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Abstract 
Quantum computing is a field with increasing relevance as quantum hard-
ware improves and more applications of quantum computing are discovered. 
In this paper, we demonstrate the feasibility of modeling Ising Model Hamil-
tonians on the IBM quantum computer. We developed quantum circuits to 
simulate these systems more efficiently for both closed and open boundary 
Ising models, with and without perturbations. We tested these various geome-
tries of systems in both 1-D and 2-D space to mimic two real systems: magnetic 
materials and biological neural networks (BNNs). Our quantum model is more 
efficient than classical computers, which can struggle to simulate large, com-
plex systems of particles. 
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1. Introduction 

Over the last decade, the field of quantum computing has seen exponential growth. 
In 2022 alone, 2.35 billion dollars of public and private investment has been 
specifically dedicated to quantum technology [1]. Quantum computing has gained 
traction due to its unique ability to evaluate certain computations exponentially 
faster than the most advanced classical supercomputers [2]. 

Many benefits of quantum computing derive from its ability to “brute force” 
problems efficiently. Classical computers store information by stringing together 
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bits of zero or one to represent data. In contrast, quantum bits, or qubits, store a 
multitude of possible states as a single unit. 

In essence, a qubit stores the probability of outputting 0 or 1 when measured. 
This probabilistic state, or superposition, allows quantum computing to store 
more data, and therefore, calculations with quantum computing are orders of 
magnitude faster compared to classical computing [3]. 

Quantum computing has been theoretically applied to several fields, such as 
cryptography. For instance, Shor’s algorithm has the potential to break existing 
encryption algorithms like the Rivest-Shamir-Adleman (RSA) [4]. However, 
traditional classical computing struggles to decrypt the algorithm because 
doing so requires factoring large integers, a task exponential with time. On the 
other hand, a quantum approach known as Shor’s algorithm factors integers 
with time complexity of ( ) ( )( ) ( )( )( )( )3log log log log log logO N N N∗ ∗ , one 
that is exponentially faster than the classical counterpart of ( )O N  [5]. As 
quantum computers mature and become more reliable, quantum algorithms will 
in turn become more applicable and significantly change the way information is 
processed [3]. 

In this paper, we paired quantum computing with the Ising Model. The Ising 
Model, developed by Ernest Ising, was originally theorized to study phase transi-
tions of different ferromagnetic materials [6]. Over time, the influence of the Is-
ing Model grew. Currently, there exist applications of the Ising Model in tandem 
with quantum computing. One particular application incorporates the adiabatic 
theorm, which uses a specific Ising Model with the Variational Quantum Eigen-
solver (VQE) to solve combinatorial problems such as the social worker’s prob-
lem [7]. Another uses the Ising Model with spin S = 1, the equilibrium model, to 
simulate tax evasion [8]. These models show the great potential for the intersec-
tion of quantum computing and the Ising Model. Our research in this paper 
emphasizes this idea. 

The building blocks of the Ising Model are two-level binary quantum par-
ticles, such as electrons with spin 1/2. Groups of these electrons in a particular 
configuration forms what is known as the Ising Model where the spins of neigh-
boring (adjacent) electrons affect each other’s spins in a certain manner [9]. The 
general structure of an Ising Model can be defined in different dimensions. In 
this paper, we analyze applications of both the 1-D and 2-D Ising Model. The 
1-D Ising Model simply represents chains of electrons in a linear space. Indeed, 
the 1-D Ising Model may differ depending on the specific application. The pri-
mary distinction between subsets of the 1-D Ising Model is whether or not the 
first and last electrons interact. If they do interact, the particular Ising Model is 
closed, and if they do not interact, the particular Ising Model is open. The 1-D 
Ising Model is assumed in the magnetic materials application to emphasize the 
idea that even a less complex model can accurately simulate real systems. On the 
other hand, the 2-D Ising Model represents electrons in a plane-like configura-
tion [10]. In this paper, we applied a 2-D tree-like Ising Model to simulate a bio-
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logical neural network. 
Upon reading the abstract and this far in the introduction, a question that 

may naturally occur is how the Ising Model relates to magnetic materials or 
BNNs, the two applications of the Ising Model explored in this paper. 

The answer to this question boils down to what an electron and its respective 
spin represent in the realm of quantum computing. The Ising Model can be 
mathematically represented by the Hamiltonian, which quantifies the total 
energy of a given system [11]. In quantum computing, the Hamiltonian can be 
represented by a quantum circuit composed of a series of qubits acted on by 
operators. Every electron in the Ising Model can be seen as a qubit in a quantum 
circuit because qubits and electrons are both inherently binary constructs [12]. In 
quantum circuits, interactions between adjacent electrons are therefore represented 
by quantum gates that alters a qubit’s direction of spin. Running a correctly 
constructed quantum circuit produces data revealing the probabilities of each qubit 
or electron having an upward or downward spin [13]. This paper illustrates that 
this probabilistic data alone is enough to analyze an Ising Model that maps to a real 
life system. 

In this paper the idea is straightforward. We demonstrate the applicability of 
the Ising Model when paired with quantum computing. We do this by simulat-
ing both magnetic materials and biological neural networks, two important 
real-world systems. We demonstrate that the Ising Model is capable of classify-
ing magnetic materials as ferromagnetic or paramagnetic based on the probabil-
istic qubit spin distributions from the corresponding quantum circuit. Results 
from the magnetic material quantum circuit ultimately show all possible electron 
spin configurations, including when all electrons are spin-up or spin-down. If 
the probability of all electrons being aligned is highest, the material is ferromag-
netic, and if the probability of all electrons being misaligned is highest, then the 
material is paramagnetic. Ferromagnetic materials exhibit the strongest attrac-
tion towards magnets (or external magnetic fields), whereas paramagnetic mate-
rials exhibit the weakest attraction towards magnets [14]. We also show that the 
Ising Model, when applied to quantum computing, is able to model biological 
neural networks (BNNs) because neurons are either active or inactive, a binary 
state shared with qubits. Our model can potentially reduce neurosurgery risk 
because we can mathematically calculate the relative importance of each neuron. 
From this information, experts will be able to weigh options and therefore make 
better judgments prior to neurosurgery. 

Overall, the motivation for the research presented in this paper was to take 
existing mathematical frameworks and combine them with the advantages of 
quantum computing to solve real-world problems. We hope that by doing so, we 
can advance the practicality of quantum computing and provide a solid founda-
tion for future research. 

In the next section, we delve deeper into the Ising Model and, congenially, the 
methodology behind simulating magnetic materials and neural networks. Fol-
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lowing the methodology, we will analyze the results produced by the quantum 
circuits in both applications. Finally, we will conclude with a discussion of our 
results and their significance. 

2. Methodology 

Simulating any particular real system using a unique Ising Model requires fol-
lowing a series of steps shown below. 

1) Alter the “base” Ising Model as needed to match the properties of the cho-
sen physical system. This so-called “base” Ising Model will be defined thorough-
ly in Section 2.1. 

2) Mathematically describe the chosen system’s Ising Model with a Hamilto-
nian H. 

3) Represent the Ising Model on a quantum circuit (we used IBM) [13]. 
4) Run the quantum circuit and use the probabilistic results to analyze the 

chosen physical system. 

2.1. Base Ising Model 

The aforementioned “base” Ising Model is a 1-D open model and is its energy, H, 
is commonly denoted by the following mathematical expression 

1

1
1 12

N N

i i j
i j

JH hσ σ σ
−

+
= =

−
= +∑ ∑                     (1) 

where N is the number of particles, iσ  is the spin (between −1 and 1) of the 
particle with positional index i, and J and h are the interaction coefficient of the 
particle and the magnitude of any existing perturbations, respectively [15]. The 
left summation describes the interactions between electrons, and the right 
summation factors in any perturbations or external magnetic fields acting on the 
system. 

Since quantum systems are time-dependent, we must time-evolve H. Instead 
of a scalar value σ  representing a particle’s spin, we now use the Z basis, where  

1 0
0 1

Z  
=  − 

 since spin can have any value between −1 and 1 [16]. Additionally, 

we represent perturbations as the X basis, where 
0 1
1 0

X  
=  
 

 [16]. We could  

choose a different matrix to represent perturbations so long as it differs from the 
Z basis. After making these changes, our mathematical model is now equivalent 
to Equation (2): 

1

1
1 1

ˆ
2

N N

i i j
i j

JH Z Z h X
−

+
= =

−
= +∑ ∑                     (2) 

However, in order to adequately implement an Ising Model on a quantum 
circuit, we must break down the Hamiltonian Ĥ  to predefined rotation oper-
ators on a quantum circuit. Let the following be true: 

1

1
1 1

ˆˆ ˆ.
2

N N

i i j
i j

JH Z Z h X A B
−

+
= =

−
= + = +∑ ∑                  (3) 
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The terms Â  and B̂  are intelligible by a quantum circuit because the 
expressions can be simplified to ( )ZZR θ  gates (composed of CNOT, ( )ZR θ , 
and CNOT logical operators) for interactions between neighboring particles and 

( )XR θ  gates for perturbations [13] [17]. For clarification, an ( )ZZR θ  gate 
performs a rotation about the z-axis across 2 qubits whereas an ( )XR θ  gate 
performs a rotation about the x-axis across 1 qubit. 

We then time-evolve the Hamiltonian by implementing the following 
expression: ( ) ( )ˆe 0iHttψ ψ−=  . 

Recall that 1
11 1

ˆˆ ˆ
2

N N
i i ji j

JH Z Z h X A B−
+= =

−
= + = +∑ ∑ . Since 1i iZ Z +  does not  

commute with jX , in other words, 1, 0i i jZ Z X+  ≠  : 
ˆˆ ˆe e eiHt iAt iBt− − −≠                            (4) 

Therefore, we cannot directly represent Ĥ  on a quantum circuit, so we must 
apply Trotter Decomposition [17] [18]. We decompose ˆe iHt−  to a particular 
combination of ˆe iAt−  and ˆe iBt−  with minimal error [17] [18]. This particular 
version of Trotter Decomposition is known as the Suzuki-Trotter approximation, 
a direct improvement from the traditional Lie-Trotter approximation. The 
Suzuki-Trotter decomposition is a corollary from the Baker-Campbell-Hausdorff 
Zassenhaus formula, which states the following [19]: 

( ) [ ] [ ]( [ ]
32

2 , , , ,,
62e e e e e
tt Y X Y X X YX Yt X Y tX tY    +−    + =

                  (5) 

Hence, for ˆˆ ˆH A B= + , Suzuki-Trotter decomposition states the following: 

( )ˆ ˆˆ ˆ2 2 3e e e eiHt iA t iBt iA t O t− − − −= +                      (6) 

The error ( )3O t  is negligible for our purposes. Shown below is the final 
mathematical expression for the open 1-D Ising Model Hamiltonian 

ˆ ˆˆ ˆ2 2H A B A= + +                           (7) 

in that specific order. We used this expression as the base model for our 
quantum circuits in both the magnetic material and neural network applications. 

2.2. Magnetic Material Model 

For the magnetic materials application, we simulate the effect of perturbations 
on a chain of electrons. Recall Equation (2). To do this, we alter the values of J, 
the interaction coefficient between electrons, and h, the perturbations coefficient. 
We want to determine if the values of J and h have implications on the 
alignment probabilities of electrons in a given system, which influences whether 
the system is ferromagnetic or paramagnetic. We also model a chain of electrons 
that wraps around in a circle, known as a closed model. The closed model is 
more realistic because it closely represents a real system, but its glaring drawback 
is the increased complexity compared to the open model. Overall, in this paper, 
we show the feasibility of accurately modeling ferromagnetic and paramagnetic 
systems using the open 1-D Ising Model. See Figure 1 for an image showing the 
differences between an open and closed Ising Model. 
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Figure 1. Open (a) and closed (b) 1-D Ising Model. The open model is 
merely a linear chain as the first and last electron do not interact, while the 
closed model is a loop where the first and last electron do interact [20]. 

 
Mathematically, for a linear chain of electrons, the Hamiltonian remains the 

same as that of the base Ising Model (refer to Figure 1(a)). 
1

1
1 1

ˆ
2

N N

i i j
i j

JH Z Z h X
−

+
= =

−
= +∑ ∑                        (8) 

For the closed model, since the first and last electrons interact (refer to Figure 
1(b)) 

1

1 1
1 1

ˆ
2

N N

i i N j
i j

JH Z Z Z Z h X
−

+
= =

−
= + +∑ ∑                    (9) 

The additional term, 1NZ Z , quantifies the spin interaction between the Nth 
electron, the last in the chain, and the 1st electron at the beginning of the chain. 

2.3. Biological Neural Network Model 

In addition to magnetic materials, we applied the Ising Model to more complex 
geometries such as biological neural networks. We modified the coefficient of 
interaction J and coefficient of perturbation h to develop a high-level simulation 
of a human BNN. In this geometry, we included a main branch and 4 different 
auxiliary branches which stems from the main branch. 

In order to differentiate the main branch from the auxiliary branches, we 
increased J on the main branch. In this paper, we evaluate how changing the 
ratio of Jmain and Jaux impacted the information retention of the system, which is 
quantified by entropy. We also showed how removing or damaging certain 
neurons affect the overall entropy of the neural network, which provides useful 
information regarding the relative importance of each neuron and therefore 
which to avoid during neurosurgery. See Figure 2 for an image showing a 
particular neural network with four neurons per branch. Note the Main Branch, 
Central Qubit of Contact, Central Nervous System, Peripheral Nervous System, 
and Auxiliary Branches. 

Since the BNN is a 2-D tree-like structure, the Hamiltonian of the entire 
system is the summation of the Hamiltonian for each branch. 
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Figure 2. Biological neural network model showing the Main Branch, 
Central Qubit of Contact (Neuron 3), Central Nervous System, the 
Peripheral Nervous System, and the Auxiliary Branches (A, B, C, D). 
Each colored node represents a qubit that maps to a neuron in the 
biological neural network (BNN). Each neuron is also numbered, with 
indices increasing from top to bottom, left to right. 

 

1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆA B C D

main n n n n A B C DH H Z Z Z Z Z Z Z Z H H H H= + + + + + + + +      (10) 

where n is the last neuron in the Main Branch. The Hamiltonian for each branch, 
denoted by ˆ

mainH , ˆ
AH , ˆ

BH , ˆ
CH , and ˆ

DH , are evaluated using the base Is-
ing Model discussed in Section 2.1. Note that because we do not consider per-
turbations for the biological neural network model, the X basis summation in 
the base Ising Model equates to 0. The Suzuki-Trotter decomposition is there-
fore not necessary for our purposes. Hence, ˆ

mainH , ˆ
AH , ˆ

BH , ˆ
CH , and ˆ

DH  
simply represent series of the following:  

1

1
1

ˆ
2

N

i i
i

JH Z Z
−

+
=

−
= ∑                      (11) 

where N is the length of said branch. 

3. Main Results 
3.1. Quantum Circuit Generation 

In order to create a quantum circuit that maps to an Ising Model, we develop 
an algorithm so that variations e.g. the number of neurons in the biological 
neural network application are automatically or can be easily accounted for with 
minimal changes. 

Recall that the number of qubits in the quantum circuit is equivalent to the 
number of particles in the system. After each qubit is initialized and prepared for 
rotation, we begin processing the algorithm. 

The algorithm depends on the specific application. Since the Ising Model is 
1-D for the magnetic materials application, we use a basic for-loop to generate 
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the quantum circuit. However, the BNN application is far more complex due to 
its 2-D tree-like structure. The algorithm for biological neural network involves 
first generating the branches for the tree, which is easily done with for-loops 
with boundaries based on the length of each branch (or the number of neurons 
or particles on that branch). If the length of the main branch differs, we simply 
modify the algorithm to append the main branch separately. While generating 
the tree, each neuron is simultaneously numbered as ( )ZZR θ  gates are inputted 
in their respective locations to the quantum circuit. See the pattern for the 
enumerated neurons in Figure 2. To join each branch of the tree, we use the 
Breadth First Search (BFS) algorithm that connects the child of the main branch 
to the parent of each auxiliary branch [21]. At the same time, ( )ZZR θ  gates are 
inputted into the quantum circuit. 

See Figure 3 for a visual diagram describing the quantum circuit generation 
process as a whole. 

3.2. Quantum Circuits 

Figure 4 shows a diagram of a typical magnetic material system with 2 electrons. 
Each purple circle represents an electron, and the blue arrow represents internal 
interactions between those electrons that affects their spins. Figure 5 shows the 
system’s corresponding quantum circuit. 

In Figure 5, the light red squares with “H” represent the Hamiltonian opera-
tors that initialize each qubit, the red vertical lines represent the ( )ZZR θ  oper-
ators, the dark red squares with “RX” represents the ( )XR θ  operators, and the 
two gray squares measures the spin probabilistic results. Recall that ( )ZZR θ  
operators quantify interactions between electrons and ( )XR θ  operators quantify 

 

 

Figure 3. Quantum circuit generation algorithm using IBM Quamtum. The International 
Business Machines (IBM) Quantum Computer is first initialized, then the Breadth First 
Search (BFS) tree algorithm is used to insert the circuit operators. Finally, after running 
the circuit, the quantum circuit outputs probabilistic results describing all possible qubit 
states. 
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Figure 4. Hypothetical magnetic material model with 2 electrons. The 
blue arrow demonstrates the spin interaction between these two 
adjacent electrons, and each electron is indexed from 1 to N, where N 
is the total number of electrons in the magnetic material model. 

 

 

Figure 5. Hypothetical quantum circuit for a magnetic material model 
with 2 electrons. Note the Hamiltonian, the ( )ZZR θ  operators, the 

( )XR θ  operators, and the final measurements. 

 
any perturbations or external magnetic field acting on the system. Also recall 
that in Section 2.1 Equation (5), after applying Trotter Decomposition,  

ˆ ˆˆ ˆ2 2H A B A= + + . That is why there are two ( )ZZR θ  operators with phase 
angles half of that of the ( )XR θ  gates. 

In this application, the results of the quantum circuit are the probabilities of 
measuring each electron spin configuration and therefore the probability of each 
electron being spin up or down. An example of an electron configuration is 01, 
where 0 means the left electron was measured spin-up and 1 means the right 
electron was measured spin-down. 

The expression under the ( )ZZR θ  operator is its phase angle RZZθ  where  
2

RZZ J
θ =

π . The value of J in this particular circuit is 2. Similarly, the expression 

under the ( )XR θ  operator is also its phase angle, where 2
RX h

θ =
π . The value  

of h in this particular configuration is 1. 
Figure 6 shows a diagram of a biological neural network with 2 neurons per 

branch. The Main Branch is black and the two Auxiliary Branches are red and 
blue. Each neuron is indexed from 0 to N where N is the number of neurons in 
the neural network. Figure 7 shows the system’s corresponding quantum circuit. 

In Figure 7, the light blue squares represent the initialized Hamiltonian oper-
ators, the purple vertical lines represent the ( )ZZR θ  operators, and each black 
square measures the spin probabilistic results. 

In this application, the results of the quantum circuit are the probabilities of 
measuring each neuron configuration and therefore the probabilities of each 
neuron being active or inactive. If a neuron is active, that means it is able to send 
and receive signals through neurotransmitters. If a neuron is inactive, that means 
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Figure 6. Hypothetical biological neural network 
with length 2 for simplicity. Refer back to Figure 2 
for the length 4 model analyzed in this paper. 

 

 

Figure 7. Hypothetical biological neural network quantum circuit with 6 neurons. Note 
q1, the Central Qubit of Interaction with the most number of connections with other 
qubits. 
 
it lacks the ability to send or receive signals. An active neuron is represented by a 
spin-up qubit denoted by 0, and an inactive neuron is represented by a 
spin-down qubit denoted by 1. An example of a neuron configuration (quantum 
state) is 010011, which shows the neurons that are measured as active or inactive 
and the neuron index increases from left to right. 

Furthermore, notice that the qubit in Figure 7 denoted q1 has the most num-
ber of connections or ( )ZZR θ  interactions with other qubits. This means that 
this qubit is the Central Qubit of Interaction and the child of the Main Branch. 
The Central Qubit of Interaction is labeled in Figure 6. 

Note that for this paper, we use the BNN depicted in Figure 2. The BNN 
shown in Figure 6 is merely for example purposes. 

3.3. Magnetic Material System Results 

In order to classify a magnetic material as ferromagnetic (same spin direction in 
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the presence of external magnetic field) or paramagnetic (equal number of 
spin-up and spin-down electrons in the presence of external magnetic field), we 
need to utilize the values of J and h as metrics. Recall that J represents the 
coefficient of interaction between particles, and h represents the coefficient of 
perturbation from external magnetic fields. We determine the relationship 
between J and h by inputting different values of J and h (phase angles) in a 
particular system’s quantum circuit before running it. We analyze data from a 
total of 10,000 shots per run. 

Figure 8 measures the probability of alignment, or the probability that every 
electron is spin-up or spin-down, for a hypothetical magnetic material with 4 
electrons. When the electrons are all aligned, the material is ferromagnetic and 
therefore produces the strongest electric field towards the source of the magnetic 
field [14]. We notice a pattern when J and h have the same sign, for instance, if 
the value of J is positive and the value of h is also positive, the probability of 
alignment is greatest. On the other hand, when J and h have the opposite sign, 
the probability of alignment is the lowest, and therefore the particular material 
would produce the weakest electric field [14]. 

We confirm this proposed phenomenon by analyzing bar charts that depict 
the number of shots for each possible spin state when J and h have the same sign 
or opposite sign. We ensure that the magnitudes of J and h are the same to reduce 
variability from extraneous factors. 

Figure 9 shows that, when J and h are both positive, the spin configurations 
(quantum states) 0000 and 1111 have the highest number of shots out of 10,000. 
Likewise, when they were both negative, a similar pattern emerged. Hence, the 
probability of the electrons being aligned and therefore the material being 
ferromagnetic are likely higher when J and h share the same sign. 

Figure 10 shows that, when the signs of J and h were different, in this case 
when J is negative and h is positive, the spin configurations 0101 and 1010 have 
the highest number of shots out of 10,000. Likewise, when J is positive and h is  

 

 

Figure 8. Coefficients J and h on the electron alignment probability. Note 
that when the J and h (in the graph denoted K) coefficients have the same 
sign, the probability of alignment is greatest. 
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Figure 9. Ferromagnetic electron spin distribution from a sample of 10,000 
shots. Note that the electron configurations of 0000 and 1111 have the highest 
probabilities, therefore, the electrons are most likely to be aligned. 

 

 

Figure 10. Paramagnetic electron spin distribution from a sample of 10,000 
shots. Note that the electron configurations of 0101 and 1010 have the highest 
probabilities, therefore, the electrons are most likely to be misaligned. 

 
negative, 0101 and 1010 still had the highest number of shots. Therefore, the 
probability of the magnetic material being paramagnetic is likely higher when J 
and h have opposite signs. 

3.4. Neural Network System Results 

The brain is composed of approximately 10 billion neurons [22]. Each neuron 
can be seen as a single processing unit that receives and sends electrochemical 
signals from one neuron to another in a chain-like process. These electrochemi-
cal signals represent the “information” that constantly transfers across all the 
neurons in a body known as the biological neural network [22]. 
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One reason why neurons are important is that they allow for motor functions 
[23]. For example, when neurotransmitters send signals from the brain to the 
peripheral nervous system (other areas of the body), that area is given a com-
mand to move. However, if neurons in that path are damaged, the electrochem-
ical signals never travel down to the area, which can lead to paralysis. In other 
cases, damage to neurons may cause phenomena such as the loss of feeling and 
sensations. Without properly functioning neurons, daily tasks such as eating, 
thinking, and walking are impossible [23]. 

Neurosurgery is commonly performed on patients who exhibit issues with ex-
isting neurons. However, surgeons are not immune to making mistakes, around 
4000 surgical errors or “never events” occur in the United States annually [24]. 

Consequently, prior to neurosurgery, it is essential for experts to know which 
neurons are more valuable to the overall neural network to avoid damaging it. 
This section introduces a method to achieve that information with quantum 
computing and the Ising Model. 

The value or importance of a neuron can be quantified by the neural net-
work’s information retention if that neuron is damaged or outright removed. In 
a BNN, we think of information retention as the amount of information re-
maining when an electrical signal passed in the first neuron reaches the dendrite 
of the final neuron [22]. When neurons are damaged, for instance during neu-
rosurgery, neurotransmitters fail to pass from the synapse of one neuron to the 
dendrite of the neighboring neuron [22]. Therefore, the total information re-
tained is reduced. 

Total system information retention is quantified by entropy, which is the level 
of disorder in a system and therefore the information stored. Entropy can be 
found by evaluating the following expression: 

( ) ( )logS traceρ ρ ρ= −                        (12) 

where ρ  is a density matrix depicting the probabilities corresponding to each 
of the 2N possible qubit spin configurations. There are 2N possible spin configu-
rations (or quantum states) because there are N qubits, and each qubit can be 
measured as spin-up (0) or spin-down (1). Hence, 2 N possible permutations 
[25]. 

Figure 11 shows the effect of removing an arbitrary number of neurons from 
a hypothetical neural network with 4 neurons. We see an exponential decline in 
total system information retention as more neurons are removed. Refer back to 
Figure 2 for a detailed image of the biological neural network model we use. 

To gauge the relative importance of each neuron in a biological neural net-
work, we compare the fractions of initial entropy retained when the neurons are 
removed. Figure 12 plots the percent information retained after each neuron is 
removed based on the model shown in Figure 2. The largest decrease in entropy 
occurs after removing Neuron 3, therefore, Neuron 3 is the most important to 
the neural network. This makes sense because Neuron 3 maps to the Central 
Qubit of Interaction. If this was a real system, experts should be aware that  
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Figure 11. Number of neurons removed on system information. Note the 
exponential decrease in system information (entropy) as more neurons 
are removed. 

 

 

Figure 12. Specific neuron removed on system information. Note that removing Neuron 
3, the Central Qubit of Interaction, correctly decreases the system information (entropy) 
the most. 
 

Neuron 3 is the most important and should avoid surgery around it. 
Different neural networks may vary in terms of how information is trans-

ferred from neuron to neuron, branch to branch. One possible difference be-
tween neural networks is the ratio of the length of the main branch versus the 
length of each auxiliary branch. Figure 13 shows the effects of changing this ra-
tio on the entropy of the neural network. As the ratio increases, so does the en-
tropy, albeit minimally. Occasionally, the entropy decreases, for example, when 
the ratio is 3.5 or 4.5. We aren’t sure why entropy decreases at those values, but 
we are looking into possible causes. This is potentially an area for future work 
and analysis. 
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Figure 13. Length of Main Branch vs Auxiliary Branches on system 
information (entropy). Note the unexpected decrease in entropy at ratios 
of 3.5 and 4.5. 

4. Conclusions & Discussion 

By demonstrating our model’s ability to simulate 1-D and 2-D systems, we con-
clude that quantum computing can be paired with the Ising Model to better 
model physical systems. First, we demonstrated the ability of quantum compu-
ting to classify a given material as ferromagnetic or paramagnetic based on its 
1-D Ising Model configuration. We provided instances of results that accurately 
matched the electron alignment of ferromagnetic materials and the opposing 
alignment of paramagnetic materials. 

While previous studies modeled magnetic materials using quantum circuits, 
our study expanded on previous literature by showing that the sample mathe-
matical relationship can also be extrapolated to biological neural networks 
(BNNs). We computed the relative importance of each neuron in a BNN with 
length 4, accurately concluding that removing the Central Qubit of Interaction 
reduced the system entropy the most and was therefore the most important to 
the overall BNN. We also explored the relationship between the number of neu-
rons removed and the ratio of the length of the Main Branch vs the Auxiliary 
Branches to the total system information of the BNN. 

We expanded on previous literature by showing that our mathematical 
framework is effective at simulating basic theoretical node-based neural net-
works. Simulating a real-world neural network would require more complex 
connections and more powerful quantum computers with more qubits. Given 
powerful quantum computers and parameterized environmental factors, future 
work will be able to improve the effectiveness of neurosurgery since this ap-
proach will allow experts to simulate the effects of surgery prior to performing it. 
All in all, not only may our findings help experts in the field of neurosurgery, the 
feasibility of modeling complex 2-D tree-like BNNs demonstrates great potential 
regarding the intersection of the Ising Model and quantum computing. 
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