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Abstract 
This work concentrates on simultaneous move non-cooperating quantum 
games. Part of it is evidently not new, but it is included for the sake self con-
sistence, as it is devoted to introduction of the mathematical and physical 
grounds of the pertinent topics, and the way in which a simple classical game 
is modified to become a quantum game (a procedure referred to as a quanti-
zation of a classical game). The connection between game theory and infor-
mation science is briefly stressed, and the role of quantum entanglement (that 
plays a central role in the theory of quantum games), is exposed. Armed with 
these tools, we investigate some basic concepts like the existence (or absence) 
of a pure strategy and mixed strategy Nash equilibrium and its relation with 
the degree of entanglement. The main results of this work are as follows: 1) 
Construction of a numerical algorithm based on the method of best response 
functions, designed to search for pure strategy Nash equilibrium in quantum 
games. The formalism is based on the discretization of a continuous varia-
ble into a mesh of points, and can be applied to quantum games that are 
built upon two-players two-strategies classical games, based on the method 
of best response functions. 2) Application of this algorithm to study the 
question of how the existence of pure strategy Nash equilibrium is related 
to the degree of entanglement (specified by a continuous parameter γ ). It 
is shown that when the classical game GC has a pure strategy Nash equili-
brium that is not Pareto efficient, then the quantum game GQ with maximal 
entanglement ( 2γ = π ) has no pure strategy Nash equilibrium. By studying 
a non-symmetric prisoner dilemma game, it is found that there is a critical 
value 0 2γ< < πc  such that for γ γ< c  there is a pure strategy Nash equi-
librium and for γ γ≥ c  there is no pure strategy Nash equilibrium. The be-
havior of the two payoffs as function of γ  starts at that of the classical ones 
at (D, D) and approaches the cooperative classical ones at (C, C) (C = confess, 
D = don’t confess). 3) We then study Bayesian quantum games and show that 
under certain conditions, there  is a pure strategy Nash equilibrium in such 
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games even when entanglement is maximal. 4) We define the basic ingre-
dients of a quantum game based on a two-player three strategies classical 
game. This requires the introduction of trits (instead of bits) and quantum 
trits (instead of quantum bits). It is proved that in this quantum game, there 
is no classical commensurability in the sense that the classical strategies are 
not obtained as a special case of the quantum strategies. 
 

Keywords 
Two-Players Two Strategies Quantum Game and SU(2) Strategies, Relevance 
of Entanglement and Bell States, Nash Equilibrium and Its Relation to  
Entanglement in Pure and Mixed Strategy Quantum Games,  
Nash Equilibrium and Partial Entanglement, Nash Equilibrium Despite 
Maximal Entanglement, Two Players Three Strategies Quantum Games:  
Qutrits and SU(3) Strategies 

 

1. Introduction 

The subject matter in the present work is focused on the topic of quantum 
games, (especially, quantum games based on simultaneous non-cooperative 
games with two players and two or three strategies for each player), that is an 
emergent sub-discipline of physics and mathematics. The main effort is directed 
on the elucidation of Nash equilibrium in quantum games with full information 
and in games with incomplete information (Bayesian games). 

The science of quantum games has been developed rapidly in recent years, 
together with other similar fields, in particular quantum information to which it 
is intimately related. As already stressed, the first few sections are not new but 
included for the sake of self consistence and proper notations. 

Quantum game theory models the behavior of strategic agents (players) with 
access to quantum tools for controlling their strategies. The simplest example is 
to envision a classical (ordinary) two-player two-strategies game GC (e.g the 
prisoner dilemma with two strategies C = confess and D = don’t confess) given 
in its normal form (a table of payoff functions). In this game, each player com-
municates with the referee within a “classical” protocol by telling the referee if 
he confesses or does not confess. One can then quantize GC to get a quantum 
game GQ in which the players communicate with the referee via a specific quan-
tum protocol. The novel elements in this scheme consist of three concepts. First, 
instead of the four possible positions (CC), (CD), (DC) and (DD), there are an 
infinitely continuous number of positions represented as different quantum 
mechanical states (wave functions). Second, instead of the two-point strategy 
space of each player, there is an infinitely continuous number of new strategies 
(this should not be confused with mixed strategies). Third, the payoff system is 
entirely different, as it is based on extracting real numbers from a quantum state 
that is generically a vector of complex numbers. The fourth difference is the oc-
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currence of quantum entanglement, a conceptually and crucially important new 
factor that has no analog in standard (classical) game theory. Its significance in 
quantum game theory requires a non-trivial modification of one’s mind and at-
titude toward quantum game theory and choice of strategies. Quantum entan-
glement is not always easy to define and estimate, but in this work where the 
classical game GC is simple enough, (and so is the quantized game GQ), it can 
(and will) be explicitly defined. An important parameter in this case is the degree 
of entanglement that is determined by a certain continuous real parameter 
0 2γ≤ ≤ π  (actually an angle) such that for 0γ =  there is no entanglement, 
while for 2γ = π  entanglement is maximal. 

Understanding the topics covered in this work (that is based on the author's 
M.A Thesis in economics) requires a modest knowledge of mathematics and the 
basic ingredients of quantum mechanics. Yet, the writing style is not mathemat-
ically oriented. Bearing in mind that the target audience is mathematically 
oriented economists, I tried my best to explain and clarify every topic that ap-
pears to be unfamiliar to non-experts. It seems to me that mathematically 
oriented economists will encounter no problem in handling this material. The 
new themes required beyond the central topics of mathematics used in economic 
science include complex numbers, vector fields, matrix algebra, group theory, fi-
nite dimensional vector spaces and a tip of the iceberg of quantum mechanics. 
But all these topics are required on an elementary level. 

1.1. Background 

There are four scientific disciplines that seem to be intimately related. Econom-
ics, Quantum Mechanics, Information Science and Game Theory. The order of 
appearance in the above list is chronological. The birth of Economics as an es-
tablished scientific discipline is about two hundred years old. Quantum me-
chanics has been initiated more than hundred years ago by Erwin Schrödinger, 
Werner Heisenberg, Niels Bohr, Max Born, Wolfgang Pauli, Paul Dirac and others. 
It has been established as the ultimate physical theory of Nature. The Theory of 
Information has been developed by Claude Elwood Shanon in 1949 [1], and Game 
Theory has been developed by John Nash in 1951 [2] [3] [4] [5] [6]. 

The first connection between two of these four disciplines has been discovered 
in 1953 when the science of game theory and its role in Economics has been es-
tablished by von Neumann and Morgenstern [7] (Incidentally, von Neumann 
laid the mathematical foundations of quantum mechanics in the early fifties). 
Almost half a century later, in 1997, the relevance of quantum mechanics for in-
formation was established [8] and that marked the birth of a new science, called 
quantum information. 

These facts invite two fundamental questions: 1) Is quantum mechanics rele-
vant for game theory? That is, can one speak of quantum games where the play-
ers use the concepts of quantum mechanics in order to design their strategies 
and payoff schemes? 2) If the answer is positive, is the concept of quantum game 
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relevant for Economics? 
The answer to the first question is evidently positive. In the last two and a half 

decades, the theory of quantum games has emerged as a new discipline in ma-
thematics and physics and attracts the attention of many scientists. Pioneering 
works before the turn of the century include Refs. [9] [10] [11] [12] [13]. The 
present work is inspired by some works published after the turn of the century 
that developed the concept of quantum games that are based on standard (clas-
sical) games albeit with quantum strategies and a referee that imposes an entan-
gled initial conditions [14]-[22]. Quantum game theory combines game theory, 
that is, the mathematical formulation of competitions and conflicts, with the 
physical nature of quantum information. The question why game theory can be 
interesting and what it adds to classical game theory was addressed in some of 
the references listed above. Some of the reasons are: 

1. The role of probability in quantum mechanics is rather fundamental. Since 
classical games also use the concept of probability, the interface between classical 
and quantum game theory promises to be conceptually rich. 

2. Since quantum mechanics is the theory of Nature, it must show up also in 
people mind when they communicate with each other. 

3. Searching for quantum strategies in quantum game may lead to new quan-
tum algorithms designed to solve complicated problems in polynomial time. 

The answer to the second question, (the relevance of quantum game to eco-
nomics), is less deterministic. Numerous works were published on this interface 
[23] [24] [25] [26] [27] and they give stimulus for further investigations. I feel 
however that this topic is still at an early stage and requires a lot of new ideas 
and breakthroughs before it can be established as a sound scientific discipline. 
As I have already indicated, the present work rests within the arena of quantum 
games and does not touch the interface between quantum games and economics. 
One of its main achievements is the suggestion and the testing of a numerical 
method based on best response functions in the quantum game for searching 
pure strategy Nash equilibrium, which establishes the role of entanglement in 
this system. 

1.2. Content of Sections 

• In section 2 we cast the classical 2-player 2-strategies game in the language of 
classical information. Using the prisoner dilemma game as a guiding example 
we present the four positions on the game table (C, C), (C, D), (D, C) and (D, 
D) (C = confess, D = don’t confess) as two bit states and present the state of 
the players in terms of bits. Then we define the classical strategies as opera-
tions on bits, that is known in the theory of information as classical gates. We 
then briefly discuss the information theory treatment of 2-player and 2 mixed 
strategies classical games. 

• In section 3 the quantum mechanical tools necessary for the conduction of a 
quantum game are introduced. These include the definition of quantum bits, 
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that is the fundamental unit of quantum information. Then the quantum 
strategies of the players are defined as unitary 2 × 2 complex matrices with 
unit absolute value of the determinant [these matrices form the group U(2)]. 
The quantum states of a two players in a quantum game are then defined, 
and their relation to the two qubit states is clarified. This leads us to the basic 
concept of entanglement and entanglement operators J that play a crucial 
role in the protocol of the quantum game. In addition, the concept of partial 
entanglement is explained (as it will be used later on in section 5). 

• Section 4 is devoted to the definition of the quantum game, that is obtained 
as a quantization of a classical game, and its planning and conduction cul-
minated in Equation (41). The concept of pure strategy Nash equilibrium in a 
quantum game is defined and its relation to the degree of entanglement is 
demonstrated. In particular, it is shown that in order for the quantum game 
to be different from its classical analog, the two qubit initial state of the two 
players must be entangled. Namely, it cannot be obtained as a tensor product 
of two one bit states. A physical example of an entangled state is that of two 
electrons 1, 2 whose quantum states can be composed of spin up and down  

such as 
1
2

ψ  = ↑↓ + ↓↑  . This state cannot be written as a tensor 

product such as ↑ ⊗ ↓ . The fact that the absolute value of the two coeffi-

cients equals (here it is 
1
2

) implies that entanglement is maximal. 

• In section 5 we discuss Nash equilibrium with partial entanglement. A spe-
cific two electron state with partial entanglement can be written  

( ) cos sin
2 2
γ γψ γ = ↑↓ + ↓↑ , where 0 γ≤ ≤ π  is the degree of entangle-

ment. Maximal entanglement obtains for 
2

γ = π . 

• In section 6 we suggest a numerical formalism to construct the best response 
functions for 2 players two strategies quantum game. This numerical proce-
dure is based on replacing the continuous set of strategies by a discrete set of 
strategies, and finding the point where the two best response functions inter-
sect. Is shown that the degree of entanglement determines the existence or 
absence of Nash equilibrium. It is then used to search for pure strategy Nash 
equilibrium by identifying the intersection points of the best response func-
tions. The method is then used on a specific game and the relation between 
the payoffs and the role of the degree of entanglement is clarified. 

• In section 7 We discuss quantum games with mixed strategies. First we ana-
lyze mixed strategy quantum game with finite number of pure strategies and 
the search for Nash equilibrium in these quantum games. A Simple Example 
of mixed strategy Nash equilibrium in quantum games is presented. This is 
followed by studying the general form of a mixed strategy quantum game. 

• In section 8 the topic of Bayesian quantum game is introduced and an exam-
ple of pure strategy Bayesian game is analyzed in terms of the DA brother 
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framework, and it id shown that Nash Equilibrium despite maximal entan-
glement is possible. A numerical procedure based on discrete set of strategies 
and the best response function is presented and shows that the degree of en-
tanglement determines the existence or absence of Nash equilibrium. 

• Finally in section 9 we analyze the problem of quantizing a classical game 
with two-players three strategies classical game. Such quantum games require 
the use of quantum trits (qutrits) and the construction of an entanglement 
operator for the generation of two qutrit Bell states. 

2. Information Theoretic Language for Classical Games 

The standard notion of games as appears in the literature will be referred to as 
classical games, to distinguish it from the notion of quantum games that is the 
subject of this work. In the present section we will use the language of informa-
tion theory in the description of simultaneous non-cooperative classical games. 
Usually these games will be represented in their normal form (a payoff table). 
Except for the language used, nothing is new here. 

2.1. Two Players: Two Decisions Games: Bits 

Consider a two player game with pure strategy such as the prisoner dilemma, 
given below in Equation (8). The formal definition is, 

{ } { } 1 21,2 , , , :  .Γ = = = × →i iN A C D u A A                (1) 

Each player can choose between two strategies C and D for Confess or Don’t 
Confess. Let us modify the presentation of the game just a little bit in order to 
adapt it to the nomenclature of quantum games. When the two prisoners appear 
before the judge, he tells them that he assumes that they both confess and let 
them decide whether to change their position or leave it at C. This modification 
does not affect the conduction of the game. The only change is that instead of 
choosing C or D as strategy, the strategy to be chosen by each player is either to 
replace C by D or leave it C as it is. Of course, if the judge would tell the prisoner 
that he assumes that prisoner 1 confesses and prisoner 2 does not, then the 
strategies will be different, but again, each one’s strategy space has the two points 
{Don’t replace, Replace}. 

Now let us use different notations than C and D say 0 and 1. This has nothing 
to do with the numbers 0 and 1, they just stand for the two different symbols. 
We can equally consider two colors, red and blue. Such two symbols form a bit. 
We thus have: 

Definition: A bit is an object that can have two different states. 
A bit is the basic ingredient of information science and is used ubiquitously in 

numerous information devices such as hard disks, transmission lines and other 
information storage devices. There are several notations used in information 
theory to denote the two states of a bit. The simplest one is just to say that the bit 
state is 0 or 1. But this notation is inconvenient when it is required to perform 
some operation on bits like replace or don’t replace. A more informative de-
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scription is to consider bit states as two dimensional vectors living on Bloch 
sphere S2 (see below). Yet a third notation that anticipates the formulation of 
quantum games is to denote the two states of a bit as 0  and 1 . This ket no-
tation might look strange at first glance but it proves very useful in analyzing 
quantum games. In summary we have, 

1 0
bit state 0 0 , bit state1 1 .

0 1
   

= = = =   
   

              (2) 

2.1.1. Two Bit States 
Looking at the game table in Equation (8), the prisoner dilemma game table has 
four squares marked by (C, C), (C, D), (D, C), and (D, D). In our modified lan-
guage, any square in the game table is called a two-bit state, because each player 
knows what is his bit value in this square. The corresponding four two-bit states 
are denoted as (0, 0), (0, 1), (1, 0), (1, 1). In this notation (exactly as in the for-
mer notation with C and D) it is understood that the first symbol (from the left) 
belongs to player 1 and the second belongs to player 2. 

Thus, in our language, when the prisoners appear before the judge he tells 
them “your two-bit state at the moment is (0, 0) and now I ask anyone to decide 
whether to replace his bit value from 0 to 1 or leave it as it is”. As for the single 
bit states that have several equivalent notations specified in Equation (2), two bit 
states have also several different notations. In the vector notation of Equation (2) 
the four two-bit states listed above are obtained as outer products of the two bits 

1 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0

, , ,  .
0 0 0 0 1 0 1 0 1 1 1 0

0 0 0 1

       
                             ⊗ = ⊗ = ⊗ = ⊗ =                                            
       

   (3) 

Again, it is understood that the bit composing the left factor in the outer 
product belongs to player 1 (the column player) and the right factor in the outer 
product belongs to player 2 (the row player). Generalization to n players 
two-decision games is straightforward. A set of n bits can exist in one of 2n differ-
ent configurations and described by a vector of length 2n where only one compo-
nent is 1, all the others being 0. 

Ket notation for two bit states: The vector notation of Equation (3) requires 
a great deal of page space, a problem that can be avoided by using the ket nota-
tion. In this framework, the four two-bit states are respectively denoted as (see 
the comment after Equation (3)), 

0 0 00 , 0 1 01 , 1 0 10 , 1 1 11 .⊗ = ⊗ = ⊗ = ⊗ =         (4) 

For example, in the prisoner dilemma game, these four states correspond re-
spectively to (C, C), (C, D), (D, C), (D, D). 

2.1.2. Classical Strategy as an Operation on Bits 
Now we come to the description of the classical strategies (replace or do not re-
place) using our information theoretic language. Since we have agreed to 
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represent bits as two components vectors, execution of operation of each player 
on his own bit (replace or do not replace) is represented by a 2 × 2 real matrix. 
In classical information theory, operations on bits are referred to as gates. Here 
we will be concerned with the two simplest operations performed on bits 
changing them from one configuration to another. An operation on a bit state 
that results in the same bit state is accomplished by the unit 2 × 2 matrix  

2

1 0
0 1
 

=  
 

1 . An operation on a bit that results in the other bit state is accom-

plished by a 2 × 2 Pauli matrix denoted as 
0 1
1 0

σ
 

≡  
 

x . 

1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1
, , ,  .

0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0
                   

= = = =                   
                   

 (5) 

Written in ket notation we have, 

2 20 0 , 1 1 , 0 1 , 1 0  .σ σ= = = =x x1 1                (6) 

In the present language, the two strategies of each player are the two 2 × 2 
matrices I and σ x  and the four elements of 1 2×A A  are the four 4 × 4 matric-
es, 

2 2 2 2, , ,  .σ σ σ σ⊗ ⊗ ⊗ ⊗x x x x1 1 1 1                    (7) 

In this notation, following the comment after Equation (3), the left factor in 
the outer product is executed by player 1 (the column player) on his bit, while 
the right factor in the outer product is executed by player 2 (the row player). In 
matrix notation each operator listed in Equation (7) acts on a four component 
vector as listed in Equation (3). 

Note that the two strategies I and σ x  form a (commutative) group, that is a 
subgroup of ( )2U  which is the group of all unitary and complex 2 × 2 matrices 
such that ( )2∀ ∈U U , det 1=U . As we shall see, in the quantized game GQ to 
be discussed below the set of all strategies will be much richer. 

Example: Consider the classical prisoner dilemma with the normal form, 

                   (8) 

The entries stand for the number of years in prison. 

2.1.3. Formal Definition of a Classical Game in the Language of Bits 
The formal definition is, 

{ } { }2 1 21,2 , , , , :  .σ= = = × →C i x iG N ij A u A A1            (9) 

The two differences between this definition and the standard definition of 
Equation (1) is that the players face an initial two-bit state , , 0,1=ij i j  pre-
sumed by the judge (usually ( )00 ,= C C  and the two-point strategy space of 
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each players contains the two gates ( )2 ,σ x1  instead of ( ),C D . The conduction 
of a pure strategy classical two-players-two strategies simultaneous non-coopera- 
tive game given in its normal form (a 2 × 2 payoff matrix) follows the following 
steps: 

1. A referee declares that the initial configuration is some fixed 2 bit state. This 
initial state is one of the four 2-bit states listed in Equation (4). The referee’s 
choice does not, in any way, affect the final outcome of the game, it just serves as 
a starting point. For definiteness assume that the referee suggests the state 00  
as the initial state of the game. We already gave an example: In the story of the 
prisoner dilemma it is like the judge telling them that he assumes that they both 
confess. 

2. In the next step, each player decides upon his strategy ( 21  or σ x ) to be 
applied on his respective bit. For example, if each player chooses the strategy σ x  
we note from Equation (5) that 

00 0 0 1 1 11 .σ σ σ σ⊗ = ⊗ = ⊗ = =x x x x DD         (10) 

Thus, a player can choose either to leave his bit as suggested by the referee or 
to change it to the second possible state. As a result of the two operations, the 
two bit state assumes it final form. 

3. The referee then “rewards” each player according to sums appearing in the 
corresponding payoff matrix. Explicitly, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 2 2 2 1 2 2 2

1 2 2 2 1 2

, , 4, , , 6,

, , 2, , , 4.

σ σ

σ σ σ σ σ σ

= = − = = −

= = − = = −
x x

x x x x x x

u u u u

u u u u

1 1 1 1 1 1

1 1
 

The procedure described above is schematically shown in Figure 1. 
A pure strategy Nash equilibrium (PSNE) is a pair of strategies  

{ }2* *
1 2 2, 1 ,σ∈ xS S  such that 

( ) ( )
( ) ( )

* * * *
1 1 2 1 1 2 1 1

* * * *
2 1 2 2 1 2 2 2

, ,

, , .

≤ ∀ ≠

≤ ∀ ≠

u S S u S S S S

u S S u S S S S
               (11) 

In the present example, it is easy to check that, given the initial state 00  from 
the referee, the pair of strategies leading to NE is ( )* *

1 2, σ σ= ⊗x xS S . However, 
this equilibrium is not Pareto efficient, namely there is a strategy set 1 2,S S  such 
that ( ) ( )* *

1 2 1 2, ,≥iu S S u S S  for 1,2=i . In the present example the strategy set 

2 2⊗1 1  leaves the system in the state 00  and  
( ) ( )2 2, 4 , 5σ σ= − > = −i i x xu u1 1 . 
 

 

Figure 1. A general protocol for a two players two strategies classical 
game showing the flow of information. To be followed on the figure from 
left to right. Here 1 2 ,σ= xS 1  and similarly 2 2 ,σ= xS 1 . There are only 
four possible finite states of the system. 
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2.1.4. Mixed Strategy in the Language of Bits 
This technique of operation on bits is naturally extended to treat, mixed strategy  

games. Then by operating on the bit state 
1
0
 
 
 

 by the matrix ( )2 1 σ+ − xp p1   

with [ ]0,1∈p , we get the vector, 

( )1 0 0 1 1
1 ,

0 1 1 0 0 1
        

+ − =        −        

p
p p

p
           (12) 

that can be interpreted as a mixed strategy of choosing pure strategy 1  with 
probability p and pure strategy 0  with probability 1− p . Following our ex-
ample, assuming player 1 chooses 21  with probability p and σ x  with proba-
bility 1− p  and player 2 chooses 21  with probability q and σ x  with proba-
bility 1− q  the combined operation on the initial state 00  is, 

( ) ( )
( ) ( ) ( )( )

1 1 00

00 1 01 1 10 1 1 11

σ σ   + − ⊗ + −   
= + − + − + − −

x xp p q q

pq p q p q p q

1 1
 

3. The Quantum Structure: Qubits 

In quantum mechanics, the analog of a bit is a quantum bit, briefly referred to as 
qubit. Physically, this is a two level system. The simplest example is the two spin 
states of an electron. In order to explain this concept we need to carry out some 
preparatory work. For understanding this section, the reader is assumed to be 
familiar with basic Quantum Mechanics. 

3.1. Qubits 

The quantum bit (shortly qubit) is the basic unit of quantum information, in the 
same token that bit is the basic unit of classical information. While the notion of 
bit is familiar to anyone who has a basic knowledge in information storage (on a 
hard disk for example) and information transfer, the notion of qubit is much less 
familiar. Until a few years ago it could be argued that qubit are simple quantum 
system that cannot be used in such discipline as information science, economics, 
computational resources and cryptography. This is definitely not the case no-
wadays as the fields of quantum information and quantum computation become 
closer and closer to reality. For economists, in general, and for game theorists in 
particular, the concept of qubit requires some change of mind in the sense that a 
decision (a strategy) is not simple yes or no (for pure strategy) or simple yes with 
probability p and no with probability ( )1− p . Similar to the classical game, 
where a decision is an operation on bits (see Equation (6) a strategy is an opera-
tion on qubit. However, since a qubit has a much richer structure than a bit, a 
quantum strategy is much richer than a classical one. But before speaking of 
quantum games and quantum strategy we need to define the basic unit (like the 
hydrogen atom in chemistry). 

3.2. Definition and Manipulation of Qubits 

A qubit is a vector 0 1 , ,ψ = + ∈a b a b  such that 2 2 1+ =a b . The col-
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lection { }ψΣ ≡  of all qubits is a set and not a space (the vector sum of two 
qubits is, in general, not a qubit, and hence it has no meaning in what follows). 
The cardinality of the set of qubits is ℵ  (recall that there are only two bits). 
Two qubits ψ  and e ,φ ψ φ ∈i  that differ by a uni-modular factor e φi  
are considered identical. This is referred to as phase freedom. A convenient way 
to underline the difference between bits and qubits is to write them as vectors, 

2 21 0 1 0
bit state 0 , bit state1 , qubit , 1 .

0 1 0 1
a

a b a b
b

         
= = = + = + =         
         

 (13) 

The definitions used below to denote a qubit are equivalent, 

2 21 0
0 1 : : , 1 ,

0 1
ψ

     
= + = ↑ + ↓ = + = + =     

     

a
a b a b a b a b

b
    (14) 

where :=  means, literally, can also be written as. The number of degrees of 
freedom (parameters) of a qubit is 2 (two complex numbers with one constraint 
combined with the phase freedom). The phase freedom allows us to chose a to 
be real and positive. An elegant way to represent a qubit is by choosing two an-
gles θ  and φ  such that ( )cos 2θ=a , ( )e sin 2φ θ= ib , 0 θ≤ ≤ π ,  
0 2φ≤ ≤ π : 

( ) ( ) ( )
( )

cos 2
cos 2 e sin 2

e sin 2
φ

φ

θ
θ θ

θ
    = ↑ + ↓ =          

i
i

a
b

       (15) 

The two angles θ  and φ  determine a point on the unit sphere (globe) with 
Cartesian coordinates, 

2 2 2sin cos , sin sin , cos , 1 .θ φ θ φ θ= = = + + =x y z x y z      (16) 

Therefore, every point on the unit sphere with spherical angles ( ),θ φ  uni-

quely define a qubit  
 
 

a
b

 according to Equation (15). In physics this construc-

tion is referred to as Bloch Sphere, as displayed in Figure 2. In particular, the 

north pole 0θ =  corresponds to 
1

0
0
 

= ↑ =  
 

 and the south pole, θ = π  

corresponds to 
0

1
1
 

= ↓ =  
 

. 

 

 

Figure 2. A qubit ψ  is represented as a point (a tip 

of an arrow) on the Bloch sphere. 
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3.3. Operations on a Single Qubit: Quantum Strategies 

In Equations (6) and (7) we defined two classical strategies, 1  and σ x  as op-
erations on bits. According to Equation (5) they are realized by 2 × 2 matrices  

1 0
0 1
 

=  
 

1 , 
0 1
1 0

σ
 

=  
 

x  and act on the bit vectors 
1

0
0
 

=  
 

 and 
0

1
1
 

=  
 

.  

In this subsection we develop the quantum analogs: We are interested in opera-
tions on qubits, (also referred to as single qubit quantum gates) that transform a 
qubit 0 1ψ = +a b  into another qubit 0 1′ ′+a b . 

Operations on a single qubit are realized by 2 × 2 complex matrices. We have 
seen in Figure 2 that a qubit can be represented as a point on the Bloch sphere 
and therefore, the new qubit must have the same unit length (the radius of the 
Bloch sphere). In other words the unit length of a qubit must be conserved un-
der any operation. This means that any allowed operation on a qubit is defined 
by a unitary 2 × 2 matrix U. In the notation of Equation (13) a unitary operation  

on a qubit represented as a two component vector  
 
 

a
b

 is defined as, 

2 2 2 211 12

21 22

, 1.
′+     ′ ′= ≡ + = + =    ′+    

U a U ba a
U a b a b

U a U bb b
         (17) 

For reasons to become clear later on we will restrict ourselves to unitary 
transformations U with unit determinant, Det[U] = 1. The collection of all 2 × 2 
unitary matrices with unit determinant, form a group under the usual rule of 
matrix multiplication. This is the ( )2SU  group that plays a central role in 
physics. The most general form of a matrix ( )2∈U SU  is, 

( )
e cos e sin

2 2, ,  , 0 , 2 , 0  .
e sin e cos

2 2

φ α

α φ

θ θ

φ α θ φ α θ
θ θ− −

 
 

= ≤ ≤ ≤ ≤ 
 − 
 

π π

i i

i i
U      (18) 

Although we have not yet defined the notion of quantum game, we assert that, 
in analogy with Equation (6) (that defines player’s classical strategies as opera-
tions on bits), the operation on qubits (such that each player acts with his 2 × 2 
matrix on his qubit), is an implementation of each player’s quantum strategy. 
Thus, 

Definition In quantum game GQ based on a classical game GC with two players 
and two strategies, the (infinite number of) quantum strategies of each player 

1,2=i  is the infinite set (cardinality ℵ ) of his 2 × 2 matrices ( ), ,φ α θi i iU  as 
defined in Equation (18). 

Since the functional form of the matrix ( ), ,φ α θU  is given by Equation (18), 
the strategy of player i is determined by his choice of the three angles  

( ), ,φ α θ=i i i iγ . The three angles , ,φ α θ  are referred to as the Euler angles. The 
quantum strategy specified by the 2 × 2 matrix ( ), ,φ α θU  as specified above 
has a geometrical interpretation. This is similar to the geometrical interpretation 
given to qubit as a point on the Bloch sphere in Figure 1, where the two angles 
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( ),φ θ  determine a point on the boundary of a sphere of unit radius in three 
dimensions. Such a (Bloch) sphere, is a two dimensional surface denoted by S2. 
On the other hand, the three angles , ,φ α θ  defining a quantum strategy deter-
mine a point on the surface of the unit sphere in four dimensional space, 4  
(the 4 dimensional Euclidean space). The unit sphere is in this space is defined 
as the collection of points with Cartesian coordinates ( ), , ,x y z w  restricted by 
the equation 2 2 2 2 1+ + + =x y z w . This equality defines the surface of a three 
dimensional sphere denoted by S3 (impossible to draw a figure). The equality is 
satisfied by writing the four Cartesian coordinates as, 

sin sin cos , sin sin ,sin , sin cos , cos  .θ φ α θ φ α θ φ θ= = = =x y z w       (19) 

An alternative definition of a player’s strategy is therefore as follows: 
Definition A strategy of player i in a quantum analog of a two-players 

two-strategies classical game is a point ( ) 3, ,φ α θ= ∈i i i i Sγ . Thus, instead of a sin-
gle number 0 or 1 as a strategy of the classical game, the set of quantum strategies 
has a cardinality 3ℵ =ℵ . 

Classical Strategies as Special Cases of Quantum Strategies 
A desirable property from a quantum game is that the players can reach also 
their classical strategies. Of course, the interesting case is that reaching the clas-
sical strategies does not lead to Nash equilibrium, but the payoff awarded to 
players in a quantum game that use their classical strategies serve as a useful ref-
erence point. 

By an appropriate choice of the three angles ( ), ,φ α θ  the quantum strategy 
( ), ,φ α θU  is reduced to one of the two classical strategies 1  or σ x : 

( ) ( )1 0 0 1
0,0,0 , 0, , .

0 1 1 0
σ

   
= = = =  π 


π 

  
xU U1          (20) 

3.4. Two Qubit States 

In Equations (3) and (4) we represented two-bit states as tensor products of two 
one-bit states. Equivalently, a two-bit state is represented by a four dimensional 
vector, three of whose components are 0 and one component is 1 see Equation 
(3). Since each bit can be found in one of two states 0  or 1  there are ex-
actly four two-bit states. With two-qubit states, the situation is dramatically dif-
ferent in two respects. First, as noted in connection with Equation (14), each qu-
bit 0 1+a b  with 2 2 1+ =a b  can be found in an infinite number of states. 
This is easily understood by noting that, according to Equation (15) and Figure 
2, each qubit is a point on the two-dimensional (Bloch) sphere. Accordingly, 
once we construct two-qubit states by tensor products of two one-qubit states we 
expect a two-qubit state to be represented by a four dimensional vector of com-
plex numbers. Second, and much more profound, there are four dimensional 
vectors that are not represented as a tensor product of two two-dimensional 
vectors. Namely, in contrast with the classical two-bit states, there are two-qubit 
states that are not represented as a tensor product of two one-qubit states. This is 
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referred to as entanglement and will be explained further below. In a two-players 
two-strategies classical game, each player has its own bit upon which he can op-
erate (namely, chose his strategy). Below we shall define a quantum game that is 
based on two-player two-strategies classical game. In such game, each player has 
its own qubit upon which he can operate by an ( )2SU  matrix ( ), ,φ α θU  
(namely, chose his quantum strategy). 

Outer (Tensor) Product of Two Qubits 
In analogy with Equation (3) that defines the 4 two-bit states we define an outer 
(or tensor) product of two qubits 1 2ψ ψ⊗  using the notation of Equation 
(13) as follows: Let 1 1 10 1ψ = +a b  and 2 2 20 1ψ = +a b  be two qubits 
numbered 1 and 2. We define their outer (or tensor) product as, 

( ) ( )1 2 1 1 2 2

1 2 1 2 1 2 1 2

0 1 0 1

0 0 0 1 1 0 1 1  .

ψ ψ⊗ = + ⊗ +

= ⊗ + ⊗ + ⊗ + ⊗

a b a b

a a a b b a b b
   (21) 

In terms of 4 component vectors, the tensor products of the elements such as 
0 0⊗  are the same as the two-bit states defined in Equation (3), and there-

fore, in this notation we have, 

1 2

1 2
1 2 1 2 1 2 1 2 1 2

1 2

1 2

1 0 0 0
0 1 0 0

 .
0 0 1 0
0 0 0 1

ψ ψ

        
        
        ⊗ = + + + =
        
        

         

a a
a b

a a a b b a b b
b a
b b

     (22) 

A tensor product of two qubits as defined above is an example of a two qubit 
state, briefly referred to as 2qubits. The coefficients of the four products in Equ-
ation (21) (or, equivalently, the four vectors in Equation (22)), are complex 
numbers referred to as amplitudes. Thus, we say that the amplitude of 0 0⊗  
in the 2 qubits 1 2ψ ψ⊗  is 1 2a a  and so on. Using simple trigonometric iden-
tities it is easily verified that the sum of the coefficients is 1, namely, 

2 2 2 2
1 2 1 2 1 2 1 2 1 .+ + + =a a a b b a b b                  (23) 

2qubits can also be related to a Bloch sphere S5. 
We have seen in Equation (22) that a tensor product of two qubits is a 2qubits 

that is written as a linear combination of the four basic 2qubit states 

0 0 00 , 0 1 01 , 1 0 10 , 1 1 11 ,⊗ ≡ ⊗ ≡ ⊗ ≡ ⊗ ≡        (24) 

This brings us to the following: 
Definition: A general 2qubits Ψ  has the form, 

2 2 2 2

0 0 0 1 1 0 1 1

00 01 10 11 , with 1.

Ψ = ⊗ + ⊗ + ⊗ + ⊗

= + + + + + + =

a b c d

a b c d a b c d
     (25) 

Note the difference between this expression and the outer product of two qu-
bits as defined in Equation (21), in which the coefficients are certain products of 
the coefficients of the qubit factors. In the expression (25) the coefficients are ar-
bitrary as long as they satisfy the normalization condition. Therefore, Equation 
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(21) is a special case of (25) but not vice-versa. This observation leads us natu-
rally to the next topic, that is, entanglement. 

3.5. Entanglement 

Entanglement is one of the most fundamental concepts in quantum information 
and in quantum game theory. In order to introduce it we ask the following ques-
tion: Let 

2 2 2 200 01 10 11 , with 1,Ψ = + + + + + + =a b c d a b c d     (26) 

[as already defined in Equation (25)], denote a general 2qubits. Is it always 
possible to represent it as a tensor product of two single qubit states as in Equa-
tions (21) or (22)? The answer is NO. Few counter examples with two out of the 
four coefficients set equal to 0 are, 

( ) ( ) ( )1 1 101 10 , 01 10 , 00 11  .
2 2 2

ψ±≡ + ≡ − ≡ ±T S i    (27) 

where the notations T = triplet and S = singlet are borrowed from physics. These 
four 2qubits are referred to as maximally entangle Bell states. We now have, 

Definition A 2qubits state Ψ  as defined in Equation (26) is said to be en-
tangled iff it cannot be represented as a tensor product of two single qubit states 
as in Equations (21) or (22). 

Entanglement is a pure quantum mechanical concept. It does not occur in 
manipulations of bits. Thus, there are only four 2bit states as defined in Equation 
(3), all of them are obtained as tensor products of single bit states, so that by de-
finition they are not entangled. The concept of entanglement is of utmost im-
portance in many aspects of quantum mechanics. It led to a long debate initiated 
by a paper written in 1935 by Albert Einstein, Boris Podolsky and Nathan Rosen 
referred to as the EPR paradox that questioned the completeness of quantum 
mechanics. The answer to this paradox was given by John Bell in 1964. Entan-
glement plays a central role in quantum information. Here we will see that it also 
plays a central role in quantum game theory. Strictly speaking, without entan-
glement, quantum game theory reduces to the classical one. 

3.6. Operations on 2qubits (2qubits Gates) 

An important tool in manipulating 2qubits is operations transforming one 
2qubits to another. Borrowing from the theory of quantum information these 
are called two-qubit gates. Writing a general 2qubits as defined in Equation (26) 
in terms of its 4 vector of coefficients, 

00 01 10 11  ,

 
 
 Ψ = + + + =
 
 
 

a
b

a b c d
c
d

               (28) 

a 2-qubit gate is a unitary 4 × 4 matrix (with unit determinant) acting on the 4 
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vector of coefficients, in analogy with Equation (17), 

( ) 2 2 2 2 2 2 2 2 , 4 , 1 .

′   
   ′    ′ ′ ′ ′= ∈ + + + = + + + =
   ′
   ′   

 

a a
b b

SU a b c d a b c d
c c
d d

(29) 

In the same token as we required the matrices U operating on a single qubit 
state to have unit determinant, that is, ( )2∈U SU , we require   also to have 
a unit determinant, that is, ( )4∈ SU , the group of 4 × 4 unitary complex ma-
trices with unit determinant. 

3.6.1. 2-Qubit Gates Defined as Outer Product of Two 1-Qubit Gates 
Let us recall that the two-player strategies in a classical game are defined as outer 
product of each single player strategy ( 1  or σ x ), defined in Equation (7) that 
operate on two bit states as exemplified in Equation (10). Let us also recall that 
each player in a quantum game has a strategy ( ), ,φ α θi i iU  that is a 2 × 2 matrix 
as defined in Equation (18). Therefore, we anticipate that the two-player strate-
gies in a quantum game are defined as outer product of the two single player 
strategies. Thus, a 2-qubit gate of special importance is the outer product opera-
tion 1 2= ⊗U U U  where each player acts on his own qubit. Explicitly, the oper-
ation of 1 2= ⊗ U U  on Ψ  given in (28) is, 

1 2 1 2

1 2 1 2

0 0 0 1

1 0 1 1  .

a U U b U U

c U U d U U

Ψ

=   ⊗   +   ⊗         
+   ⊗   +   ⊗         



            (30) 

Again, before defining the notion of quantum game, we assert that this opera-
tion defines the set of combined quantum strategies in analogy with the classical 
game set of combined strategies defined in Equation (7). Thus, The (infinite 
numbers of) elements in the set 1 2×A A  of combined (quantum) strategies are 4 
× 4 matrices, ( ) ( )1 1 1 2 2 2, , , ,φ α θ φ α θ⊗U U . These 4 × 4 matrices act on two qubit 
states defined above, e.g. Equation (28). The single qubit operations are defined 
in Equation (17). 

3.6.2. Entanglement Operators (Entanglers) 
We have already underlined the crucial importance of the concept of entan-
glement in quantum games. Therefore, of crucial importance for quantum 
game is an operation executed by an entanglement operator J that acts on a 
non-entangled 2 qubits and turns it into an entangled 2qubits. Anticipating the 
importance and relevance of Bell’s states introduced in Equation (27) for quantum 
games, we search entanglement operators J that operate on the non-entangled 
state 0 0 00⊗ =  and create the maximally entangled Bell states such as 
ψ+  or T  as defined in Equation (27). For reason that will become clear lat-

er we should require that J is unitary, that is, † †
4= =J J JJ 1 . With a little effort 

we find, 
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( )1

1 0 0 1 1
0 1 0 0 01 1 100 00 11  .
0 1 0 0 02 2 2

0 0 1 0

ψ+

    
    −    = = = + =
    −
    
    

i
i

J i
i

i i

    (31) 

( )2

0 1 0 1 1 0
1 0 1 0 0 11 1 100 01 10  .
1 0 1 0 0 12 2 2
0 1 0 1 0 0

    
    
    = = = + =
    
    
    

J T      (32) 

It is straight forward to check that J1 and J2 as defined above are unitary and that 
application of †

1J  instead of J1 on the initial state 00  in Equation (31) yields 
the second Bell’s state ψ−  also defined in Equation (27), while †

2 00 =J S . 
There is, however, some subtle difference between J1 and J2 that will surface later 
on. 

3.6.3. Partial Entanglement Operators 
Intuitively, the Bell’s states defined in Equation (27) are Maximally entangled 
because the two coefficients before the two bit states (say, 00  and 11 ) have 
the same absolute value, 1 2 . We may think of an entangled state where the 
weights of the two 2-bit states are unequal, in that case we speak of partially en-
tangled state. Thus, instead of the maximally entangled Bell states ψ+  and 
T  defined in Equations (27), (31) and (32) we may consider the partially en-

tangled state ( )ψ γ+  and ( )γT  that depend on a continuous parameter (an 
angle) 0 γ≤ ≤ π  defined as, 

( )

( ) ( )

cos 00 sin 11 ,
2 2

0 00 , 11 ,  .
2

γ γψ γ

ψ ψ ψ ψ

+

+ + + +

= +

 = = = 
 
π

π
            (33) 

( ) ( )

( )

cos 01 sin 10  , 0 01 ,
2 2

10 ,  .
2

T T

T T T

γ γγ = + =

 = = 


π


π
             (34) 

The notion of partial entanglement can be put on a more rigorous basis once 
we have a tool to determine the degree of entanglement. Such a tool does exist, 
called Entanglement Entropy but it will not be detailed here. The reason for in-
troducing partial entanglement is that it is intimately related with the existence 
(or the absence) of pure strategy Nash equilibrium in quantum games as will be 
demonstrated below. 

In the same way that we designed the entanglement operators J1 and J2 that, 
upon acting on the two-bit state 00  yield the maximally entangled Bell’s 
states ψ+  and T , we need to design analogous partial entanglement opera-
tors ( )1 γJ  and ( )2 γJ  that, upon acting on the two-bit state 00  yield the 
partially entangled states ( )ψ γ+  and ( )γT . With a little effort we find, 
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( )

( )

1

2

cos 0 0 sin
2 2

0 cos sin 0
2 2 ,

0 sin cos 0
2 2

sin 0 0 cos
2 2

0 cos 0 sin
2 2

cos 0 sin 0
2 2  .

sin 0 cos 0
2 2

0 sin 0 cos
2 2

γ γ

γ γ

γ
γ γ

γ γ

γ γ

γ γ

γ
γ γ

γ γ

 
 
 
 − 

=  
 −
 
 
 
 
 − 
 
 − 

=  
 
 
 
 
 

i

i
J

i

i

J

           (35) 

4. Quantum Games 

We come now to the main topics of our work, that is, description and search for 
pure strategy Nash equilibrium in quantum games and the role of entanglement. 
Quantum games have different structures and different rules than classical 
games. There are two points that connect a classical game with its quantum ana-
log. First, the quantum game is based on a classical game and the payoffs in the 
quantum game are determined by the payoff function of the classical game. 
Second, the classical strategies are obtained as a special case of the quantum 
strategies. Depending on the entanglement operators J defined in Equation (35), 
the players may reach the classical square payoffs in the classical game table. In 
most cases, however, this will not lead to a Nash equilibrium. 

4.1. How to Quantize a Classical Game? 

With all these complex numbers running around, it must be quite hard to im-
agine how this formalism can be connected to a game in which people have to 
take decisions and get tangible rewards that depend on their opponent’s deci-
sions, especially when these rewards are expressed in real numbers (such as dol-
lars or years in prison). To show how it works, we start with a simple classical 
game (e.g. the prisoner dilemma) and show how to turn into a quantum game 
that still ends with rewarding its players with tangible rewards. This procedure is 
referred as quantization of a classical game. We will carry out this task in two 
steps. In the first step we will consider a classical game and endow each player i 
with a quantum strategy (The 2 × 2 matrix ( ), ,φ α θi i iU  defined in Eq. (18)). At 
the same time, we will also design a new payoff system that translates the com-
plex numbers appearing in the state of the system into real numbers in which the 
reward is given. This first step leads us to a reasonable description of a game, but 
proves to be inadequate if we want to achieve a really new game, not just the 
classical game from which we started our journey. This task will be achieved in 
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the second step. In addition, the role of the referee (the judge in the case of the 
prisoner dilemma) is more significant, as he has to determine the entanglement 
of the initial state. 

Suppose we start with the same classical game as described in section 1, that is 
given in its normal form with specified payoff functions as, 

 

It is assumed that the referee already decreed that the initial state is 00 , and 
asks the players to choose their strategies. There is, however, one difference: In-
stead of using the classical strategies of either leaving a bit untouched (the strat-
egy I) or operating on it with the second strategy σ x , the referee allows each 
player 1,2=i  to use his quantum strategy ( ), ,φ α θi i iU  defined in Equation 
(18). Before we find out how all this will help the players, let us find out what 
will happen with the state of the system after such an operation. For that pur-
pose it is convenient to use the vector notations specified in Equation (2) or (13), 
(14) and let each player act on his own qubit with his own strategy as explained 
through Equation (30), thereby leading the system from its initial state 00  to 
its final state Ψ  given by, 

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

1 2 1 2 1 2

1 211 11

1 2 1 211 11 11 21

1 2 1 221 21 21 11

1 221 21

1 1
00 0 0

0 0
   

Ψ = ⊗ = ⊗ = ⊗   
   

 
      = ⊗ =              
 

U U U U U U

U U
U U U U
U U U U

U U

          (36) 

With the help of Equation (28) we may then write, 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2 1 211 11 11 21

1 2 1 221 11 21 21

00 01

10 11

00 01 10 11 .

U U U U

U U U U

a b c d

Ψ = +

+ +

≡ + + +

               (37) 

From Equation (18) it is easy to determine the dependence of the coefficients 
on the angles (that is the strategies of the two players), for example  

[ ] [ ] ( )1 2 1 2
1 211 11

e cos cos
2 2

φ φ θ θ+= = ia U U  and so on. Since Ψ  is a 2 qubits state,  

then, as we have stressed all around, in Equations (25) or (29) we have 
2 2 2 2 1+ + + =a b c d . This leads us naturally to suggest the following payoff 

system. The payoff iP  of player i is calculated similar to the calculation of 
payoffs in correlated equilibrium classical games, with the absolute value 
squared of the amplitudes , , ,a b c d  (themselves are complex numbers) as the 
corresponding probabilities, 
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( )
( ) ( ) ( ) ( )

1 1 1 2 2 2

2 2 2 2

, , ; , ,

0,0 0,1 1,0 1,1  .
i

i i i i

P

a u b u c u d u

φ α θ φ α θ

= + + +
         (38) 

For example, prisoner’s 1 and 2 years in prison in the prisoner dilemma game 
table, Equation (8) are, 

2 2 2 2 2 2 2 2
1 24 6 2 5 , 4 2 6 5 .= − − − − = − − − −P a b c d P a b c d     (39) 

The alert reader must have noticed that this procedure ends up in a classical 
game with mixed strategies. First, once absolute values are taken, the role of the 
two angles φ  and θ  is void because 

2 22 2 2 21 2 1 2

2 22 2 2 21 2 1 2

cos cos , cos sin ,
2 2 2 2

sin cos , sin sin .
2 2 2 2

θ θ θ θ

θ θ θ θ

= =

= =

a b

c d
               (40) 

What is more disturbing is that we arrive at an old format of classical games  

with mixed strategies. Since 2 2cos sin 1
2 2
θ θ
+ = , we immediately identify the 

payoffs in Equation (38) as those resulting from mixed strategy classical game 

where a prisoner i chooses to confess with probability 2cos
2
θi  and to don’t 

confess with probability 2sin
2
θ . In particular, the pure strategies are obtained as  

specified in Equation (20). Thus while the analysis of the first step taught us how 
to use quantum strategies and how to design a payoff system applicable for a 
complex state of the system Ψ  as defined in Equation (37), it did not prevent 
us from falling into the trap of triviality in the sense that so far nothing is new. 

The reason for this failure is at the heart of quantum mechanics. The initial 
state 00  upon which the players apply their strategies according to Equation 
(36) is not entangled; since it is a simple outer product of 0  of player 1 and 
0  of player 2, so according to the definition of entanglement given after Equa-

tion (27), it is not entangled. Thus we find that: In order for a quantum game 
to be distinct from its classical analog, the state upon which the two players 
apply their quantum strategies should be entangled. That is where the entan-
glement operators J defined in Equations (31), (32) and (35) come into play. 
Practically, we ask the referee not only to suggest a simple initial state such as 
00  but also to choose some entanglement operator J and to apply it on 00  

as exemplified in Equations (31), (32) in order to modify it into an entangled 
state. Only then the players are allowed to apply their quantum strategies, after 
which the state of the system will be given by 1 2 00⊗U U J , as compared with 
Equation (36). There is one more task the referee should take care of. A reasona-
ble desired property is that if, for some reason the players choose to leave every-
thing unchanged by taking ( ) ( ), , 0,0,0φ α θ= =i i i iγ , namely, 1 2= =U U I  then 
the final state should be identical to the initial state. This is easily achieved by 
asking the referee to apply the operator 1− =J †J  on the state 1 2 00⊗U U J  
(that was obtained after the players applied their strategies on the entangled state 
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00J . These modification change things entirely, and turn the quantum game 
into a new game with complicated strategies, that is, it is much richer than its 
classical analog. 

Let us then organize the game protocol as explained above by presenting a list 
of well defined steps. 

1. The starting point is some classical 2 players-2 strategies classical game 
given in its normal form (a table with utility functions) and a referee whose duty 
is to choose an initial two bit state and an entanglement operator J. 

2. The referee chooses a simple non-entangled 2qubits initial state, which, for 
convenience, we fix once for all to be 00ψ =I . As in the classical game pro-
tocol, the choice of this state does not affect the game in any form, it is just a 
starting point. 

3. The referee then chooses an entanglement operator J and applies it on ψ I  
to generate an entangled state ψ ψ=II IJ  as exemplified in Equation (31). 
This operation is part of the rules of the game, namely, it is not possible for the 
players to affect this choice in any way. 

4. At this point each player i applies his own transformation ( ), ,φ α θ=i i i iU U  
on his own qubit. The functional dependence of U on the three angles is dis-
played in Equation (18). This is the only place where the players have to take a 
decision. After the players made their decisions the product operation is applied 
on ψ II  as in Equation (30), resulting the state 1 2ψ ψ= ⊗III IIU U . 

5. The referee then applies the inverse of J (namely †J  since J is unitary) and 
gets the final state 




playersreferee referee
†

1 2 00 00 01 10 11 ,Ψ = ⊗ = + + +


J U U J a b c d         (41) 

where the complex numbers , , ,a b c d  with 2 2 2 2 1+ + + =a b c d  are func-
tions of the elements of U1 and U2 namely, following Equation (18), they are 
functions of the 6 angles ( )1 1 1 2 2 2, , ; , ,φ α θ φ α θ . 

6. The players are then rewarded according to the prescription given by Equa-
tion (38). 

The set of operations leading from the initial state ψ I  to the final state 
Ψ  is schematically shown in Figure 3. 

 

 

Figure 3. A general protocol for a two players two strategies 
quantum game showing the flow of information. Based on 
Equation (41) to be followed on the figure from left to right. 
U1 is player’s 1 move, U2 is player’s 2 move, and J is an en-
tanglement gate. 
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4.2. Formal Definition of a Two-Player Pure Strategy Quantum  
Game 

Based on the prescriptions given in Equation (41), Figure (3) and Equation (38) 
we can now give a formal definition of a two-players two strategies quantum 
game that is an extension of a classical two-players two strategies game. Neces-
sary ingredient of a quantum game should include: 

1. A quantum system which can be analyzed using the tools of quantum me-
chanics, for example, a two qubits system. 

2. Existence of two players, who are able to manipulate the quantum system 
and operate on their own qubits. 

3. A well define strategy set for each player. More concretely, a set of unitary 2 
× 2 matrices with unit determinant ( )2∈U SU . 

4. A definition of the pay-off functions or utilities associated with the players 
strategies. More concretely, we have in mind a classical 2-player two strategies 
game given in its normal form (a table of payoffs). 

Definition Given a classical two-players two pure strategies classical game 

{ } { } 1 21,2 , , , , : .σ= = = ⊗ →C i x iG N ij A I u A A           (42) 

Its quantum (pure strategy) analog is the game, 

{ } { }1,2 , , , , , .ψ= = Q I i i iG N J u P                (43) 

Here { }1,2=N , is the set of (two) players, ψ I  is the initial state suggested 
by the referee (usually a simple two-bit state such as 00  as in the classical 
game), ( )= ≡i i iU Uγ , is the infinite set quantum pure strategies of player i on 
his qubit defined by the 2 × 2 matrix Equation (18), J is an entanglement opera-
tor defined along Equations (31), (32), (41) and Figure 3, ( ),iu k  with 

, 0,1=k  are the classical payoff functions of the game G and ( )1 2,iP U U  are 
the quantum payoff functions defined in Equation (38) in which the coefficients 

, , ,a b c d  are complex numbers (also called amplitudes) that determine the ex-
pansion of the final state Ψ  as a combination of two bit states as in Equation 
(41). 

Comments 
1) Since iU  is uniquely determined by the three angles ( ), ,φ α θ=i i i iγ  

through Equation (18) we may also regard iγ  as the strategy of player i. Thus, 
unlike the classical game where each player has but two strategies, in the quan-
tum game the set of strategies of each player is determined by three continuous 
variables. As we have already mentioned, the set of strategies of a player corres-
pond to a point on S3. 

2) J is part of the rules of the game (it is not controlled by the players). The 
main requirement from J is that it is a unitary matrix and that after operating on 
the initial to bit state (taken to be 00  in our case) the result is an entangled 2 
qubits. 

3) As we stressed in relation with Equation (41), the amplitudes are functions 
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of the two strategies ( ) ( ), , , 1,2φ α θ= =i i i i iγ  that are given analytically once the 
operations implied in Equation (41) are properly carried out (see below). 

4.3. Nash Equilibrium in a Pure Strategy Quantum Game 

Definition A pure strategy Nash Equilibrium in a quantum game is a pair of 
strategies ( )* * 3 3

1 2, ∈ ⊗S Sγ γ  (each represents three angles  

( )* * * * 3, ,φ α θ= ∈i i i i Sγ ), such that 

( ) ( ) ( ) ( )* * * 3 * * * 3
1 1 2 1 1 2 1 2 1 2 2 1 2 2, , , , , .≤ ∀ ∈ ≤ ∀ ∈P P S P P Sγ γ γ γ γ γ γ γ γ γ     (44) 

It is immediately realized that the concept of Nash equilibrium and its eluci-
dation in a quantum game is far more difficult than the classical one. If each 
player’s strategy would have been dependent on a single continuous parameter, 
then the use of the method of best response functions could be effective, but here 
each player’s strategy depends on three continuous parameters, and the method 
of response functions might be inadequate. One of the goals of the present work 
is to alleviate this problem. Another important point concerns the question of 
cooperation. In the classical prisoner dilemma game, a player that chooses the 
don’t-confess strategy (σ x ) forces his opponent to cooperate and choose σ x  
(don’t confess) as well, that leads to a pure strategy Nash equilibrium ( ,σ σx x ). 
On the other hand, in the quantum game, the situation is quite different. By 
looking at the payoff expressions in Equation (39) we see that prisoner 1 wants 
to reach the state where 2 1=c  and 2 2 2 0= = =a b d , whereas prisoner 2 
wants to reach the state where 2 1=b  and 2 2 2 0= = =a c d . Surprisingly, as 
we shall see below, there are situations such that for every strategy chosen by 
prisoner 1, prisoner 2 can find a best response that makes 2 1=b  and  

2 2 2 0= = =a c d  and vice versa, for every strategy chosen by prisoner 2, 
prisoner 1 can find a best response that makes 2 1=c  and 2 2 2 0= = =a b d . 
Since the two situations cannot occur simultaneously, there is no Nash equili-
brium and no cooperation in this case. 

The Role of the Entanglement Operator J and Classical  
Commensurability 

A desired property (although not crucial) of a quantum game is that the theory 
as defined in Equation (41) and Figure 3 includes the classical game as a special 
case. We already know from Equation (20) that the classical strategies I and xσ  
are obtained as special cases of the quantum ones, since ( )0,0,0U I=  and 
( )0,0, xU σπ = . What we require here is that by using their classical strategies, 

the players will be able to reach the four classical states (squares of the game ta-
ble). For example, to reach the square (C, C) the coefficients , , ,a b c d  in the fi-
nal state Ψ  at the end of the game (see Equation (41) should be 2 1,a =  

0b c d= = =  and so on. For this requirement to hold, the entanglement opera-
tor J should satisfy a certain equality. We refer to this equality to be satisfied by J 
as classical commensurability. From the discussion around Equation (20) we re-
call that in a classical game, the only operations on bits are implemented either  
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by the unit matrix I (leave the bit in its initial state 0  or 1 ) or 
0 1
1 0xσ
 

=  
 

  

(change the state of the bit from 0  to 1  or vice versa). Thus, by choosing 
( )0,0,0U  or ( )0,0,U π  the players virtually use classical strategies. Therefore, 

classical commensurability implies 

[ ] ( ), 0, Classical commensurability ,x x Jσ σ⊗ =            (45) 

Indeed, if this condition is satisfied and both U1 and U2 are classical strategies, 
then [ ]1 2 , 0U U J⊗ =  because in this case 1 2U U I I⊗ = ⊗  or xI σ⊗  or  

x Iσ ⊗  or x xσ σ⊗  and as we show below, all of the four operators commute 
with J. Consequently 

† †
1 2 1 2 1 200 00 00 ,J U U J J JU U U UΨ = ⊗ = ⊗ = ⊗        (46) 

that is what happens in a classical game as explained in connection with Figure 
1. To prove that the four two-player classical strategies listed above do commute 
with J we note that by direct calculations it is easy to show that J1 defined in Eq-
uation (31) satisfies classical commensurability because an elementary manipu-
lation of matrices shows that J1 can be written as 

( )4
1 4

1e ,
2

x xi

x xJ i
σ σ

σ σ
⊗

π

= = + ⊗1                 (47) 

and this matrix naturally commutes with x xσ σ⊗ . On the other hand, 2J  de-
fined in Equation (32) does not satisfy classical commensurability as can be 
checked by directly inspecting the commutation relation [ ]2, 0x x Jσ σ⊗ ≠ . 

4.4. Absence of Nash Equilibrium for Maximally Entangled States 

After defining the notion of quantum games and their pure strategy Nash Equi-
librium we face the problem of finding pure strategy Nash Equilibrium. The first 
result in this area is negative: If the state 00I Jψ =  is maximally entangled, 
(e.g., Iψ ψ +=  (Equation (31)) or I Tψ =  (Equation (32)) the quantum 
game of the prisoner dilemma does not have a pure strategy Nash Equilibrium. 
Our poof of this statement will be straightforward. First we will calculate expli-
citly the amplitudes , , ,a b c d  of the final wave function Ψ  as defined in Eq-
uation (41) and in Figure 3 and then use the method of response functions and 
show that the two response functions ( )2 1B γ  and ( )1 2B γ  cannot intersect. 

4.4.1. Calculating the Amplitudes of the Final States Ψ  

In order to calculate the payoffs P1 and P2 according to the prescription (39) we 
need to carry out the operations specified in Equation (41) leading from the ini-
tial state 00  all the way to the final state Ψ . This is a standard manipula-
tion in matrix multiplication that in the present case ends up with reasonable 
(not so long) expressions. As an example we consider the entanglement operator 

1J J=  as given in Equation (31) so that 00J ψ +=  that is a Maximally En-
tangled State: Player i has a strategy matrix ( ) ( ), ,i i i i iU U U φ α θ≡ =γ  as de-
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fined in Equation (18). The product ( ) ( )1 2U U⊗γ γ  acts on ψ+  according 
to the prescription (30) is given explicitly as, 

( ) ( ) ( ) ( )1 2 1 2 1 2
1 0 0 1 1  .
2

U U U U i U Uψ+  ⊗ = ⊗ + ⊗           (48) 

Explicitly, for a 2 × 2 matrix 11 12

21 22

U U
U

U U
 

=  
 

 we have, according to Equa-

tion (17), 

11
11 21

21

12
12 22

22

1
0 0 1 ,

0

0
1 0 1  .

1

U
U U U U

U

U
U U U U

U

  
= = = +  

   
  

= = = +  
   

                (49) 

Performing the outer products as in Equation (21), multiplying by †J  we 
can find the corresponding amplitudes , , ,a b c d  of Ψ  in the notation of (21) 
or (28). Straight forward but tedious calculations yield, 

Coefficients of Ψ  for 00J ψ+=  (Equation (31)), 

( ) ( )

( ) ( )

( ) ( )

( )

2
2

1 2 1 2 1 2 1 2

2
2

1 2 1 2 1 2 1 2

2
2

1 2 1 2 1 2 1 2

2
1 2 1 2

1 1 1 1cos cos cos sin sin sin ,
2 2 2 2

1 1 1 1cos sin cos sin cos sin ,
2 2 2 2

1 1 1 1sin cos cos cos sin sin ,
2 2 2 2

1 1 1cos cos sin sin
2 2 2

a

b

c

d

θ θ φ φ θ θ α α

θ θ φ α θ θ α φ

θ θ α φ θ θ φ α

θ θ φ φ θ

 = + − +  

 = − + −  

 = − − −  

= + + ( )
2

1 2 1 2
1sin cos  .
2
θ α α +  

   (50) 

Compared with Equation (40) we see that the present game is really novel, all 
the angles appear in the payoff and it is not reducible to any form of classical 
game. 

It is instructive to check how the classical strategies are recovered as special 
cases of the quantum ones. If both players choose ( )0,0,0U I=  then 2 1a =  
and 00Ψ =  with amplitude 1, that corresponds to the classical strategy 
( 2 2,1 1 ) leading to the state (C, C). Similarly, if one player chooses ( )0,0,0U  
and the other chooses ( )0,0,U π  this leads to either 2 1b =  corresponding to 
classical strategies ( 2 , xσ1 ) leading to the state (C, D) or to 2 1c =  correspond-
ing to classical strategies ( ,x Iσ ). leading to the state (D, C). Finally, if both 
players choose ( )0,0,U π  then the final state is 11Ψ =  with amplitude 1, 
that corresponds to the classical strategy ( ,x xσ σ ) leading to the state (D, D). 
Unlike the classical game, however, this choice is, in general, not a Nash equili-
brium. Player 1 for example may find a strategy ( )1 1 1, ,U φ α θ  such that  

( )1 1 1 1, , , 4xP U φ α θ σ  > −  . The upshot then is that if classical commensurability 
is respected, then, by using classical strategies the players can reach the classical 
positions (C, C), (C, D), (D, C) and (D, D) but the classical Nash equilibrium is 
not relevant for the quantum game. 
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Example 2: Triplet Bell State: If we take 2J J=  as in Equation (32) we get 
00J T= , the triplet Bell state. Performing the calculations  

†
1 2J U U TΨ = ⊗  we get the four probabilities, 

Coefficients of Ψ  for 00J T=  = Bell’s Triplet State, (Equation (32)) 

( ) ( )

( ) ( )

( ) ( )

( )

2
2

1 2 1 2 1 2 1 2

2
2

1 2 1 2 1 2 1 2

2
2

1 2 1 2 1 2 1 2

2
1 2 1 2

1 1 1 1cos cos cos sin sin cos ,
2 2 2 2

1 1 1 1cos sin sin sin cos sin ,
2 2 2 2

1 1 1 1sin sin sin cos cos sin ,
2 2 2 2

1 1 1sin cos cos cos
2 2 2

a

b

c

d

θ θ φ φ θ θ α α

θ θ φ α θ θ α φ

θ θ α α θ θ φ φ

θ θ α φ θ

 = − − −  

 = + + +  

 = − − −  

= + + ( )
2

1 2 1 2
1sin cos  .
2
θ φ α +  

   (51) 

4.4.2. Proof of Absence of Pure strategy Nash Equilibrium 
The following theorem is well known, see for example Refs. [16] [17] [28]. Here 
we prove it directly by showing the best response functions cannot intersect. 

Theorem The quantum game defined as in Equation (43) with 1J J=  as 
given by Equation (31) does not have a pure strategy Nash Equilibrium. 

Proof From the expressions (50) for the amplitudes it is evident that for any 
strategy ( )1 1 1, ,α φ θ  of player 1, player 2 can find a best response that brings him 
to the minimum years in prison with 

( )2 1 1 1 2 1 2 1 2 1, , , , ,
2

B Uφ α θ φ α α φ θ θ = = − = = 
 

π              (52) 

because then we have 2 2 2 21, 0b a c d= = = = . Similarly, for any strategy 
( )2 2 2, ,α φ θ  of player 2, player 1 can find a best response that brings him to the 
minimum years in prison with 

( )1 2 2 2 1 2 1 2 1 2, , , , ,
2 2

B Uφ α θ φ α α φ θ θ= = − =
π π π 


=


+ −         (53) 

because then we have, 2 2 2 21, 0c a b d= = = =  Evidently, the two restrictions 
on the amplitudes cannot occur simultaneously, and therefore, the two response 
functions cannot intersect. Hence, there is no pure strategy Nash equilibrium. □ 

Similarly, the quantum game defined as in Equation (43) with 2J J=  as 
given by Equation (32) does not have a pure strategy Nash Equilibrium. Simple 
manipulations based on expressions (51) for the amplitudes lead to the following 
response functions, 

( )2 1 1 1 2 1 2 1 2 1, , , , .
2 2

B Uφ α θ φ α α φ θ θ = = − = − = −


π
π 



π          (54) 

( )1 2 2 2 1 2 1 2 1 2, , , , .
2 2

B Uφ α θ φ φ α α θ θ = = − =
π π

+ = 
 

           (55) 

It is worth emphasizing that these (negative) results are valid only if the clas-
sical game upon which the quantum game is built does not have a Pareto effi-
cient pure strategy Nash equilibrium. If such equilibrium exists, the players will 

https://doi.org/10.4236/jqis.2023.133006


Y. Avishai 
 

 

DOI: 10.4236/jqis.2023.133006 105 Journal of Quantum Information Science 
 

choose their quantum strategies to settle on this place. For example, if, in some 
special prisoner dilemma game there is a Pareto efficient equilibrium in (C, C) 
then both players prefer 2 2 22 1, 0a b c d= = = = . For the first game (Equa-
tion (50)) they will choose 1 2θ θ= , 1 2 2α α+ = π , 1 2φ φ+ = π , while for the 
second game (Equation (51)) they will choose 1 2θ θ= , 1 2φ φ= , 1 2α α− = π . 

Starting from a non-entangled initial state (for example 00  and using en-
tanglement operators J as defined in Equations (31) or (32) leading to the max-
imally entangled states ψ+  and T  respectively, the quantum game has no 
pure strategy NE. 

The natural place to look for NE is then to consider a mixed strategy. Before 
that, however, we want to consider the concept of partial entanglement, since, as 
we shall show, it can lead to a pure strategy Nash equilibrium of the quantum 
game. 

5. Nash Equilibrium with Partial Entanglement 

We have seen in subsection 4.4 that when the entanglement operator J appearing 
in Equation (41) or, alternatively, in Figure 3, leads to a maximally entangled 
state ψ+  or T , the quantum game does not have pure strategy Nash equi-
librium. We also know that when 4 4J ×= 1 , then the classical Nash Equilibrium 
obtains because the state prepared by the referee for the two players to apply 
their strategies is just the initial state 00  and the players then use their clas-
sical strategies as special case of their quantum ones ψ+ . This may lead to the 
following scenario: Suppose J is classically commensurate, but displays only partial 
entanglement (explicitly this corresponds to ( ) ( )1J Jβ β=  given in Equation  

(56) with 0
2

β< <
π ). Then there may be a threshold value 0

2cβ< <
π  such  

that for 0 cβ β≤ <  there is a pure strategy Nash Equilibrium (that may coin-
cide or may be distinct from the classical one) while for cβ β>  there is no pure 
strategy Nash Equilibrium because J is close to the case of maximal entangle-
ment. In this section we will check this hypothesis numerically using the method 
of response functions and show that this scenario is possible and that the quan-
tum Nash equilibrium might be distinct (and ameliorates) the classical one. In 
the first subsection we will explain the method of response functions, while in 
the second subsection the numerical algorithm will be explained. 

5.1. Partial Entanglement 

The states ψ+  and T  defined in Equations (31) and (32) are “maximally 
entangled” in the sense that the absolute value square of the two coefficient be-
fore the 2-bit states are equal to 1/2 so that the corresponding weights are equal. 
If the weights are unequal, we have partial entanglement. 

Partial Entanglement Operator with Classical Commensurability 
We have already pointed out that the entanglement operator J as defined 

in Equation (31) satisfies classical commensurability [ ], 0x x Jσ σ⊗ = . We now 
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reconsider the operator ( )1J β  defined in the first equality of Equation (35). It 
can be written as 

( ) 2
1 4 4e cos sin  .

2 2
x xi

x xJ I i
β σ σ β ββ σ σ⊗

×= = + ⊗             (56) 

Clearly, when 0β =  we have ( )1 4 40J I ×=  while 
2

J  
 
 

π  is given in Equation 

(22) that leads to the maximally entangled state ψ+  on the RHS of Equation 

(31). For 0
2

β< <
π , ( )J β  is a partial entanglement operator and the state  

( ) ( )1 00J β ψ β+=  defined in Equation (33) is said to be partially entangled. 
When ( )1J β  is used in Equation (41) it results in the final state  

00 01 10 11a b c dΨ = + + +  with complex amplitudes, 

( ) ( )

( )

( ) ( )

( )

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 1 1 1cos cos cos sin sin sin sin
2 2 2 2

1 1cos cos sin cos ,
2 2

1 1 1 1cos sin cos sin cos sin sin
2 2 2 2

1 1cos sin sin cos ,
2 2

a

i

b

i

θ θ φ φ θ θ α α β

θ θ φ φ β

θ θ φ α θ θ α φ β

θ θ φ α β

= + − +
+ + 

= − + −
+ − 

 

( ) ( )

( )

( ) ( )

( )

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 1 1 1sin cos cos cos sin sin sin
2 2 2 2

1 1sin cos sin cos ,
2 2

1 1 1 1sin sin cos cos cos sin sin
2 2 2 2

1 1sin sin sin cos .
2 2

c

i

d

i

θ θ α φ θ θ φ α β

θ θ α φ β

θ θ α α θ θ φ φ β

θ θ α α β

= − − −
− − 

= + + +
− + 

  (57) 

For 
2

β =
π  the squares 2 2 2 2, , ,a b c d  are reduced to their values in Equ-

ation (50). We will check below the existence of pure strategy Nash equilibrium 

for 0
2

β< <
π . 

5.2. Best Response Functions 

The method of best response functions is an effective method for locating Nash 
equilibrium in classical games with two players in which the strategy space is not 
complicated. Its effectiveness for the quantum game is not at all evident due to 
the complexity of strategy space that is a surface of the sphere S3. The method 
that will be used below is to replace continuous variables , ,φ α θ  by a mesh of 
discrete points. This turns the problem to a one with finite (albeit very large) 
strategy space for which the method of response functions is expected to work. 
Therefore, we shall explain the method on the most elementary level as taught in 
undergraduate courses in game theory. 
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5.2.1. Finite Set of Strategies 
Let us consider a two-player classical game where each player i has K strategies, 
denoted as { }, 1,2ik i = , 1,2, ,ik K=  . For each strategy k1 of player 1, player 2 
finds a best response strategy ( )2 1q k  that leads him to the highest possible 
payoff once k1 is given (here q2 is an integer between 1 and K). (The notation 
used here for the response functions is ( ).iq  instead of ( ).iB ). Similarly, for 
each strategy k2 of player 2, player 1 finds a best response strategy ( )1 2q k  that 
leads him to the highest possible payoff once k2 is given. It should be stressed 
that the mapping { } { }1 : 1,2, , 1,2, ,q K K→   is not necessarily one-to-one. 
There may be more than one response to a given strategy and there may be 
strategies that are not chosen as best response. We can now draw two discrete 
“curves”. The first curve is obtained by listing k1 along the x axis and plotting the 
points ( )2 1q k  above the x axis. The second curve is obtained by listing k2 along 
the y axis and plotting the points ( )1 2q k  to the right of the y axis. These dis-
crete curves need not be monotonic, and they may not have a common point. 
However, if the discrete curves do have a common point ( )* *

1 2,q q  this pair of 
strategies forms a Nash equilibrium. The point ( )* *

1 2,q q  can be found graphi-
cally or else, once the lists ( )2 1q k  and ( )1 2q k  are prepared, the equilibrium 
strategies are found by searching solution to the equation 

( ) ( )* * * *
1 1 2 2 2 1 0 .q q q q q q− + − =                      (58) 

5.2.2. Continuous Set of Strategies 
The method of best response functions is also effective when the strategy spaces 
are determined by single continuous parameters, [ ]1 1 1,x a b∈  (for player 1) and 

[ ]2 2 2,x a b∈  (for player 2). The response functions are ( )2 1q x  and ( )1 2q x  
where, following the discrete case, ( )1 2q x  need not be one-to-one and need not 
be a continuous function. Its domain is defined on [ ]2 2 2,x a b∈  and its target is 
defined in [ ]1 1,a b . Analogous statements hold for ( )2 1q x . The two functions 
are now plotted as explained above for the discrete case and Nash equilibrium 
may obtain at strategies ( ) [ ] [ ]* *

1 2 1 1 2 2, , ,q q a b a b∈ ×  such that, 

( ) ( )* * * *
1 1 2 2 2 1,  .q q q q q q= =                      (59) 

Unfortunately, this method is ineffective when each strategy space is deter-
mined by more than one continuous variable as in our quantum game where the 
strategy of player 1,2i =  is determined by three angular variables, 0 2iφ≤ ≤ π , 
0 2iα≤ ≤ π , 0 iθ≤ ≤ π  or, in short notation, ( ), ,i i i iφ α θ=γ  being a point on 
S3. The response functions ( )1 2q γ  and ( )2 1q γ  are mappings from S3 to S3. 
They are not necessarily one-to-one but continuous. However, any attempt to 
search for Nash equilibrium using the methods as described above for the simple 
cases is useless. 

5.3. Quantum Game with Finite Set of Strategies 

Since it is practically useless to follow the procedure of best response functions 
in the 6 dimensional spaces of pure strategies 1 2⊗γ γ  we discretize the conti-
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nuous variables , ,φ α θ  in a series of steps as follows: [29]. 
1. The variable 0 θ≤ ≤ π  will assume Nθ  values 
( ) ( ) ( ) ( )1 0 2 3 Nθθ θ θ θ= < < < < π= . They are assumed to be equally spaced,  

the spacing is then 
1Nθ

π
−

. 

2. For every ( )kθθ  with 1 k Nθ θ< <  the variable 0 2φ≤ ≤ π  will assume 
Nφ  values ( ) ( ) ( ) ( )1 0 2 3 2Nφφ φ θ φ= < < π< < = . They are assumed to be  

equally spaced, the spacing is then 2
1Nφ

π
−

. For ( )1 0θ =  and for ( )1θ = π  the  

variable φ  assumes the single value ( )1 0φ = . 
3. For every ( )kθθ  with 1 k Nθ θ< <  the variable 0 2α≤ ≤ π  will assume 

Nα  values ( ) ( ) ( ) ( )1 0 2 3 2Nαα α θ α= < < π< < = . They are assumed to be  

equally spaced, the spacing is then 2
1Nα

π
−

. For ( )1 0θ =  and for ( )1θ = π  the  

variable α  assumes the single value ( )1 0α = . 
4. The total number of strategies of each player is the ( )2 2SN N N Nθ φ α= − + . 
5. We can now construct a 1 1↔  lexicographic order among triples  
( ) ( ) ( )( ), ,k k kφ α θφ α θ  of angles, corresponds to a single integer  
( )1 , , SI k k k Nφ α θ≤ ≤ . For example, 

( ) ( )
or

, , , , if but or

and but  .

k k
I k k k I k k k k k k k

k k k k k k

θ θ

φ α θ φ α θ θ θ φ φ

θ θ φ φ α α

 ′>


′ ′ ′ ′ ′> = >
 ′ ′ ′= = >

       (60) 

In this way a set of three continuous variables ( ), ,φ α θ  is replaced by a sin-
gle discrete variable 1 SI N≤ ≤  that uniquely determine the SN  triples  

( ) ( ) ( ), ,I I Iφ α θ   . 

5.3.1. Definition of Quantum Game with Discrete set of Strategies 
The definition (43) of the quantum game is then modified into, 

{ } { } { }1,2 , , 1,2, , , , , ,D I i S i iG N N J u Pψ= = =            (61) 

where it is understood that player i choosing a strategy iI  operates on his qubit 
with the matrix ( ) ( ) ( )( ), ,i i iU I I Iφ α θ  defined in Equation (18). 

5.3.2. Nash Equilibrium in Quantum Game with Discrete set of Strategies 
Once a mesh structure and lexicographic ordering procedure are completed, we 
are in the same situation as in 5.2.1. In this way, the problem is amenable for 
being treated within the best response function formalism. For each strategy 1I  
of player 1 player 2 finds its best response ( )2 1q I , and vice versa, for each 
strategy 2I  of player 2 player 1 finds its best response ( )1 2q I . A pure strategy 
Nash equilibrium occurs if there is a pair of strategies  

( ) ( ) ( )* * * * * *
1 2 2 1 2 1 2 1,I I q I I q I I = ∧ =  . In analogy with the definition (44), a pure 

strategy Nash equilibrium of the game (68) is a pair of strategies ( )* *
1 2,I I  that 

determines two pairs of triples 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * * *
1 1 1 2 2 2 1 2, , ; , , , ,I I I I I I I Iφ α θ φ α θ   =   γ γ         (62) 

such that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* * *
1 1 2 1 1 2 1

* * *
2 1 2 2 1 2 2

, , ,

, , .

P I I P I I I

P I I P I I I

   ≤ ∀   
   ≤ ∀   

γ γ γ γ

γ γ γ γ
               (63) 

5.3.3. Weak Points of the Discrete Formulation 
Admittedly, there are at least two disadvantages with this procedure. First, by 
turning a continuous variable into a discrete and finite sequence, we throw away 
an infinite number of possible strategies. It might be argued that a Nash equili-
brium might occur in the original game with continuous space of strategies and 
that this equilibrium is skipped in the discrete version. For that reason, we re-
gard the game GD defined in (61) as a new game, and do not claim that it is a 
bona fide representative of the original game GQ defined in (43). However, since 
all the payoffs are continuous functions of ,i iφ α  and iθ , it is clear that when 
the number , ,N N Nφ α θ  of mesh points is very large, the results pertaining to 
GD approach those of GQ, and this include the existence of Nash equilibrium. 

The second disadvantage is a bit more subtle: The set of discrete strategies 
does not form a group. We already stressed that the set of 2 × 2 unitary matrices 
with unit determinant form a group, called ( )2SU . A product of two matrices 
of the form (18) can be written as a matrix of the same form, or, explicitly, 

( ) ( ) ( ), , , , , ,  ,U U Uφ α θ φ α θ φ α θ′ ′ ′ ′′ ′′ ′′=                (64) 

where each angle appearing on the right and side is a function of the six angles 
appearing on the left hand side, (the functional form is calculable straightfor-
wardly). This is not the case with discrete strategies. A strategy obtained by an 
application of two discrete strategies one after the other does not, in general, be-
long to the original set of discrete strategies. This is mathematical flaw might be 
relevant in games that require repeated applications of strategies, but in the 
present case of single and simultaneous moves, it has no effect. 

6. Concrete Example 

We have already stressed that for maximally entangled states there is no pure 
strategy Nash equilibrium in the quantum game GQ if the classical game GC has a 
Nash equilibrium that is not Pareto efficient. As suggested at the beginning of 
this section, we would first like to check what happens for partially entangled 
states. This is discussed in the following example. 

6.1. Nash Equilibrium in the Quantum DA Brother Game 

The classical prisoner dilemma game presented by the table (8) (the entries are 
years in prison) is completely symmetric. We prefer to slightly break this sym-
metry using a variant of the prisoner dilemma game, called “The DA Brother” 
[30]. In this variant, prisoner 1 is a brother of the district attorney (DA). The DA 
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promises his felony brother that if both prisoners confess, then he (the DA) will 
arrange that he (his criminal brother) will not serve in jail. The classical game is 
then presented by the following table: 

 
 Prisoner 2 

Prisoner 1 

 21  (C) xσ  (D) 

21  (C) 0, −2 −10, −1 

xσ  (D) −1, −10 −5, −5 

 
Recall that in the classical version, the initial state of the system is 00  or (C, 

C), namely the referee (the judge in this case) tells the prisoners that he assumes 
that they both confess, but let them decide by choosing their classical strategies 
1  (stay as you are) or xσ  (change your decision by flipping your bit from 0  
to 1 . Unlike the familiar classical prisoner dilemma game, where both players 
have a dominant strategy xσ  (meaning don’t confess) in the DA brother game 
player 2 has a dominant strategy xσ  but player 1 does not. However, as in the 
familiar game, there is a pure strategy Nash equilibrium ( ),x xσ σ  (both players 
flip their bit from 0 C=  to 1 D= , with penalties ( ) ( )1 2, 5, 5P P = − −  namely, 
each prisoner gets 5 years in prison after deciding not to confess. 

Now we study the pure strategy quantum game where each player has finite 
(albeit very large) number of strategies. Specifically, we take 9Nθ = ,  

17N Nφ α= =  so, according to the calculation before Equation (60), each player 
has 2025SN =  strategies. The entanglement operator, J is defined in Equation 
(35) and the amplitudes , , ,a b c d  are explicitly given in Equation (57), where 
the angles , , , 1,2i i i iφ α θ =  covers the discrete mesh as iI  runs from 1 to 

2025SN = , and β  is the entanglement parameter as explained before Equa-
tion (57). The corresponding years in prison are specified in Equation (38), and 
given explicitly in terms of the amplitudes , , ,a b c d  and the utility functions in 
the table, 

2 2 2 2 2 2 2 2
1 20 10 1 5 , 2 1 10 5 .P a b c d P a b c d= × − − × − × = − − × − −  

First we verified that in the maximally entangled case 2β = π  the utility 
functions do not coincide even at a single point. Then we decrease β  in small 
steps and find that for 1.2γ >  there is no pure strategy Nash equilibrium. 
However, for 1.2β <  we found a pure strategy Nash equilibrium. For 1β =  
this is exemplified in the following three figures. 

First, in Figure 4, the discrete best response functions are plotted in the small 
range between 1700 and 2000 in order to magnify the region where they meet at 
the point * *

1 21760, 1868I I= =  marked by white arrow in the figure. Due to the 
lexicographic ordering, the best response functions do not show any kind of re-
gularity of course. But the coincident point is robust as is verified in the next 
couple of figures, The Nash equilibrium for the pair of strategies *

1 1760,I =  
*
2 1868I =  is found as an internal solution (the angles are not at the edge of their  
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Figure 4. Best response functions ( )1 2q I  and ( )2 1q I  for the quantum DA 

brother game for entangled parameter (angle) 1β = . The discretized version 

yields an intersection point (Nash equilibrium strategies) at ( ( )* *
1 1 2 1760I q I= = , 

( )* *
2 2 1 1868I q I= = ). The axes domains should extend between 0 and 2025 but we 

focus on the region where the discrete “curves” intersect. 

 
respective domains). For this value of the entanglement parameter 1β = , the 
“payoffs” (equal to minus number of years in jail) are 

1 21.45 5, 2.83 5,P P= − > − = − > −  

so both prisoners are much better off with the quantum version compared with 
the classical one. 

Let us then summarize the results as displayed in Figures 4-6 relevant for the 
quantum DA brother game at partial entanglement with 1β = . 

1. Figure 4 shows that the two best response functions ( )1 2q I  and ( )2 1q I  
intersect at ( *

1 1760I = , *
2 1868I = ). This point defines a Nash equilibrium cor-

responding to pair of strategies ( )* *
1 2,I I . The corresponding angles  

( ) ( ) ( )* * *
1 1 1 1 1 1, ,I I Iφ α θ  and ( ) ( ) ( )* * *

2 2 2 2 2 2, ,I I Iφ α θ  that define the strategy ma-
trices of players 1 and 2 according to Equation (18) are not specified. 

2. Figure 5 shows that the first prisoner cannot improve his status compared 
with ( )* *

1 1 21760, 1868P I I= =  if prisoner 2 sticks to his strategy *
2 1868I = ,  

namely, ( ) ( )* * *
1 1 2 1 1 2 1, , ,P I I P I I I≤ ∀ . 

3. Similarly, Figure 6 shows that the second prisoner cannot improve his sta-
tus compared with ( )* *

2 1 21760, 1868P I I= =  if prisoner 1 sticks to his strategy 
*
1 1760I = , namely, ( ) ( )* * *

2 1 2 2 1 2 2, , ,P I I P I I I≤ ∀ . 

Upper Bound on the Degree of Entanglement 
The discussion above leads us to the following scenario: For 0β =  there is no 
entanglement and the players reach the classical Nash equilibrium through the 
strategies x xσ σ⊗ , that entails payoffs (−5, −5), namely, they do not confess 
and get five years in jail each. On the other hand, at maximal entanglement 

2β = π  the is no Nash equilibrium, as we have rigorously proved. We have al-
so found Nash equilibrium in the partially entangled quantum game for 1β =  
with payoffs 1 1.45P = − , 2 2.83P = − , much better than the classical ones. 
Therefore, it is reasonable to suggest that as β  is varied continuously between 
0 and π/2 the payoffs improve above the classical ones, until there is some upper  
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Figure 5. For the same conditions of Figure 4, this figure shows the 

“payoff” of the first prisoner ( )*
1 1 2, 1868P I I =  as function of 1I , show-

ing maximum at ( *
1 1760I = ). The payoff is negative because it is defined 

as minus the number of years in jail. 
 

 

Figure 6. For the same conditions of Figure 4, this figure shows the 

“payoff” of the second prisoner ( )*
2 1 21760,P I I=  as function of 2I , 

showing maximum at ( *
2 1868I = ). The payoff is negative because it is 

defined as minus the number of years in prison. 
 
bound 0 2cβ< < π  above which there is no Nash equilibrium anymore. We 
test this conjecture numerically by tracing the payoffs of the two prisoners as 
function of β . The results are displayed in Figure 7. 

The conclusions that can be drawn from Figure 7 are as follows: 
1. There is a small region above 0β =  where each player sticks to his clas-

sical strategy [20]. 
2. Pure strategy Nash equilibrium in the quantum game exists for  

0 2cβ β≤ ≤ π≤  where cβ  depends on the classical payoff functions. 
3. As long as pure strategy Nash equilibrium in the quantum game exists, 

(namely cβ β< ) the payoffs are higher than the classical ones and they increase 
monotonically with the entanglement parameter β . 

4. I speculate that the payoff curves in Figure 7 extrapolate to ( ) ( )1 2, 0,2P P =  
which is the classical payoffs for the strategies (C, C). This means that for 

cβ β≤  higher entanglement draws people toward cooperation. 

7. Mixed Strategies 

In section 4 we used the best response functions ( )2 1B γ , Equation (52), and  
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Figure 7. Demonstration of threshold entanglement constant cβ  above 
which there is no pure strategy Nash Equilibrium in the DA brother quan-
tum game. The figure shows the payoffs of the two prisoners (-minus 
number of years in prison) for each value of β  for which Nash equili-
brium exists. There is no Nash equilibrium above 1.13cβ = . 

 
( )1 2B γ , Equation (53), and showed that Starting from a non-entangled initial 

state (for example 00  and using entanglement operators J as defined in Equa-
tions (31) or (32) leading to the maximally entangled states ψ+  and T  re-
spectively, the quantum game has no pure strategy NE. This naturally motivates 
the quest for defining quantum games with mixed strategies that might lead to 
mixed strategy Nash equilibria. 

In subsection 7.1 we define a mixed strategy quantum game with finite num-
ber of pure strategies, and its mixed strategy Nash equilibrium. Then, in subsec-
tion 7.2 we give an example of the existence of a mixed strategy Nash equili-
brium [31] in a quantum game with maximal entanglement, where we proved 
that pure strategy Nash equilibrium does not exist. Finally, in subsection 7.3 we 
will specify the general structure of mixed strategies in quantum games based on 
2-players 2-strategies classical game and cite a theorem by Landsburg pertaining 
to their existence. 

7.1. Mixed Strategy Quantum Game with Finite Number of Pure  
Strategies 

When the number of points in each player’s strategy set is continuously infinite 
[such is the number of ( ), ,i i i iφ α θ=γ ] the definition of mixed strategy requires 
the notion of distribution over a continuous space. This will be briefly carried 
out in subsection 7.3. But it is useful to start with the simpler case where each 
player i has finite number K of strategies, say ( ) , 1,2, ,i k k K= γ , as we dis-
cussed in our numerical approach formalism in section 5. If K is very large, the 
situation approaches the continuum limit. For each choice of strategies  

( ) ( )( )1 1 2 2,k kγ γ  the (absolute value squared of the) amplitudes , , ,a b c d  will 
depend on ( ) ( )( )1 1 2 2,k kγ γ  where 1 2, 1,2, ,k k K=  . The explicit functional 
relation depends on the details of the game played. For example, with maximally 
entangled J leading to ψ +  the functional form is given in Equation 50, whe-
reas for partially entangled J the functional form is given in Equation 57. For 
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short notation we write ( ) ( )( ) ( )1 1 2 2 1 2, ,a k k a k k=γ γ  and similarly for , ,b c d . 
In a mixed strategy quantum game with finite pure strategy spaces 

( ){ }, 1,2, ,i i i iA k k K= = γ  each player chooses strategy ( )i ikγ  with probabil-
ity ( )0 1i ip k≤ ≤  such that ( )1 1

i

K
i ik p k

=
=∑ . A given sequence of K probabili-

ties for player i is shortly denoted as ( ) ( ) ( )1 , 2 , ,i i i ip p p K =  p . Formally, 
the set { }ip  of all such K-tuples is a set of probability distributions over the 
strategy set ( ){ }, 1,2, ,i i i ik k K= =  γ . A profile of mixed strategies 1 2= ×p p p  
induces a probability distribution on 1 2= ×   . For a given strategy profile 

1 2= ×p p p , assuming independent randomization, the probability of an action 
profile ( ) ( )1 1 2 2k k× ∈γ γ  is ( ) ( )1 1 2 2p k p k . The payoff ( )1 2,iP p p  of player i 
in a mixed strategy game will then be, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

2 2 2
1 2 1 1 2 2 1 2 1 2

, 1

2 2
1 2 1 2

, , 0,0 , 0,1

, 1,0 , 1,1  .

i i i
k k

i i

P p k p k a k k u b k k u

c k k u d k k u

=

= +

+ + 

∑p p
   (65) 

We are now in a position to formulate. 
Definition: A mixed strategy quantum game GQ,mixed based on two-player 

2-strategy classical game GC is the collection (in all places i N∈ ), 

{ } { } { },mixed 1,2 , , , , , ,Q I i i iG N J Pψ= =  p              (66) 

where { }ip  is the set of probability distributions over the strategy set  
( ){ }, 1,2, ,i i i ik k K= =  γ , and 1 2:iP × →p p  assign to each player the  

payoff according to the prescription (65). The other entries are as defined in the 
pure strategy game back in Equation (43). 

Definition: A mixed strategy Nash Equilibrium of the quantum game GQ,mixed 
is a pair of strategies ( )* *

1 2,p p  such that, 

( ) ( ) ( ) ( )* * * * * *
1 1 2 1 1 2 1 2 1 2 2 1 2 2, , , , ,  .P P P P≤ ∀ ≤ ∀p p p p p p p p p p         (67) 

7.2. Simple Example of Mixed Strategy Nash Equilibrium in  
Quantum Games 

The fact that in the pure strategy game with maximal entanglement each player 
has a best response that forces his opponent to cooperate while he does not pre-
vents the occurrence of pure strategy Nash equilibrium but seems to be useful in 
searching an example for mixed strategy Nash equilibrium. The analysis below 
can be followed by looking at Figure 8. 

Suppose player 1 chooses his strategy randomly as ( )1 1 1 1, ,φ α θ=γ . If player 2 
knows that, he (player 2) chooses his best response ( ) ( )2 1 2 2 2, ,φ α θ=γ γ  ac-
cording to the prescription specified in Equation (52). This will lead to the case 

2 1b =  and 2 2 2 0a c d= = =  in which case prisoner 1 will spend 6 years in 
prison and prisoner 2 will spend only two years in prison. If player 1 knows that, 
he will chose the corresponding best response to 2γ  as ( )1 2 1′   γ γ γ  according 
to the prescription of Equation (53). This will lead to the case 2 1c =  and 

2 2 2 0a b d= = =  in which case prisoner 1 will spend only 2 years in prison  
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Figure 8. Mixed strategy Nash equilibrium where the “ping-pong” 
exchange of best response functions is closed (see text for details). 

 
and prisoner 2 will spend 6 years in prison. As a response, player 2 chooses his 
best response ( ){ }2 1 2 1′ ′   γ γ γ γ  again according to the prescription specified in 
Equation (52). By inspecting the best response functions in Equations (52) and 
(53), however, it is not difficult to show that the best response of player 1 to the 
final move ( ){ }2 1 2 1′ ′   γ γ γ γ  of player 2 is, according to the prescription speci-
fied in Equation (53), simply 1γ , and the chain is hence closed. 

Once the strategy 1γ  is chosen by player 1, all the other three strategies 

2 1, ′γ γ  and 2′γ  are uniquely determined. Let us consider the quantum prisoner 
dilemma based on the classical game presented by table (8). Suppose now that 
player 1,2i =  chooses the strategy iγ  with probability 1/2 and the strategy 

i′γ  with probability 1/2. Then, prisoner 1 has a 50% chance that the final state 
will be 10Ψ =  and thereby get a penalty of two years in prison and 50% 
chance that the final state will be 01Ψ =  and thereby get a penalty of six 
years in prison. The converse is with prisoner 2. Thus, on the average, each one 
gets four years in prison, better than the classical result of five years in prison. 
The fact that the strategies are determined as best responses and that the game is 
symmetric guarantee that this is indeed a mixed strategy Nash equilibrium. 

It is useful to stress that although each players chooses to bet on two strategies, 
the game as described above is not a quantum game with finite number of strategies 
in the sense defined in Equation (66) because in GQ,mixed the strategies ( ){ }i ikγ  are 
fixed a-priori, and cannot be adjusted. Thus, every player must have the capabil-
ity of choosing whatever strategy point he wishes. However, based on our results 
with the numerical algorithm with finite but large number of strategies, this dif-
ficulty can be alleviated. 

7.3. General Form of a Mixed Strategy Quantum Game 

In subsection 7.1 we discussed mixed strategy quantum game with finite number 
of quantum strategies. In the previous subsection 7.2 we gave a particular exam-
ple of mixed strategy that also proved to lead to a mixed strategy Nash equili-
brium for a quantum game where each player has all the allowed quantum 
strategies { }iγ , but he chooses but two strategies with probabilities with proba-
bilities ip  and 1 ip− . We need to formulate a possible mixed strategy where 
each player can choose every subset out of all possible strategies with whatever 
probability he likes. In that case, the most general form of mixed strategy for a 
player is determined by a distribution function ( ), ,ρ φ α θ  such that the strate-
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gy is given by 

( ) ( )Mixed Strategy , , , , d d sin 2 dM Uρ φ α θ φ α θ φ α θ θ= = ∫         (68) 

The product d d sin 2 dφ α θ θ  is the surface element on the sphere S3 (re-
member that a given strategy ( ), ,φ α θ=γ  is a point on the sphere S3). Its 
integral gives the surface of S3, which, for radius 1R =  gives 2

3 2S = π  (recall 
that the surface of S2 (our usual sphere, the globe) is 4π. Thus, if a player prefers  

a uniform distribution, he chooses ( ) ( ) 2
1, , , ,

2
Uρ φ α θ φ α θ

π
=  (but it is easy to  

show that it does not lead to mixed strategy Nash equilibrium). This formalism 
includes the strategies used in the game discussed in subsection 8.1 as a special 
case. If a player wants to choose a strategy ( ) ( ) ( )1 , 1 , 1φ α θ    with probability p 
and another strategy ( ) ( ) ( )2 , 2 , 2φ α θ    with probability 1 p−  he takes 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

1, , 1 1 1
sin 2

1 2 2 2 ,

p

p

ρ φ α θ δ φ φ δ α α δ θ θ
θ

δ φ φ δ α α δ θ θ

= − − −

+ − − − − 

        (69) 

where ( ).δ  is the Dirac delta function. 
To compute the payoffs in a mixed strategy game with mixed strategy profile 
( ) ( )1 2. .ρ ρ×  we assume that Player i chooses the strategy ( ), ,i i iφ α θ  and find 

the final states Ψ  as in Equation (41), where each complex amplitude  
, , ,a b c d  depends on ( )1 1 1 2 2 2, , ; , ,φ α θ φ α θ  Then, instead of Equation (38), the 

expected payoff of player i is then, 

( )
( ) ( )[ ][ ]

( ) ( ) ( ) ( )

1 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

2 2 2 2

,

, , , , d d sin 2 d d d sin 2 d

0,0 0,1 1,0 1,1 .

i

i i i i

P

a u b u c u d u

ρ ρ

ρ φ α θ ρ φ α θ φ α θ θ φ α θ θ=

 = + + + 

∫    (70) 

The formal definition of a mixed strategy quantum game with infinitely con-
tinuous strategy sets is a direct extension of the definition (66) with iρ  instead 
of ip , and similarly, the definition of a mixed strategy Nash equilibrium follows 
from that of Equation (67). 

At first sight, the quest for finding mixed strategy Nash equilibrium for this 
general case is virtually hopeless, due to the complexity of the strategy spaces. 
However, in a recent paper [28], Landsburg proved that the set of possible mixed 
strategy Nash equilibrium is remarkably simple. The conditions for the theorem 
and the detailed results will not be specified here, but the main result is that the 
corresponding strategies (distributions) *

1ρ  and *
2ρ  are supported at a small 

number (3 or 4) of isolated points on S3. Namely, *
1ρ  and *

2ρ  have the struc-
ture displayed in Equation (69) except that the number of terms might be 3 or 4 
instead of 2 in Equation (69). 

8. Bayesian Quantum Games 

While the topic of quantum games with full information received considerable 
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attention, the topic of quantum games with incomplete information is less stu-
died [32]. In this subsection we extend the game procedure developed in section 
4 [14] [15] to include also quantum Bayesian games. We shall carry it out by 
following a simple example derived from the full information DA brother game. 
Following the protocol suggested by Harsanyi [33] for classical games with in-
complete information, we will analyze a quantum Bayesian game with two types 
of prisoners denoted as 2I and 2II facing the DA brother prisoner. It will be 
shown that when the game played between the DA brother and prisoner type 2II 
has a Pareto efficient Nash equilibrium, the quantum Bayesian game in which 
both types face the DA brother have a pure strategy Nash equilibrium even with 
maximal entanglement. 

8.1. Example: Two Types of Prisoners Facing the DA Brother 

In order to introduce quantum games with imperfect information we will start 
with a simple classical game and quantize it. In the DA brother game discussed 
above, prisoner 1 (the DA brother) might now face two types of prisoner 2: Type 
2I (probability µ ) is the same prisoner 2 from the previous game. He is sure 
that if he does not confess he will get either one year or five years in prison de-
pending on whether prisoner 1 confesses or not. But type 2II (probability 1 µ− ) 
is afraid that by not confessing he will get six more years in prison. The game ta-
ble then looks as follows. 

 

8.1.1. The Classical Version [30] 
The classical Nash equilibrium is simple to find. Player type 2I has a dominant 
strategy of not confessing while type 2II has a dominant strategy to confess. Note 
also that in the game played between prisoner 1 and type 2II of prisoner 2, the 
strategy ( ) ( )2 2, ,C C→1 1  is Pareto efficient. Assuming the two types of player 
2 stick to their dominant strategies then if player 1 confesses he gets  

( )10 0 1µ µ− + −  while if he does not he gets ( )5 1 1µ µ− − − . Therefore, player 
1 strategy is 

( ) ( ) ( )

( ) ( ) ( )

player 1strategy

1confess if 10 0 1 5 1 1 ,
6

1don t confess if 10 0 1 5 1 1 ,
6

1indifferent if  .
6

x

I µ µ µ µ µ

σ µ µ µ µ µ

µ

 − + − > − − − ⇒ <

= − + − < − − − ⇒ >



=


’
   (71) 

The Nash equilibrium and the corresponding “payoffs” are, 

https://doi.org/10.4236/jqis.2023.133006


Y. Avishai 
 

 

DOI: 10.4236/jqis.2023.133006 118 Journal of Quantum Information Science 
 

( ) ( ) ( )

( ) ( ) ( )

110 , 1, 2 ,
6Nash equilibrium

11 4 , 5, 10 .
6

x

x x

I I CDC

I DDC

σ µ µ

σ σ µ µ

 → − − − <= 
 → − − − − >


    (72) 

Henceforth, the game as defined above is referred to as the classical DA 
brother Bayesian game. 

8.1.2. Definition of a Pure Strategy Quantum Bayesian Game 
A formal definition of a quantum Bayesian game is now in order. Since we limit 
our formulation of classical games in terms of bits (and remembering that each 
bit can get two values 0 or 1), we will limit our discussion to quantum Bayesian 
games in which analogous classical games there are two possible decisions. Let 

{ } ( ){ } ( ) { } ( ), , . , , . , 1,2, , , 1,2, , , .  ,CB i iG N S u F N n i n F= = =M       (73) 

denote a classical Bayesian game. Here ( )2 ,i xS σ= I  is the classical strategy set 
for player i, ( ), ,i i i iu s s µ−  is a payoff function of player i where i iMµ ∈  is a 
random variable generated by nature that is observed only by player i. The joint 
probability distribution of iµ , ( )1 2, , , nF µ µ µ  is a common knowledge and 

1
n
i iM== ×M . Then a pure strategy quantum Bayesian game is defined as, 

{ } ( ){ } ( ) { } ( ), , . , , . , , , 1,2, , , 1,2, , , .  ,QB i i iG N u F J P N n i n F= = =M  γ  (74) 

where the definitions to be modified compared with GCB are as follows: 1) 
( ), ,i i i iφ α θ=γ  is the set of angles that determine the quantum strategy  

( ), ,i iU φ α θ  according to Equation (18). 2) J is the entanglement operator fixed 
by the referee. 3) ( ), ,i i i iP µ−γ γ  are the payoff of player i determined by the 
quantum rules, see Equation (38) for iP  defined for the full information game. 
A modification required for the Bayesian game is explicitly given below in Equa-
tion (77). 

8.1.3. The DA brother Quantum Bayesian Game 
Now let us concentrate on the quantum version of the DA brother Bayesian 
game. Our discussion here will focus on the general formulation and will not 
enter the discretization and numerical formalism. The strategies are determined 
by the three angles chosen by each player 1, 2I and 2II 

( ) ( ) ( )1 1 1 1 2 2 2 2 2 2 2 2, , , , , , , , .I I I I II II II IIφ α θ φ α θ φ α θ= = =γ γ γ          (75) 

That leads according to Equation (18) to the three matrices ( ) ( )1 2, ,IU Uγ γ  
( )2IIU γ . Each type of player 2, namely, 2I and 2II faces player 1 and the quan-

tum game between them is conducted according to the rules specified in Section 
3 especially Figure 3. Each game results in the corresponding final state (the 
subscripts should include also payer 1 but it is omitted for convenience) 

2 2 2 2 2

2 2 2 2 2

00 01 10 11 ,

00 01 10 11 .
I I I I I

II II II II II

a b c d

a b c d

Ψ = + + +

Ψ = + + +
              (76) 

The coefficients in the expression for 2IΨ  depend on 1 2, Iγ γ  and the 
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coefficients in the expression for 2IIΨ  depend on 1 2, IIγ γ . Explicit expres-
sions for the coefficients depend on the entanglement operator J that is used by 
the referee. Below we will concentrate on the case of maximal entanglement ma-
trix 1J J= , with 00J ψ +=  as defined in Equations (31) and (47). The 
coefficients are given in Equation (50) wherein for player of type 2I the angles 

2 2 2, ,φ α θ  in Equation (50) are to be replaced by 2 2 2, ,I I Iφ α θ  and for player of 
type 2II the angles 2 2 2, ,φ α θ  in Equation (50) are to be replaced by  

2 2 2, ,II II IIφ α θ . Following the expressions for the payoff function as in Equation 
(38) and the present game tables, the corresponding payoffs are, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2 2 2
2 1 2 2 2 2 2

2 2 2 2
2 1 2 2 2 2 2

2 2 2 2
1 1 2 2

2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 2
2 2 2 2

; 2 1 10 5

; 2 7 10 11

; , 0 10 1 5

1 , 1 ,

1 , 1 .

I I I I I I

II II II II II II

I II

I II I II

I II I II

P a b c d

P a b c d

P a b c d

a a a b b b

c c c d d d

µ µ µ µ

µ µ µ µ

= × − + × − + × − + × −

= × − + × − + × − + × −

= × + × − + × − + × −

= + − = + −

= + − = + −

γ γ

γ γ

γ γ γ  (77) 

8.1.4. Definition of a Pure Strategy Nash Equilibrium in Quantum  
Bayesian Game 

We will define the pure strategy Nash equilibrium for the specific game under 
study, but a generalization to an arbitrary game as defined in Equation (74) is 
straightforward. A pure strategy Nash equilibrium for the quantum Bayesian 
game derived from the classical DA brother Bayesian game is the triple of strate-
gies ( )* * *

1 2 2, ,I IIγ γ γ  (if it exists, recall that each γ  stands for three angles  
, ,φ α θ  as in Equation (75)) that satisfies, 

( ) ( )
( ) ( )
( ) ( )

* * * * *
1 1 2 2 1 1 2 2 1

* * *
2 1 2 2 1 2 2

* * *
2 1 2 2 1 2 2

, , , , ,

, , ,

, , .

I II I II

I I I I I

II II I II II

P P

P P

P P

≤ ∀

≤ ∀

≤ ∀

γ γ γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ

              (78) 

8.1.5. Nash Equilibrium despite Maximal Entanglement 
We have seen in subsection 4.4 that when J is leads to maximally entangled state 
ψ +  there is no pure strategy Nash equilibrium in the (full information) game 

played between player 1 and player 2I. One of the conditions for the proof of this 
negative result is that there is no Pareto efficient pure strategy Nash equilibrium 
in the classical game, which is indeed the case as far as the game between player 
1 and player 2I is concerned. On the other hand, in the classical game played 
between players 1 and 2II the profile of strategies ⊗1 1  (both confess) is a Pa-
reto efficient pure strategy Nash equilibrium. What can be said about the Quan-
tum version? Intuitively, we expect that for small µ , player 2II will dominate 
and the game will have a pure strategy Nash equilibrium, but at some value of 
µ  player 2I will dominate and there will be no equilibrium. We show below 
that this is indeed what happens, and that the critical value of µ  is 1/6, that is 
exactly the value where, in the classical game, player 1 changes his strategy from 
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1  (confess) to xσ  (don’t confess). 
From Equations (77) it is clear that for every strategy 1γ  player type 2I will 

seek his classical strategy and try to arrive at the situation where 2
2 1Ib = , 

2 2 2
2 2 2 0I I Ia c d= = = , while player type 2II will seek his classical strategy and 

try to arrive at the situation where 2
2 1IIa = , 2 2 2

2 2 2 0I I Ib c d= = = . First let 
us check with the help of Equations (50) if they can indeed achieve it and then 
check the response of player 1. 

Player 2I best response (he wants 2
2 1Ib = ): According to Equation (50) we  

have,  

( ) ( )
2

2
2 1 2 1 2 1 2 1 2

1 1 1 1cos sin cos sin cos sin
2 2 2 2I I I I Ib θ θ φ α θ θ α φ = − + −  

. 

Recall that for 0θ =  α  is not defined and conventionally assumes the value 
0. Similarly, for θ = π  φ  is not defined and conventionally assumes the value 0. 
Therefore, by choosing 

2 1 2 1 2 1, , modulo 2
2I I Iθ θ α φ φ α= − =
π

=π − π  

player 2I gets, ( )
2

2 2
2 1 2

1sin sin 1
2 2I Ib θ θ =

π
= + = . The modulo 2π is optional  

in order to keep 20 2Iφ≤ < π . Therefore the best response function of player 2I 
(that is a triple functions) is, 

( ) ( )2 1 2 1 1 1 1 1 1, , , ,  .
2I Iq q φ α θ α φ θ = = − − π 

 

πγ            (79) 

Player 2II best response (he wants 2
2 1IIa = ): According to Equation (50) 

we have,  

( ) ( )
2

2
2 1 2 1 2 1 2 1 2

1 1 1 1cos cos cos sin sin sin
2 2 2 2II II II II IIa θ θ φ φ θ θ α α = + − +  

, 

Therefore, by choosing 

2 1 2 1 2 1, modulo 2 , modulo 2
2II II IIθ θ φ φ α α π

= = − = − π 


+ π


 

player 2II gets, ( )
2

2
2 1 2

1cos 1
2II IIa θ θ= − = . Therefore the best response func-

tion of player 2II (that is a triple functions) is, 

( ) ( )2 1 2 1 1 1 1 1 1, , , ,  .
2II IIq q φ α θ φ α θ  = = − − +  

  

πγ           (80) 

Finding the best response function of player 1, ( )1 2 2,I IIq γ γ  is virtually 
hopeless. However, guided by the classical game results, we are tempted to test 
whether, for small µ , the first player will choose his classical strategy  

( )1 0,0,0=γ  which means that his 2 × 2 strategy matrix is 1 . In that case, the 
best response functions of players 2I and 2II are ( )2 0,0,0Iq  and ( )2 0,0,0IIq  
where the functions are defined in Equations (79) and (80). In other words, we 
have 
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Proposition: For 1 6µ ≤ , a pure strategy Nash equilibrium of the Bayesian 
quantum game is the “triple of triples” 

( ) ( ) ( ) ( )* * *
1 2 2 2 2, , 0,0,0 , 0,0,0 , 0,0,0  .I II I IIq q =  γ γ γ            (81) 

Proof By construction, *
2Iγ  and *

2IIγ  are best responses to *
1γ  and there-

fore, 

( ) ( )* * *
2 1 2 2 1 2 2, ,I I I I IP P≤ ∀γ γ γ γ γ   ( ) ( )* * *

2 1 2 2 1 2 2, ,II II II II IIP P≤ ∀γ γ γ γ γ  

To check for 1P  we use Equation (77) and recall the expression for the coef-
ficients from Equation (50). For any ( )1 1 1 1, ,φ α θ=γ  we find, after some calcula-
tions, 

( )

( )

( )

( )

* *
1 1 1 1 2 2

2 2

1 1 1 1

2 2

1 1 1 1

2 2

1 1 1 1

, , , ,

1 110 cos cos 1 sin sin
2 2

1 1cos sin 1 sin cos
2 2

1 15 sin cos 1 cos sin  .
2 2

I IIP φ α θ

µ θ φ µ θ α

µ θ φ µ θ α

µ θ α µ θ φ

    = − + −    
     

    − + −    
     

    − + −    
     

γ γ

          (82) 

Although finding a global maximum of a function of three continuous  

variables is not an easy task, all my numerical test indicates that for 1
6

µ ≤ , the  

payoff ( )* *
1 1 1 1 2 2, , , ,I IIP φ α θ γ γ  of player 1 has a global maximum at  

( ) ( )1 1 1, , 0,0,0φ α θ =  with payoff value 10µ− . Thus, for 1 6µ ≤  the classical 
and quantum payoffs are identical, ( ) ( )1 2 2, , , 10 , 1, 2IIP P I P µ= − − − . On the other 
hand, for 1 6µ >  it is easy to show that 1P  as defined in Equation (82) does 
not have a global maximum at ( )0,0,0  and as my numerical algorithm indi-
cates, the quantum version of the DA brother Bayesian game with maximal en-
tanglement does not have a pure strategy Nash equilibrium. 

9. Two-Players Three Strategies Games 

Note: This section is based on the concepts reported in Ref. [34] wherein an entan-
glement operator is constructed for the system of two-players N strategies quantum 
game. The unavoidable overlap is included for the sake of self-consistence. 

So far, all our analysis was constructed upon classical games with two strate-
gies per each player. These two strategies are represented by 2 × 2 matrices  

1 0
0 1
 

=  
 

1  and 
0 1
1 0xσ
 

=  
 

 that operate on the two bit states represented as 

vectors 
1

0
0
 

=  
 

 and 
0

1
1
 

=  
 

. In this section, we will briefly touch upon the  

topic of quantum games based on 2-players 3-strategies classical game. The rea-
son for carrying out this analysis is to check whether, in these structures there 
are special interesting features whose elucidation makes it worth to study despite 
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the augmented complication. First, in subsection 9.1, we will describe how to 
cast the classical game in quantum information format, and define the notion of 
trits and classically non-commuting strategies. Then, in subsection 9.2, we will 
analyze the construction of the quantum game and define the notion of qutrits 
and quantum strategies as 3 × 3 matrices forming the group SU(3). 

9.1. Two Players Three Strategies Classical Games: Trits 

Now consider a two-players classical game with three strategies for each player. 
For example, prisoners may have three options: C, S and D for confess, Stay 
quiet or Don’t confess. In analogy with the bit notation 0, 1, these three options 
that are marked by 1, 2, 3 respectively, or in our ket notation 1 , 2 , 3 . 

An object or a state that can assume three values is referred to as trit. 
In analogy with the two-component vector notation for bits, we have, 

1 0 0
trit state1 0 1 , trit state 2 1 2 , trit state 3 0 3 .

0 0 1

     
     = = = = = =     
     
     

     (83) 

Similarly to Equations (3) and (4) we define two trit states as nine components 
vectors obtained by a Kronecker product of the two trits. Briefly, two-trit states are 
denoted as, ij i j= ⊗ , , 1,2,3i j = . Note that for i j≠  i j j i⊗ ≠ ⊗ . 
The game table consists of two rows and three columns. The protocol of the 
classical game with 2-player and 3-strategies is similar (but not identical) to that 
of the 2-players 2-decision game. To underline the difference suppose that the 
judge calls the prisoners and tells them he assumes that they are in a two-trit 
state 12  meaning (C, S) namely, prisoner 1 confesses and prisoner 2 stays 
quiet. He then asks them to decide whether to leave their trit state as it is on 1  
and 2  or to change it. These replacement operations are the players strategies. 
Since trits are represented by three component vectors, operation on trits (gates) 
is represented by 3 × 3 matrices. Unlike the case for two-players two strategies 
game where the states are bits, and the operations (strategies) are identical for 
both players, exhausted by 21  (the unit 2 × 2 matrix) and xσ , the situation of 
the two players in the present game is different: For player 1, the strategies are 

31  (the 3 × 3 unit matrix leaving the trit as it is), S12 (swapping of 1  and 2  
namely, replacing C by S) and S13 (swapping 1  and 3  namely replacing C 
by D). For player 2, the strategies are 31  S21 (swapping of 2  and 1  name-
ly, replacing S by C) and S23 (swapping 2  and 3  namely replacing S by D). 
In matrix notations the four operations are, 

3 12 13 23

1 0 0 0 1 0 0 0 1 1 0 0
0 1 0 , 1 0 0 , 0 1 0 , 0 0 1
0 0 1 0 0 1 1 0 0 0 1 0

S S S
       
       = = = =       
       
       

1   (84) 

These four matrices form a subset of 3P , that is a representation of the per-
mutations group on three objects that has six matrices. The other two matrices 
are such that all three elements change their place like 1 2 3 1→ → →  (they do 
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not have 1 on the diagonal) but they are not used in a simultaneous game with a 
single move. Thus, the four operations 3 12 13 23, , ,S S S1  do not form a group. Un-
like the case of two-players two-strategies game where the two operations 21  
and xσ  commute with each other, [ ]3 , 0xσ =1 , here the strategies ijS  do not 
commute with each other, for example, 

[ ]12 13 12 13 13 12, 0, etc.S S S S S S= − ≠                (85) 

9.2. Qutrits 

In this section we will briefly introduce the notion of quantum trits (qutrits) and 
quantum strategies in the quantum version of a two-players three-decisions 
game. This will mainly include a few definitions and some basic properties, since 
the analysis of such quantum game is too complicated and naturally falls beyond 
the scope of this research. 

In order to define a qutrit we consider a three dimensional Bloch sphere S3 in 
which the three states of a trit, 0 , 1  and 2  are described by a point on its 
surface. This means that 1) Every element (vector, or ket) 3Sψ ∈  is expressi-
ble as a linear combination 

22 2
1 2 3 1 2 3 1 2 31 2 3 , where , ,  , 1,v v v v v v v v vψ = + + ∈ + + =     (86) 

recall that for qubit, 
a
b
 
 
 

 we have 2 2 1a b+ = . Thus, 

Definition: A qutrit is a vector 3
1 2 31 2 3v v v Sψ = + + ∈  such that 

22 2
1 2 3 1v v v+ + = . In analogy with Equation (15), the representation of qutrits 

in terms of angular variables reads, 

e sin cos 1 e sin sin 2 cos 3  .i iα βψ θ φ θ φ θ= + +          (87) 

9.2.1. Operations on Qutrits: Strategies 
Instead of the 2 × 2 unitary matrix U defined in Equation (18) as a players strat-
egy in the two players-two strategies game, a strategy of a player in a three strat-
egies game is a unitary 3 × 3 complex matrix U with unit determinant det[U] = 1. 
The (infinite) set of all these matrices form a group, referred as the ( )3SU  
group. It plays a central role in physics especially in the classification of elemen-
tary particles. Unlike the two-strategies game where the 2 × 2 strategy matrices 
( ) ( ), , 2U SUφ α θ ∈  depend on three Euler angles, the quantum strategies  

( )3U SU∈  in the three strategies game depend on eight Euler angles,  
( ) ( )1 2 8, , , 3U SUα α α ∈ . That turns any attempt to use numerical approach 

virtually useless. Instead, we will list a few properties of the pertinent quantum 
game that indicates that it is principally different from the quantum game based 
on 2-players 2-strategies classical games. 

9.2.2. Entanglment of Two Qutrit States 
Like in the simpler quantum games based on 2-players 2-strategies, entangle-
ment plays a crucial role also in 2-players 3-strategies games. First, let us define a 
two qutrit state and then define entanglement. A general two qutrit state (a point 
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on S8) can be written as, 
3 3 2

, 1 , 1
, 1 .ij ij

i j i j
v ij v

= =

Γ = =∑ ∑                    (88) 

Consider now two qutrits, 
3 3 3 3 22

1 2
1 1 1 1

, , 1, , , 1 .i i i j j j
i i j j

a i a a b j b bψ ψ
= = = =

= ∈ = = ∈ =∑ ∑ ∑ ∑     (89) 

Their outer (or tensor) product is defined as, 
3

1 2
, 1

 .i j
i j

a b ijψ ψ
=

⊗ = ∑                      (90) 

Then we have: 
Definition: A general 2 qutrits state Γ  as defined in Equation (88) is said to 

be entangled if it cannot be written as an outer product of two qutrits as in Equa-
tion (90). We give (without proof) an example of maximally entangled two-qutrit 
states, 

( )1 2 3ME

1 11 22 33 , , 1 .
3 i iu u u u uΨ = + + ∈ =         (91) 

9.2.3. New Elements in Quantum Games Based on 2-Players 3-Strategies  
Classical Games 

Suppose we try to organize the conduction of a quantum game based on a clas-
sical two-players three strategies game as a straightforward extension of the pro-
cedure used to quantize a two-players two strategies quantum game as displayed 
in Figure 3. The first move by the referee, that is, fixing an initial two-qutrit 
state (usually the classical two trit states ( )11 ,C C= ) is indeed identical. But 
the second operation, namely, operating by the entanglement operator is less 
straightforward because we first have to identify the maximally and partially en-
tangled states in 3 3S S⊗  and then to design the 9 × 9 matrix J that turns the 
non-entangled two qutrit initial state 11  into a maximally entangled state in 
analogy with Equation (31) or Equation (32). The maximally entangled state 

MEΨ  has already been identified in Equation (91). In searching for an entan-
glement operator J such that 

ME11J = Ψ  we recall an important and desira-
ble property that we want to be satisfied by J, namely, classical commensurability. 
Mathematically it means that J should commute with all outer products of the 
classical strategies (see Equations (45) and (47) for the 2-players 2-strategies 
case). The reason for demanding classical commensurability is to assure that 
classical strategies are a special case of the quantum strategies as explained in 
connection with Equation (46). 

Concentrating on the quantum game with initial state, 11  we then require 

[ ]12 13ME11 , , 0,J J S S= Ψ ⊗ =                   (92) 

where the classical strategies are defined in Equation (84). A necessary and suffi-
cient condition for satisfying Equation (92) will be composed of outer products 
of non-trivial 3 × 3 matrices that commute with both S12 and S13. But that is im-
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possible as we now prove, 
Theorem: In a quantum game based on 2-players 3-strategies classical game 

conducted as in Figure 3 with a non-trivial entanglement operator J (Namely, 
the state 11J  is entangled) there is no classical commensurability, namely, 
the classical strategies are not achieved as a special case of the quantum strate-
gies. 

Proof A necessary and sufficient condition for classical commensurability is a 
relaxed version of Equation 92, namely, 

[ ]12 1311 Entangled State , , 0.J J S S= ⊗ =              (93) 

The second equality is possible only if J is a function of A A⊗  where A is a 3 
× 3 matrix satisfying [ ] [ ]12 13, , 0A S A S= = , and the first equality requires that A 
is not simply a multiple of the unit matrix 31 . Therefore we need to prove the 
following. 

lemma: If a 3 × 3 matrix A satisfies [ ] [ ]12 13, , 0A S A S= =  the 3A C= 1  where 
0C ≠  is a number. 

Proof of the lemma: Although the lemma can be proved by brute force writing 
down the equation implied by the commutation relations, we choose a more 
elegant way mainly because it can be easily generalized to games with any finite 
number of strategies. The lemma will be proved in steps. 

1. If [ ] [ ]12 13, , 0A S A S= =  then A commutes with any monomial of S12 and S13. 
For example, 2 2 2 2

12 12 12 12 12 12, 0A S AS S AS AS AS  = − = − =   and so on. 
2. We have already stated that S12 and S13 are the matrices representing per-

mutations on three elements, specifically, 

12 13

1 0 1 0 1 2 1 0 0 1 1 3
2 1 0 0 2 1 , 2 0 1 0 2 2 .
3 0 0 1 3 3 3 1 0 0 3 1

S S
             
             = = = =             
             
             

     (94) 

It is easily verified that simple monomials of S12 and S13 generate all the other 
permutations of three objects, altogether 6 elements (including the permutation 

( ) ( )31 : 123 123→ ). Explicitly, 

( ) ( ) ( ) ( )12 13 13 12

0 1 0 0 0 1
0 0 1 : 123 231 ; 1 0 0 : 123 312 .
1 0 0 0 1 0

S S S S
   
   = → = →   
   
   

 (95) 

( ) ( )12 13 12 23

1 0 0
0 0 1 : 123 132 .
0 1 0

S S S S
 
 = = → 
 
 

            (96) 

Therefore, according to 1), the matrix A commutes with all the six matrices 
representing the set S3 of all permutations of three objects. 

3. From group theory we know that S3 is a (non-commutative) group con-
taining 6 elements, and that the five matrices 12 13 23 12 13 13 12, , , ,S S S S S S S  listed 
above together with the 3 × 3 unit matrix 31  form an irreducible representation 
of S3. 
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4. The Schure lemma in group theory states that if a matrix commutes with all 
the matrices that form an irreducible representation of a group, then this matrix 
is a multiple of the unit matrix. Hence 3A C= 1  and the lemma is proved.   □ 

9.2.4. Designing J1 
A natural question is whether we can find an entanglement operator J such that 
when it acts on the two qutrit state 00  it yields 

MEΨ  of Equation (91) as 
specified in Equation (92). For two qubit states we defined the corresponding 
entanglement operator ( )J β  in Equation (56). When it acts on two qubit state 
00  it gives the state ( )ψ β+  which, for 4β = π  gives the maximally  

entangled Bell state 
4

ψ+
 
 
 

π
 of Equation (33). But with qutrits the design of J (a  

9 × 9 matrix) is more complicated. To find it we note that in order to get the two 
qutrit state 11  from the qutrit state 00  we have to operate on 00  with 

[ ] [ ]12 13 13 12X S S S S≡ ⊗ , see definition in Equation (95), whereas in order to get 
the two qutrit state 22  from the qutrit state 00  we have to operate on 
00  with [ ] [ ]T

13 12 12 13X S S S S≡ ⊗ , see definition in Equation (95). Consider 
the 9 × 9 matrix 

T 2
9 9, 00 11 22 , 2 ,Z X X Z Z Z ×≡ + ⇒ = + = + ×1           (97) 

where the last equality holds because T, 0X X  =   and T
9 9XX ×= 1 . Now let us 

define, 

( ) ( ) ( )e ,i ZJ a b Zββ β β= = +                     (98) 

where the equality holds because 2
9 92Z Z ×= + ×1  and the expansion of the 

exponent yields only linear expression with Z. To get the coefficients ( )a β  and 
( )b β  we perform derivative of both sides of Equation (98) and obtain, 

( )
( ) ( )

2e

2 2 .

i ZJ a b Z iZ iZ a bZ iaZ ibZ

iaZ ib Z i a b Z ib

β′ ′ ′= + = = + = +

= + + = + +
            (99) 

Equating powers of Z we get a set of differential equations, 

( ) ( ) ( ) ( )
( )

02
11 1

2 , , 0 1, 0 0, e  .
0

ia
a ib b i a b a b

b

ββ
β

 
 
 

   ′ ′= = + = = ⇒ =       
   (100) 

The calculations of the exponent are easily done with the results 

( ) ( )3 31 1e e 2 , e e 1 ,
3 3

i i i ia bβ β β β− −= + = −                (101) 

Inserting these results in Equation (98) and using Equation (97) we get, 

( ) ( ) ( )( )3 3100 e e 2 00 e 1 11 22  .
3

i i iJ β β ββ −  = + + − +          (102) 

Maximal entanglements obtains when the absolute values of all three coeffi-
cients are equal, namely, 

3 3 2e 2 e 1 40 .
9

i iβ β β+ = − ⇒ = =
π

                  (103) 
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Thus we have explicitly found the desired entanglement operator. 
To summarize: Introducing the quantum game based on 2-player 3-classical 

strategies brings a few new elements, 
1. Richer quantum information content through the interaction of qutrits. 
2. Richer strategy content encoded by SU(3) matrices that depend on eight 

Euler angles. 
3. Intricate entanglement pattern in 2-qutrit states. 
4. Absence of classical commensurability. The classical strategies are not 

achieved as a special case of the quantum strategies because it is impossible to 
design an entanglement operator J that commutes with all the classical strategies. 

5. A non-trivial entanglement operator ( )J β  acting on two qutrits states  

such that for 2
9

β =
π  the two qutrit state ( )2 9 00J π  is maximally entan-

gled. 
Note added With the increasing development of Artificial Intelligence (AI) it 

is expected that it will soon play a role in quantum games [35] [36] [37] [38]. 

Acknowledgements 

This manuscript is based on the MA thesis of the author under the supervision 
of Professor Oscar Volij, as partial fulfillment of academic duties toward achiev-
ing second degree in Economics in the Department of Economics at Ben Gurion 
University [39]. I would like to thank Oscar for teaching me the (classical) 
theory of games, and for directing me during my studies. I would also like to 
thank the academic and administrative staff of the Department of Economics for 
their warm hospitality and high level teaching efforts during my studies. Thanks 
are due also to Professor Adam Brandenburger for occasional discussions during 
our overlap period in NYU-Shanghai University. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Shannon, C.E. (1949) A Mathematical Theory of Communication. University of Il-

linois Press, Evanston. 

[2] Nash, J. (1950) The Bargaining Problem. Econometric, 18, 155-162.  
https://doi.org/10.2307/1907266 

[3] Nash, J.F. (1950) Equilibrium Points in N-Person Games. Proceedings of the Na-
tional Academy of Sciences, 36, 48-49. https://doi.org/10.1073/pnas.36.1.48 

[4] Nash, J. (1950) Non-Cooperative Games. Ph.D. Thesis, Princeton University, Prin-
ceton.  

[5] Nash, J. (1951) Non-Cooperative Games. Annals of Mathematics, 54, 286-295.  
https://doi.org/10.2307/1969529 

[6] Nash, J. (1953) Two-Person Cooperative Games. Econometrica, 21, 128-140.  

https://doi.org/10.4236/jqis.2023.133006
https://doi.org/10.2307/1907266
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.2307/1969529


Y. Avishai 
 

 

DOI: 10.4236/jqis.2023.133006 128 Journal of Quantum Information Science 
 

https://doi.org/10.2307/1906951  

[7] von Neumann, J. and Morgenstern, O. (1953) Theory of Games and Economic Be-
havior. Princeton University Press, Princeton.  

[8] Shor, P.W. (1997) Polynomial Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26, Ar-
ticle 1484. https://doi.org/10.1137/S0097539795293172 

[9] Wiesner, S. (1983) Conjugate Coding. ACM SIGACT News, 15, 78-88.  
https://doi.org/10.1145/1008908.1008920 

[10] Ekert, A.K. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Re-
view Letters, 67, 661-663. https://doi.org/10.1103/PhysRevLett.67.661 

[11] Goldenberg, L., Vaidman, L. and Wiesner, S. (1999) Quantum Gambling. Physical 
Review Letters, 82, 3356. https://doi.org/10.1103/PhysRevLett.82.3356 

[12] Vaidman, L. (1999) Variations on the Theme of the Greenberger-Horne-Zeilinger 
Proof. Foundations of Physics, 29, 615-630.  
https://doi.org/10.1023/A:1018868326838 

[13] Meyer, D. (1999) Quantum Strategies. Physical Review Letters, 82, 1052-1055.  
https://doi.org/10.1103/PhysRevLett.82.1052 

[14] Eisert, J., Wilkens, M. and Lewenstein, M. (1999) Quantum Games and Quantum 
Strategies. Physical Review Letters, 83, 3077-3080.  
https://doi.org/10.1103/PhysRevLett.83.3077 

[15] Eisert, J. and Wilkens, M. (2000) Quantum Games. Journal of Modern Optics, 47, 
2543-2556. https://doi.org/10.1080/09500340008232180 

[16] Benjamin, S.C. and Hayden, P.M. (2001) Comment on “Quantum Games and 
Quantum Strategies”. Physical Review Letters, 87, Article ID: 069801.  
https://doi.org/10.1103/PhysRevLett.87.069801 

[17] Benjamin, S.C. and Hayden, P.M. (2001) Multi-Player Quantum Games. Physical 
Review A, 64, Article ID: 030301. https://doi.org/10.1103/PhysRevA.64.030301 

[18] Flitney, A.P. and Abbott, D. (2002) An Introduction to Quantum Game Theory. 
Fluctuation and Noise Letters, 2, R175-R18.  
https://doi.org/10.1142/S0219477502000981 

[19] Piotrowski, E.W. and Slaadkowski, J. (2003) An Invitation to Quantum Game Theory. 
International Journal of Theoretical Physics, 42, 1089-1099.  
https://doi.org/10.1023/A:1025443111388 

[20] Flitney, A.P. and Abbott, D. (2003) Advantage of a Quantum Player over a Classical 
One in 2 × 2 Quantum Games. Proceedings of the Royal Society of London. Series 
A: Mathematical, Physical and Engineering Sciences, A459, 2463-2474.  
https://doi.org/10.1098/rspa.2003.1136 

[21] Iqbal, A. (2005) Studies in the Theory of Quantum Games.  
arXiv: quant-ph/0503176.  

[22] Landsburg, S.E. (2004) Quantum Game Theory. Notices of the American Mathe-
matical Society, 51, 394-399. 

[23] Piotrowski, E.W. and Sladkowski, J. (2002) Quantum Market Games. Physica A: 
Statistical Mechanics and Its Applications, 312, 208-216.  

[24] Piotrowski, E.W. (2004) Quantum Game Theory in Finance.  
arXiv: quant-phys/0406129. 

[25] Piotrowski, E.W. and Sladkowski, J. (2002) Quantum Bargaining Games. Physica A: 
Statistical Mechanics and Its Applications, 308, 391-401.  

https://doi.org/10.4236/jqis.2023.133006
https://doi.org/10.2307/1906951
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.82.3356
https://doi.org/10.1023/A:1018868326838
https://doi.org/10.1103/PhysRevLett.82.1052
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1080/09500340008232180
https://doi.org/10.1103/PhysRevLett.87.069801
https://doi.org/10.1103/PhysRevA.64.030301
https://doi.org/10.1142/S0219477502000981
https://doi.org/10.1023/A:1025443111388
https://doi.org/10.1098/rspa.2003.1136


Y. Avishai 
 

 

DOI: 10.4236/jqis.2023.133006 129 Journal of Quantum Information Science 
 

https://doi.org/10.1016/S0378-4371(02)00592-7 

[26] Lambertini, L. (2000) Quantum Mechanics and Mathematical Economics Are Iso-
morphic. John von Neumann between Physics and Economics.  
http://www.dse.unibo.it/wp/370.pdf  

[27] von Neumann, J. and Morgenstern, O. (1953) Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, NJ. 

[28] Landsburg, S.E. (2011) Nash Equilibria in Quantum Games. Proceedings of the 
American Mathematical Society, 139, 4423-4434.  
https://doi.org/10.1090/S0002-9939-2011-10838-4 

[29] Avishai, Y. (2012) Quantum Games: Numerical Approach. 2012 8th International 
Conference on Natural Computation, Chongqing, 29-31 May 2012, 898-903.  
https://doi.org/10.1109/ICNC.2012.6234560 

[30] Mas-Colell, A., Whinston, M.D. and Green, J.R. (1995) Microeconomic Theory. 
Oxford University Press, Oxford. 

[31] Chen, K.Y. and Hogg, T. (2006) How Well Do People Play a Quantum Prisoners 
Dilemma? Quantum Information Processing, 5, 43-67.  
https://doi.org/10.1007/s11128-006-0012-7 

[32] Cheon, T. and Iqbal, A. (2008) Bayesian Nash Equilibria and Bell Inequalities. 
Journal of the Physical Society of Japan, 77, Article ID: 024801.  
https://doi.org/10.1143/JPSJ.77.024801 

[33] Harsanyi, J.C. (1967) Games with Incomplete Information Played by “Bayesian” 
players, I-III Part I. The Basic Model. Management Science, 14, 159-182.  
https://doi.org/10.1287/mnsc.14.3.159 

[34] Avishai, Y. (2015) Constructing Entanglers in 2-Players—N-Strategies Quantum 
Game. Journal of Quantum Information Science, 5, 16-23.  
https://doi.org/10.4236/jqis.2015.51003 

[35] Miakisz, K., Piotrowski, E.W. and Sładkowski, J. (2006) Quantization of Games: To-
wards Quantum Artificial Intelligence. Theoretical Computer Science, 358, 15-22.  
https://doi.org/10.1016/j.tcs.2005.11.003 

[36] Zhang, W.R. (2013) Bipolar Quantum Logic Gates and Quantum Cellular Combi-
natorics-A Logical Extension to Quantum Entanglement. Journal of Quantum In-
formation Science, 3, 93-105. https://doi.org/10.4236/jqis.2013.32014 

[37] Zhang, W.R. (2021) If AI Machine Cannot Think, Can QI Machine Think-from 
Negative Numbers to Quantum Intelligence for Mind-Light-Matter Unity. Quan-
tum Machine Intelligence, 5, Article No. 14.  
https://doi.org/10.1109/JAS.2021.1003868 

[38] Zhang, W.R. (2021) Ground-0 Axioms vs. First Principles and Second Law: From 
the Geometry of Light and Logic of Photon to Mind-Light-Matter Unity-AI&QI. 
IEEE/CAA Journal of Automatica Sinica, 8, 534-553.  
https://doi.org/10.1109/JAS.2021.1003868 

[39] Avishai, Y. (2013) Some Topics in Quantum Games. arXiv: 1306.0284. 
 
  

https://doi.org/10.4236/jqis.2023.133006
https://doi.org/10.1016/S0378-4371(02)00592-7
http://www.dse.unibo.it/wp/370.pdf
https://doi.org/10.1090/S0002-9939-2011-10838-4
https://doi.org/10.1109/ICNC.2012.6234560
https://doi.org/10.1007/s11128-006-0012-7
https://doi.org/10.1143/JPSJ.77.024801
https://doi.org/10.1287/mnsc.14.3.159
https://doi.org/10.4236/jqis.2015.51003
https://doi.org/10.1016/j.tcs.2005.11.003
https://doi.org/10.4236/jqis.2013.32014
https://doi.org/10.1109/JAS.2021.1003868
https://doi.org/10.1109/JAS.2021.1003868


Y. Avishai 
 

 

DOI: 10.4236/jqis.2023.133006 130 Journal of Quantum Information Science 
 

Notation List 

• Γ : Defining two players two strategies quantum game, with strategies C = 
Confess and D = Do not confess. 

•  : The set of real numbers. 
•  : The set of complex numbers. 
• 21 : The unit 2 × 2 matrix. 
• , ,σ σ σx y z : The three Pauli matrices. 
• CG : Formal definition of two players two strategies classical game. 
• iju : Elements of the payoff matrix. 
• 1 2,S S : Strategies.  
• * *

1 2,S S : Nash equilibrium strategies. 
• ,1−p p : Probabilities in mixed strategy game. 
• ψ : A short notation for qubit or qutrit. 
• ( ), ,φ α θU : An SU(2) matrix defined by three Euler angles. 
• nS  Bloch (unit sphere in 1+n  space). 
• , ,ψ±T S : Four Bell states with maximal entanglement. 
• γ : Degree of entanglement. 
• Ψ  Two qubit state. 
•  : SU(4) matrix operating on two qubit states. 

• ( )βJ : Entanglement operator, where 0
2

β≤ ≤
π  determines the degree of 

entanglement. 
• 1 2,P P : Payoffs in a two-players two strategies quantum games. 
• QG : Formal definition of two players two strategies quantum game. 
• 1 2,γ γ : Strategies in quantum game, depending on the choice of the three 

Euler angles. 
• * *

1 2,γ γ : Nash equilibrium strategies in quantum game, depending on the choice 
of the three Euler angles. 

• ( ), ,φ α θq : Best response function of a player in a quantum game. 
• ( ), ,φ α θI k k k : Lexicographic ordering of discrete strategies determined by the 

three Euler angles. 
• DG : Formal definition of two players two strategies quantum game with 

discrete set of strategies. 
• ,mixedQG : Formal definition of two players two strategies quantum game with 

mixed strategies. 
• ( ), ,ρ φ α θ : Distribution of strategies in mixed strategy quantum games, 

depending on three Euler angle. 
• CBG : Formal definition of a. classical Bayesian game. 
• QBG : Formal definition of a quantum Bayesian game. 
• ( ), 1µ µ− : Probabilities of a prisoner in a mixed Bayesian quantum game. 
• ijS : Elements of the permutation group. 
• Γ : Two qutrit states. 
• ( ) ( )1 2 8, , , 3α α α ∈U SU : Strategies in two players three strategies quantum 

games, depending on 8 Euler angles. 
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