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Abstract 
We present a new approach to the synthesis of quantum automata. In pre-
vious research, reversible quantum automata were designed from tabular spe-
cifications or state graphs, and minimum length codes, which lead to circuits 
with Toffoli gates with high numbers of inputs and thus to high quantum 
costs. This paper is the first to present a method to synthesize Sequential 
Quantum Circuits directly from flowcharts. In this paper, we directly map 
flowcharts to reversible/quantum circuits, using only inverters, 2*2 Feynman 
gates and 3*3 Toffoli gates, and thus reducing quantum costs. Our method 
has been confirmed by experiments on several benchmarks of practical flow-
charts. 
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1. Introduction 

Conceptually, the classical computer is based on the Turing Machine model. The 
quantum Turing machine is very similar to the classical Turing machine, but the 
head of the machine, the control automaton and the tape of the machine are in 
quantum states. The quantum Turing machine can perform calculations in pa-
rallel by using quantum properties such as superposition and entanglement. The 
quantum system always evolves reversibly, which means that one can determine 
the earlier state of the system by going backwards. Classical circuits are normally 
irreversible, which means that they lose information during generation of out-
puts [1] [2]. Permutative quantum circuits are built with reversible gates which 
have the same number of inputs as outputs and exhibit one-to-one mapping 
between input and output states. Our interest is in creating a complete metho-
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dology to design quantum circuits for arbitrary quantum state machines. A sig-
nificant part of this methodology is to design binary reversible quantum circuits 
(described by permutative matrices). Our new method to design such circuits 
uses only NOT, CNOT and CCNOT (Toffoli) gates. 2*2 Feynman gates are also 
called CNOT gates. 3*3 Toffoli gates are called CCNOT gates. Larger gates of 
this type (4*4 Toffoli gates and beyond) are called generalized Toffoli gates. The 
NOT gate inverts a single qubit, the CNOT gate inverts the target qubit if the 
control qubit is in state |1〉, the Toffoli and generalized Toffoli gates invert the 
target qubit if all control qubits are in state |1〉. Quantum Automata (Quantum 
State Machines, Quantum Finite State Machines) have quantum states instead of 
the classically determined states [3] [4] [5] [6] [7]. In the most general quantum 
state machines, the input states, internal states and output states can be quantum 
states. Currently our method only deals with reversible state machines but it can 
be applied to Quantum State machines. Similar to quantum combinational cir-
cuits, the quantum states of Quantum State Machine can be superposed or en-
tangled [8]. In this paper we restrict our research to permutative automata (we 
will use this name to describe automata that have circuits described with per-
mutative matrices, by analogy to permutative quantum circuits). These automata 
are not concerned with superposition and entanglement, but will be easily ex-
tended to general quantum state machines in our coming research. Note also 
that for simplicity, the method presented in this paper relates only to completely 
specified quantum state machines and those that are used in robotics, thus hav-
ing no stop states. It is possible to extend our method to incompletely specified 
state machines, as well as to machines with stop states. 

Our previous work on the realization of quantum automata used various 
codes close to the shortest length codes for encoding internal states [9]. Howev-
er, several examples suggest that it is better to use the “one hot” encoding, simi-
lar to the encodings used in classical FPGAs [10]. The synthesis method pre-
sented in this paper utilizes one hot encoding which means that one bit of the 
state vector (state encoding) is 1 for every state while all other bits in the vector 
are zeros. This means that the sequential permutative state machine can have 
only one state in value 1 at a time. If the classical automaton has N internal 
states, this means that N state variables (flip flops) are required. Observe howev-
er that if a superposed input is given to the corresponding quantum state ma-
chine, the machine can be in a superposition of multiple one-hot-encoded states. 
One hot encoding of a quantum automaton has some general advantages in-
cluding: simplification of design, simplification of testing procedures, reducing 
quantum cost and increasing speed. This encoding method means that all 
sub-functions (usually products of literals) in equations that lead to a certain 
state (internal or output state) are disjoint. Thus the OR logic operators can be 
replaced by EXOR operators, leading to the Disjoint Sum of Products logic equ-
ations. We thus use the Boolean Algebra Law assuming disjoint functions, and 
thus, A + B = A ⊕ B. Based on the formula A + B = A ⊕ B ⊕ AB and assuming 
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that functions A and B are disjoint (AB = 0), we use formula A + B = A ⊕ B as a 
fundament of our method. Such a property is important in this application since 
the foundational computing gates, e.g., the CNOT, are based on EXOR logic ra-
ther than OR logic. 

Recently, synthesis of Sequential Quantum Circuits became an active area of 
research [3] [9] [11] [12] [13], but this paper is the first to present a method to 
synthesize Sequential Quantum Circuits directly from flowcharts. One of the 
preliminary steps to implement a given functionality (for instance for a beha-
vioral robot) is to represent it as a flowchart. The interpretation of a flowchart is 
presented in by Morris Mano in several of his well-known textbooks [14]. This 
type of initial specification of standard automata is popular in programming and 
also in traditional hardware design. Although hardware description languages 
such as Verilog and VHDL are currently used for synthesis, some compilers of 
these languages create intermediary data structures similar to flowcharts. There-
fore, we believe that flowcharts should also be used for quantum state machines 
as an intermediary step in a quantum compiler [15]. 

There are many methods that convert flowcharts (also called algorithmic state 
machines [14]) to standard graphs or state tables of finite state machines. Then 
standard logic synthesis methods are used to realize the state tables using SOP 
(Sum of Products) expressions. These methods do not work well for quantum 
circuits, especially for multi-output circuits, as they lose the information about 
common sub-expressions and use expensive gates such as many-input genera-
lized Toffoli gates in the case of quantum circuits synthesis. Our goal is to syn-
thesize Quantum Automata directly from flowcharts and then to optimize the 
quantum circuits with respect to their performance and cost. The method is 
therefore similar to the “one-hot-encoding” synthesis of classical automata with 
D Flip-flops [10], and it adapts well to the EXOR-based nature of quantum cir-
cuits. 

Classical automata can be synchronous or asynchronous [10]. Synchronous 
automata use a clock and are realized with synchronous flip-flops. Asynchron-
ous automata do not use a global clock and are realized with asynchronous 
flip-flops, latches or feedback loops. Quantum automata are realized with exter-
nal classical flip-flops, internal feedback loops or feedback qubits. Detailed dis-
cussion of memory realization for quantum automata is presented in [9] and will 
not be repeated in this paper. The main motive of the presented method is to di-
rectly synthesize circuits using flowcharts. 

There are many ways in which the combinational logic circuit of the state 
machine under synthesis could be described: (1) SOP: Sum of Products, used in 
most classical digital CAD tools; (2) POS: Product of Sums, similar to SOP thus 
not discussed; (3) DSOP: Disjoint Sum of Products, which has not been used in 
the synthesis of Quantum Automata, to the best of our knowledge; (4) ESOP: 
Exclusive Sum of Products, with little use in classical automata, which is funda-
mental to quantum and reversible circuits and automata; (5) EOSOPS: Exclusive 
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OR Sum of Product Sums, the recent method from [6], which has not been used 
for automata synthesis yet. 

The main purpose of our paper is to present a new method to synthesize Se-
quential Quantum Circuits directly from flowcharts using one hot encoding and 
design the resulting quantum circuits using only NOT, CNOT and CCNOT 
(Toffoli) gates to optimize and reduce the quantum circuits cost. The previous 
methods that used minimum length codes and codes other than “one-hot” lead 
to multi-inputs Toffoli gates which are very expensive in practical realization 
and cause high decoherence. The two main sub-objectives are 1) design directly 
from flowcharts and 2) use “one-hot” encoding. This paper is the first to present 
a method to synthesize Sequential Quantum Circuits directly from flowcharts. 
This paper is organized as follows. Section 2 presents the preprocessing stage. 
Section 3 explains our synthesis method. Section 4 presents examples and data 
and Section 5 concludes the paper and outlines future research. 

2. The Preprocessing Stage 

We use Disjoint Sum of Product (DSOP) [16], Exclusive Sum of Product (ESOP) 
[17] and Exclusive OR Sum of Product Sums (EOSOPS) [6] [18] in our paper, 
because the quantum cost of using DSOP and similar realizations is much 
smaller than that of using SOP or POS realizations. DSOP can be realized with 
NOT, Feynman, Toffoli and Fredkin gates. By using one-hot encoding, the SOP 
realization is the same as the DSOP realization, allowing for the usage of the 
EXOR operation inside the aforementioned gates. In the preprocessing stage, 
local patterns in the flowchart are identified by matching against predefined 
patterns. Figure 1, Figure 2 and Figure 3 show three of the predefined patterns. 
In Figure 1(a), the output Z can be written as Z = AB’ ⊕ A’B. Figure 1(b) sim-
plified output Z from Figure 1(a) to be Z = A ⊕ B. Similarly, the output Z  

 

 
AB’ ⊕ A’B = A ⊕ B 

Z = AB’ ⊕ A’B 

(a) 
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AB’ ⊕ A’B = A ⊕ B 

Z = A ⊕ B 
(b) 

Figure 1. Example 1. The original flowchart and corresponding Boolean equation for 
output Z is shown in (a). The simplified flowchart and corresponding Boolean equation 
for output Z is shown in (b). 
 

 
A’C ⊕ AB’C ⊕ ABC’ = AB ⊕ C 

Z = A’C ⊕ AB’C ⊕ ABC’ 
(a) 

 
A’C ⊕ AB’C ⊕ ABC’ = AB ⊕ C 

Z = AB ⊕ C 
(b) 

Figure 2. Example 2. The original flowchart and corresponding Boolean equation for 
output Z is shown in (a). The simplified flowchart and corresponding Boolean equation 
for output Z is shown in (b). 
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ABCD’ ⊕ ABC’D ⊕ AB’D ⊕ A’D = ABC ⊕ D 

Z = ABCD’ ⊕ ABC’D ⊕ AB’D ⊕ A’D 

(a) 

 
ABCD’ ⊕ ABC’D ⊕ AB’D ⊕ A’D = ABC ⊕ D 

Z = ABC ⊕ D 

(b) 

Figure 3. Example 3. The original flowchart and corresponding 
Boolean equation for output Z is shown in (a). The simplified 
flowchart and corresponding Boolean equation for output Z is 
shown in (b). 
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can be simplified and written as Z = AB ⊕ C in Figure 2(b) from Z = A’C ⊕ 
AB’C ⊕ ABC’ in Figure 2(a). Figure 3(b) shows Z = ABC ⊕ D. Afterwards, 
Figure 4(b), Figure 5(b), and Figure 6(b) show the patterns for A ⊕ B ⊕ C, AB 
⊕ CD, and AB ⊕ C ⊕ D respectively and they were simplified from patterns in 
Figure 4(a), Figure 5(a) and Figure 6(a). These simplified patterns are used to 
minimize the circuit synthesized from flowcharts. 

 

 
AB’C’ ⊕ ABC ⊕ A’B’C ⊕ A’BC’ = A ⊕ B ⊕ C 

Z = AB’C’ ⊕ ABC ⊕ A’B’C ⊕ A’BC’ 

(a) 

 
AB’C’ ⊕ ABC ⊕ A’B’C ⊕ A’BC’ = A ⊕ B ⊕ C 

Z = A ⊕ B ⊕ C 

(b) 

Figure 4. Example 4. The original flowchart and corresponding Boolean 
equation for output Z is shown in (a). The simplified flowchart and corres-
ponding Boolean equation for output Z is shown in (b). 
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ABCD’ ⊕ ABC’D ⊕ AB’CD ⊕ A’CD = AB ⊕ CD 

Z = ABCD’ ⊕ ABC’D ⊕ AB’CD ⊕ A’CD 

(a) 

 

ABCD’ ⊕ ABC’D ⊕ AB’CD ⊕ A’CD = AB ⊕ CD 

Z = AB ⊕ CD 

(b) 

Figure 5. Example 5. The original flowchart and corresponding 
Boolean equation for output Z is shown in (a). The simplified 
flowchart and corresponding Boolean equation for output Z is 
shown in (b). 
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ABCD ⊕ ABC’D’ ⊕ AB’CD’ ⊕ AB’C’D ⊕ A’C’D ⊕ A’CD’ = AB ⊕ C ⊕ D 

Z=ABCD⊕ ABC’D’ ⊕ AB’CD’ ⊕ AB’C’D ⊕ A’C’D ⊕ A’CD’ 

(a) 

 
ABCD ⊕ ABC’D’ ⊕ AB’CD’ ⊕ AB’C’D ⊕ A’C’D ⊕ A’CD’ = AB ⊕ C ⊕ D 

Z = AB ⊕ C ⊕ D 

(b) 

Figure 6. Example 6. The original flowchart and corresponding Boolean equation 
for output Z is shown in (a). The simplified flowchart and corresponding Boolean 
equation for output Z is shown in (b). 

 
In Figures 1-7, we use rectangles for outputs, diamonds for inputs, and the 

internal states are denoted with X symbol on the wire with corresponding inter-
nal state such as Si (where i = 1, 2, 3, etc.). 
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Z A AB ABC ABCD ABCDE= ⊕ ⊕ ⊕ ⊕  

(a) 

 

ABCDEZ =  

(b) 

Figure 7. Example 7. The original flowchart and corresponding Boolean equation for 
output Z is shown in (a). The simplified flowchart and corresponding Boolean equation 
for output Z is shown in (b). 

Exclusive or Sum of Product Sums (EOSOPS) 

Our synthesis method also allows us to utilize EOSOPS circuits. The PSE gates 
(Product Sum EXOR gates) [6] that are used in EOSOPS circuits further reduce 
quantum cost. PSE gates can especially reduce quantum cost in cases where 
there are many paths that have the OR function. One weakness of the flowchart 
is that when there are many OR paths, the synthesis results in many equations. 
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EOSOPS allows us to utilize De Morgan’s Law [10] to avoid these many equa-
tions and directly represent the function. EOSOPS will be used in our method in 
all cases with multiple OR paths in the original equation. Figure 7 presents a 
flowchart along with the associated Boolean equation that can be attained from 
it, and the reduced Boolean equation. Figure 7(a) shows the initial flowchart 
and the corresponding Boolean equation for output Z. Figure 7(b) is the opti-
mized flowchart and the reduced Boolean equation for output Z. 

We first start by deriving the equation from the flowchart of Figure 7(a): 

Z A AB ABC ABCD ABCDE= ⊕ ⊕ ⊕ ⊕  

which results in a quantum cost of 381. However, when we apply De Morgan’s 
Law to the equation, we reduce it to the following equation: 

ABCDEZ =  

with quantum cost of 52. The quantum cost is the cost to implement the quantum 
circuit, which is explained in detail in Section 4 using Maslov cost table [19]. 

3. Our Synthesis Method 

The method presented uses the Quantum State Machine with External Memory 
model [9], as described below. 

1) Create a standard flowchart, if necessary, modify its paths to the optimal 
forms as presented in examples from Section 2. 

2) Start traversing the flowchart from “START” and follow each path to every 
next state and write the Boolean equation for that path. Also, write the equations 
for the outputs. Since each state is encoded using “one-hot encoding”, each 
product of literals is disjoint with other products of literals in the next-state equ-
ations. 

3) Use patterns from the pre-processing stage to reduce the equations, iterate 
this process if necessary. 

4) Realize every product of two literals with standard Toffoli gates. 
5) Realize every product of more than two literals with a chain of standard 

Toffoli gates by adding an ancilla qubit for each additional literal. 
6) Using a standard quantum circuit synthesis method [3] [4] [5] [8] [9] [17], 

draw the quantum circuit using the results from the previous steps. 
7) Mirror the gates on the ancilla qubits and input qubits so they can be 

reused, if necessary. 

3.1. Example 3.1: Quantum State Machine with Classical Memory 

This is a small example which shows the implementations of Quantum State 
Machines with external memory (QSM-CM) [9]. For the equation A = BC, Fig-
ure 8 shows the circuit with classical memory. In this particular example, the 
outputs are the same as the inputs so these quantum outputs are not used. The 
changed state of the classical memory is used as the deterministic output. Ob-
serve here that these machines in general can have both classical (deterministic)  
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Figure 8. An example of a very simple QSM-CM 
with inputs on the left, outputs and excitation 
function of the memory on the right. 

 
and quantum (superposed) outputs in case when the quantum circuit has su-
perposing gates as for instance the Hadamard gates (not discussed here). 

3.2. Example 3.2: Toffoli Reduction 

Another goal of our approach is to use only Toffoli, Feynman and quantum in-
verter (Pauli-X rotation) gates. When we encounter equations derived from the 
flowchart with generalized Toffoli gates, we first decompose them to more pri-
mitive gates using the aforementioned Feynman and Toffoli gates. However, 
such a method results in a higher number of ancilla qubits. For example, in Fig-
ure 9, we show the computation of the product “X = ABCD”. In this case, in-
stead of using 5*5 Toffoli gates, we decomposed the larger generalized Toffoli 
gates by adding three ancilla qubits and performed simple AND operations us-
ing 3*3 Toffoli gates. Figure 9 also illustrates the principle of mirroring which 
returns input variable and ancilla qubit states to their original values. 

4. Examples and Data 

Standard methods used by several authors to realize quantum circuits from 
Boolean functions are based on MMD-like methods [20] [21] [22], ESOP based 
methods [23] [24] [25] [26], or combinations of both. These methods are also 
suggested to realize permutative automata. We give comparison to the paper of 
Hawash et al. [17] as just one of the known methods to realize quantum circuits.  

4.1. Example 4.1 (Shown as Example 1 in Table 1):  
A Representative Example from Section 2 Figure 1(a)  
and Figure 1(b) 

This is an example which creates equations based on the flowchart in Figure 
1(a) and Figure 1(b). Figure 1(a) is the original flowchart without any Boolean 
simplification. Figure 10 shows the quantum circuit using Hawash et al. method 
[17] to implement the flowchart in Figure 1(a). The quantum cost using Ha-
wash et al. method [17] is 72 using Maslov cost table [19]. This circuit has four 
3-control Toffoli gates, two 2-control Toffoli gates, two Feynman gates and eight 
inverters. The following is the quantum cost calculation for this circuit using 
Maslov cost table [19]. 
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Figure 9. This quantum circuit is obtained from 
reducing the 5*5 Toffoli that would be created 
from X = ABCD. 

 

 

Figure 10. Quantum circuit using Hawash et al. method [17] to implement the flowchart 
in Figure 1(a). 

 
Quantum cost per 3-control Toffoli gate: 13 
Quantum cost per 2-control Toffoli gate: 5 
Quantum cost per Feynman gate: 1 
Quantum cost per inverter: 1 
Total Quantum Cost = 13 × 4 + 5 × 2 + 1 × 2 + 1 × 8 = 72 
Figure 1(b) is the simplified flowchart applying Boolean simplification to the 

original flowchart from Figure 1(a). Figure 11 shows the quantum circuit rea-
lizing the flowchart in Figure 1(b) using our new proposed method. 

The quantum cost for the circuit in Figure 11 is 26 using Maslov cost table 
[19]. There are four 2-control Toffoli gates, three Feynman gates and three in-
verters. The following is the quantum cost calculation for this circuit using Mas-
lov cost table [19]. 

Quantum cost per 2-control Toffoli gate: 5. 
Quantum cost per Feynman gate: 1. 
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Figure 11. Complete realization of the quantum automaton for Example 4.1 implementing 
the flowchart in Figure 1(b) using our method. It is composed from a permutative 
quantum circuit, measurement gates and classical D flip-flops. Initialization of qubits is 
not presented. 

 
Quantum cost per inverter: 1. 
Total Quantum Cost = 5 × 4 + 1 × 3 + 1 × 3 = 26. 
In Figure 11, we have quantum inputs START, A and B, deterministic binary 

inputs S1, S2 and S3that come from the classical feedback. There are four ancilla 
qubits initialized to |0〉. There are quantum output states START, A and B that 
are not used in this case. Deterministic binary output states Y and Z are taken 
from output Q of classical D flip-flops. Please observe that output Y is the same 
as the new state S2+. Deterministic output Z uses a special measurement and D 
flip-flop to convert from quantum to classical signal. Measurement gates and D 
flip-flops are used to convert from quantum to classical states. 

Our proposed method reduces quantum cost to 26, as compared to Hawash et 
al. method’s quantum cost of 72. 

This is because in the Hawash et al. method, the conversion from irreversible 
to reversible function increased the width of the circuit by adding ancilla bits 
[17], requiring generalized Toffoli gates with more control lines which results in 
higher quantum cost. Our method does not require reversibility, and hence 
presents a clear advantage in such cases of synthesizing quantum automata. 

In Table 1, we summarized the studied examples. In Table 1, “Example 1 
Hawash et al. Method [17]” corresponds to flowchart in Figure 1(a) and quan-
tum circuit in Figure 10; “Example 1 Our Method” corresponds to flowchart in 
Figure 1(b) and quantum circuit in Figure 11. Examples 2 - 7 in Table 1 cor-
responds to flowcharts in Figures 2-7. In Table 1 Examples 2 - 7 “Our Method” 
column, we documented the quantum circuit cost implementing flowchart in 
Figures 2(b)-7(b) using our method, similar to what we did in Example 4.1 for 
Figure 1(b) in this section. In Table 1 Examples 2 - 7 “Hawash et al. Method 
[17]” column, we documented the quantum circuit cost implementing flowchart 
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in Figures 2(a)-7(a) using Hawash et al. method [17], similar to what we did in 
Example 4.1 for Figure 1(a) in this section. 

4.2. Example 4.2 (Shown as Example 8 in Table 1):  
Create Equations Based on Flowchart, Use Flowchart to  
Synthesize Quantum Automata 

This is an example which creates equations based on a flowchart specification. 
Figure 12 presents a flowchart that can be utilized to synthesize quantum auto-
mata. Figure 13 presents the resultant circuit using our method. 

 

 

Figure 12. Flowchart for Example 4.2. 

 

 
Figure 13. A Quantum circuit using our method implementing the flowchart in Figure 
12. 
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In Figure 12, we use rectangles for outputs, diamonds for inputs, and the in-
ternal states are denoted with X symbol on the wire with corresponding internal 
state such as ai (where i = 0, 1, etc.). 

Below are the equations that are synthesized using our method.  

0 0 0 1a a x x Y Z+ = + +  

1 0 0 1 1 2a a x x a x+ = ⊕  

1 2Y a x=  

( ) ( )0 0 1 0 0 1 0 0 1 0 1 0 1 0Z a x x a x x a x x x x a x x= ⊕ = ⊕ = ⊕  

The quantum circuit in Figure 13 has eight 2-control Toffoli gates, four 
Feynman gates and six inverters. Using Maslov improved quantum cost for n-bit 
Toffoli gates [19], the quantum cost per 2-control Toffoli gate is 5, the quantum 
cost per Feynman gate is 1 and the quantum cost per inverter is 1. Therefore, the 
quantum cost for circuit in Figure 13 is 50. 

We converted the irreversible equations to the format of the method from 
[17]. The quantum cost using the MMD-like method from [17] was 72 using 
Maslov cost table [19], which is higher than our cost. This is because the conver-
sion method from irreversible to reversible function increased the width of the 
circuit by adding ancilla qubits [17], requiring generalized Toffoli gates with 
more control lines which results in higher quantum cost. 

Figure 14 is the quantum circuit based on Hawash et al. method from [17]. 
The circuit in Figure 14 has four 3-control Toffoli gates, two 2-control Toffoli 
gates, two Feynman gates and eight inverters. Using Maslov cost table [19], the 
quantum cost per 3-control Toffoli gate is 13, the quantum cost per 2-control 
Toffoli gate is 5, the quantum cost per Feynman gate is 1 and the quantum cost 
per inverter is 1. Therefore, the quantum cost for circuit in Figure 14 is 72. 

4.3. Example 4.3 (Shown as Example 9 in Table 1):  
A Light-Following Robot Example 

This is a real-world application of our method. We will go through all steps of 
 

 
Figure 14. A Quantum Circuit using Hawash et al. Method [17] implementing the flow-
chart in Figure 12. 
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our method. Figure 15 shows the flowchart diagram of a light-following robot. 
Based on Figure 15, we obtain the following equations:  

W BA1A2=  

X BA1A2=  

Y BA1A2=  

Z BA1 A2=  

B W X Y Z= + + +  

Figure 16 presents the synthesized quantum circuit from the above equations 
using our new method. 

Table 1 presents the quantum cost for the circuits synthesized through the 
proposed method and for those synthesized through the method described in 
[17]. Results from Table 1 shows that in eight out of the nine studied examples, 
quantum circuit cost using our proposed method is significantly less than that us-
ing Hawash et al. method [17]. The percentage of quantum cost reduction ranges 
from 31% to 95%. This shows that for many cases, especially those with high 
numbers of qubits, there are significant advantages of utilizing our proposed me-
thod. The novelty of our proposed method is to synthesize Quantum Automata 
directly from flowcharts using one hot encoding and design the resulting 

 

 
Figure 15. Flowchart Diagram of a Light-following Robot. 

 

 

Figure 16. A quantum circuit using external memory model obtained from the flowchart of Figure 15. 
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Table 1. Quantum Cost for Studied Examples. 

Studied Example Our Method 
Hawash et al.  
Method [17] 

Quantum Circuit 
Cost Change of Our 

Method over Hawash 
et al. Method [17] 

Example 1 26 72 −64% 

Example 2 30 166 −82% 

Example 3 35 358 −90% 

Example 4 28 264 −89% 

Example 5 36 484 −93% 

Example 6 32 642 −95% 

Example 7 54 381 −86% 

Example 8 50 72 −31% 

Example 9 92 62 48% 

 
quantum circuits using only NOT, CNOT and CCNOT (Toffoli) gates, thus op-
timize and reduce the quantum circuits cost. Results in Table 1 justify the no-
velty of our proposed method. 

However, there is one case in Table 1 that shows the method described in [17] 
offers a lower cost. This is related to the trade-off between additional ancilla qu-
bits and lower costs. While quantum costs may decrease by using extra ancilla 
qubits in the proposed method in some cases, in other cases, often simple, the 
increase in ancilla qubits increases the quantum cost. 

5. Conclusions 

We presented a new approach to synthesizing quantum permutative automata 
by using a standard flowchart as the initial specification. The novelty of our 
proposed method is to synthesize Quantum Automata directly from flowcharts 
using one hot encoding and design the resulting quantum circuits using only 
NOT, CNOT and CCNOT (Toffoli) gates, thus optimize and reduce the quan-
tum circuits cost. Results show that in most of our studied cases, our method 
reduces quantum cost significantly by up to 95% as compared to Hawash et al. 
method [17], this justifies the novelty of our proposed method. 

Our approach is restricted only to the “Quantum State Machine with External 
Memory model” from [4]. In our future work, we will extend this method to 
other models of quantum automata and specifically to automata with paral-
lelism, superposition and entanglement. We will also emphasize more on prac-
tical applications of such automata in the area of robotics. 

Our method deals with interesting relationship between one-hot encoding, 
superposition and entanglement [27] [28]. In our previous work, we presented 
applications of superposition and entanglement for description of a single mo-
bile robot, for instance, Braitenberg vehicle [29] [30] and humanoid dancing and 
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walking robots [31]. In our forthcoming work, we will present groups of mobile 
robots that communicate using one-hot codes, superposition and entanglement 
and are controlled by generalization of quantum automata presented in this pa-
per. 

The described method was verified on several example flowcharts which were 
created as simplified benchmarks based on practical examples. In future work, 
our method should be compared to previous synthesis methods for quantum 
automata [4] [5] [9] [12] in terms of quantum cost, LNNM quantum cost, pow-
er, speed, testability and decoherence. The method is destined for use in the 
synthesis of controllers of quantum robots [29] and we plan to compare the in-
fluence of decoherence on the same controller with different design styles. In 
addition, a model of parallel permutative machines can be created in which the 
machine is in several states at one time. This would be a counterpart of the Pa-
rallel Program Graphs (PPG) [32]. We plan to develop a direct synthesis method 
for PPGs. Other possible work includes transforming Petri Nets to quantum au-
tomata. All these methods will include circuit post-processing minimization 
based on MMDs, ESOPs, EOSOPs, and other quantum circuit minimization 
methods. We also developed a set of benchmarks that can be used by future au-
thors to compare the costs of various realizations of quantum automata. It is be-
lieved that future “quantum hardware compilers” will synthesize quantum sys-
tems directly from high level specifications like flowcharts and data flow graphs. 
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