPSO), SVR with 
pure GA evolutionary SVR (named by SVRGA). For building SVR rainfall fore-
casting model, the LIBSVM package proposed by Chang and Lin is adapted for 
this paper [27], which all SVR parameters are based on the RBF kernel type by 
the trial-and-error method. The best parameters with the minimum testing 
RMSE are optimal. The optimal parameters are based on the best testing and va-
lidation result (minimum RMSE). The optimal parameters are  
( )53.6910, 0.06147, 0.2983C ε σ= = =  based on the best testing and validation 
result (minimum RMSE).  

For building SVRPSO and SVRGA rainfall forecasting model, PSO is used to 
search for the optimal parameter values of SVR for rainfall forecasting by Chen 
K., et al. presented [28], and GA is used to search for optimal parameter values 
of SVR for rainfall forecasting by Li W. M., et al. presented [15]. Monthly preci-
pitation forecasting model is established by evolutionary selection of optimal 
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parameters of SVR based on the best testing and validation result (minimum 
RMSE) with GA and PSO respectively. These results are compared with the re-
sults of Co-evolutionary SVR SVRPSO to illustrate the performance of the dif-
ferent evolutionary algorithms.  

3.4. Results Analysis 

Figure 3 shows the change process of fitness function value in the evolution 
stage of SVRGAPSO, SVRPSO and SVRGA with the increase in the number of 
evolutionary iterations. It can be seen from Figure 3, the performance of parallel 
co-evolutionary algorithm was significantly better than the GA and PSO on 
convergence speed and population stability. With the increasing number of ite-
rations, the GA has been caught the premature convergence and could not get 
out after 50 iterations. Compared with the GA, the individual quality of PSO has 
been improved, but also faces the dilemma that cannot jump out of local optimal 
solution. In the iterative process, parallel co-evolutionary algorithm also has the 
phenomenon of premature convergence, however, there is a clear inflection point 
at 60 iterations, showing GAPSO can avoid problems of premature convergence, 
escape from local optima, and tends to be stable gradually. These results show 
that the advantages of parallel co-evolutionary algorithm can guide individual 
which has been plunged into the local optimum value to deviate from the origi-
nal local minima. 

Figure 4 shows a graphical representation of the validation data results using  
 

 
Figure 3. The tendency of fitness value in the evolution stage of SVRGAPSO, SVRPSO and SVRGA. 
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Figure 4. Comparison of actual and validation for rainfall models by different models. 

 
four different models in Nanning, Guangxi from January 1992 to December 2011. 
Figure 5 shows a graphical representation of the testing data results of precipita-
tion using four different models in Nanning, Guangxi from January 2012 to De-
cember 2017. Table 1 shows the training, validation and testing performance of 
four different models in monthly rainfall via the same input factors. These re-
sults indicate that the deviations of SVRGAPSO model between the calculated 
values and the actual values are the smallest, whether fitting data, validation data 
or testing data. The performance of SVRGAPSO model is superior to the three 
other models.  

From the graphs and tables, we can generally see that The SVRGAPSO algo-
rithm enables the solution to jump out of local optima, and decreases the vibra-
tion near the end of locating a solution by information exchange between GA 
and PSO populations, and the forecasting results are very promising for monthly 
rainfall under study either where the measurement of forecasting performance is 
goodness of fit such as RMSE (refer to Table 1) or where the forecasting per-
formance criterion is MAPE (refer to Table 1), showing the forecasting perfor-
mance of different models from different perspectives.  

Clearly, the RMSE is the only criterion to measure the accuracy of prediction. 
That is, accuracy in goodness-of-fit is only one of the most important criteria 
models and MAPE is the criterion to measure the relative performance of model 
for monthly rainfall forecasting. The training, validation and forecasting per-
formance comparisons of various models for the rainfall via RMSE, MAPE, and 
CE are reported in Table 1, respectively. As shown in Table 1, for the training 
data, the RMSE of SVR is 26.324, SVRGA’s RMSE is 22.587, SVRPSO’s RMSE is 
21.110; while of the RMSE of SVRGAPSO, RMSE reaches 3.755, we can see that  

https://doi.org/10.4236/jsea.2019.1212032


J. S. Wu, Y. S. Xie 
 

 

DOI: 10.4236/jsea.2019.1212032 535 Journal of Software Engineering and Applications 
 

 
Figure 5. Comparison of actual and testing for rainfall models by different models. 

 
Table 1. Table captions should be placed above the table. 

 Model RMSE MAPE (%) CE 

Train 

SVR 26.324 49.632 0.967 

SVRGA 22.587 40.217 0.989 

SVRPSO 21.110 22.357 0.987 

SVRGAPSO 3.755 5.632 0.998 

Validation 

SVR 28.677 51.496 0.963 

SVRGA 23.795 47.246 0.976 

SVRPSO 21.580 23.362 0.980 

SVRGAPSO 3.782 5.759 0.999 

Testing 

SVR 21.608 24.767 0.976 

SVRGA 26.335 22.482 0.965 

SVRPSO 16.240 20.649 0.985 

SVRGAPSO 12.499 8.552 0.991 

 
the RMSE of SVRGAPSO is the smallest in all models. Focusing on the RMSE 
indicator in testing samples, our proposed SVR based on parallel co-evolutionary 
algorithm technique performs the best in all the cases, followed by SVRPSO 
technique and SVR technique; SVRGA is the worst from a general point of view.  

Similarly, for the validation data, the RMSE of the SVR is 28.677, SVRGA’s 
RMSE is 23.795, SVRPSO’s RMSE is 21.580; while for the SVRGAPSO, RMSE 
reaches 3.782, SVRGAPSO’s RMSE is the smallest. In the testing sample results, 
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we can see the same conclusion that the squared error sum of SVRGAPSO is also 
the smallest in all models. The main reason is that the GA is trapped in the local 
optimal solution and cannot find the optimal parameters of SVR. 

Focusing on the MAPE indicator of the training case, validation and testing 
data, the SVRGAPSO model is also less than the SVR, SVRGA and PSO-SVR 
models, which the deviations of SVRGAPSO model between observed and fore-
casting value are the smallest. However, the low RMSE does not necessarily 
mean that there is a high hit rate of forecasting direction for monthly rainfall 
movement direction prediction. Thus, the CE comparison is necessary. CE indi-
cators are more important than other RMSEs and MAPEs, because CE is an in-
dicator of the trend of the model, and is mainly used to judge whether the trend 
of the forecast results is consistent with the actual precipitation trend. Similarly, 
the SVRGA model is the maximum in their three models in all stages. These re-
sults show the SVRGAPSO model have higher correlation relationship with ob-
served rainfall values, it also implies that the SVRGAPSO model is capably to 
capture the average change tendency of monthly rainfall data. To summarize, 
the SVRGAPSO model is superior to the other three models presented here in 
terms of RMSE, MAPE and CE for rainfall prediction under the same input.  

The main reason is that GA and PSO are easy to fall into local optimum and 
cannot evolve to optimal parameters. SVR are also prone to over-fitting through 
cross-validation, resulting in poor prediction results. In the iterative process of 
GAPSO using GA and PSO to exchange of information between the two popula-
tions, co-evolution algorithm not only is superior in the mining quality, but also 
has a significant advantage in the ability to jump out of local optimal solution 
also has the phenomenon of premature convergence. We get the global optimum 
with greater probability for SVR parameters. 

From the experiments presented in this paper we can draw the following con-
clusions. The experimental results show that the GAPSOSVR monthly rainfall 
forecasting model is superior to the pure SVR model, the GASVR model as well 
as the PSOSVR models for the training, validation and test cases of monthly 
rainfall in terms of the measurement of RMSE, MAPE and CE, as can be seen 
from Table 1. Likewise, the GAPSOSVR model also outperforms other three 
models in terms of RMSE, as can be seen from Figures 3-5 and Table 1. The 
co-evolution algorithm based on GAPSO forecasts can improve forecasting ac-
curacy significantly of SVR, in other words, the performance of the GAPSOSVR 
forecasting model is better than those of other forecasting models in terms of 
RMSE, MAPE and CE. This leads to the third conclusion. The co-evolution al-
gorithm can be used as an alternative tool to obtain the global optimum, get 
greater forecasting accuracy and improve the prediction quality further in view 
of empirical results for SVR. 

4. Conclusion 

The rainfall system is one of the most active dynamic weather systems. This pa-
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per presents a parallel co-evolution algorithm using GA and PSO to exchange 
each information between the two populations in the process of evolutionary 
iteration for the parameters of SVR in rainfall forecasting modelling. In terms of 
empirical results, we find that across different models for the test cases of 
monthly rainfall based on different evaluation criteria, our proposed SVRGAPSO 
forecasting technique performs the best. In all testing cases, RMSE of the pro-
posed our modeling technique is the lowest and the CE is the highest, indicating 
that the SVRGAPSO forecasting technique can be used as a viable solution to 
monthly rainfall time series forecasting.  
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