
Journal of Quantum Information Science, 2023, 13, 45-55 
https://www.scirp.org/journal/jqis 

ISSN Online: 2162-576X 
ISSN Print: 2162-5751 

 

DOI: 10.4236/jqis.2023.132004  Jun. 29, 2023 45 Journal of Quantum Information Science 
 

 
 
 

Toward Constructing a Continuous Logical 
Operator for Error-Corrected Quantum Sensing 

Cameron Cianci 

Physics Department, University of Connecticut, Storrs, CT, USA 

 
 
 

Abstract 
Error correction has long been suggested to extend the sensitivity of quantum 
sensors into the Heisenberg Limit. However, operations on logical qubits are 
only performed through universal gate sets consisting of finite-sized gates 
such as Clifford + T. Although these logical gate sets allow for universal 
quantum computation, the finite gate sizes present a problem for quantum 
sensing, since in sensing protocols, such as the Ramsey measurement proto-
col, the signal must act continuously. The difficulty in constructing a conti-
nuous logical operator comes from the Eastin-Knill theorem, which prevents 
a continuous signal from being both fault-tolerant to local errors and trans-
verse. Since error correction is needed to approach the Heisenberg Limit in a 
noisy environment, it is important to explore how to construct fault-tolerant 
continuous operators. In this paper, a protocol to design continuous logical 
z-rotations is proposed and applied to the Steane Code. The fault tolerance of 
the designed operator is investigated using the Knill-Laflamme conditions. 
The Knill-Laflamme conditions indicate that the diagonal unitary operator 
constructed cannot be fault tolerant solely due to the possibilities of X errors 
on the middle qubit. The approach demonstrated throughout this paper may, 
however, find success in codes with more qubits such as the Shor code, dis-
tance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as 
the [11, 1, 5] code. 
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1. Introduction 

Quantum sensors have found utility in a variety of fields including commercial 
applications such as geoscience, mining, and various sensors in industry [1] [2]. 
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There have been many recent studies examining the potential utility of error 
correction to improve the sensitivity of quantum sensors in noisy environments 
[3]-[9]. Error correction in quantum sensors promise to surpass the Standard  

Quantum Limit, where sensitivity scales as 1
t

, and instead approach the Hei-

senberg Limit, scaling as 1
t

 where t is time [3]. This scaling is the best allowed 

by the laws of quantum mechanics. 
Current studies into quantum error-corrected sensors propose codes which 

can correct the most prevalent type of noise in a system but are still vulnerable to 
other local errors [10]. For an example, [7] utilized a code to correct relaxation 
in a quantum magnetometer, but the sensor designed is still vulnerable to single 
qubit phase errors. Although the paper proposes mitigating these phase errors by 
leveraging dynamical decoupling [11] [12], the designed sensor will realistically 
still accumulate uncorrected errors over time from random environmental fluc-
tuations in the magnetic field. Therefore, this design will be reduced to the 
Standard Quantum Limit on time scales dictated by the strength of this environ-
mental noise [3] [13]. This can be addressed by using stronger error-correcting 
codes such as a distance 3 code, which has the ability to correct single qubit errors. 
However, codes of distance 3 and above have yet to be used in quantum er-
ror-corrected sensors due to the difficulty of constructing a continuous logical 
operator in these codes. The protocol put forth in this paper begins to address 
this problem by designing potential logical operators which may be constructed 
through diagonal commuting gates. 

To start, let us consider a common quantum sensing protocol, the Ramsey 
measurement protocol described below [14]. 

1) A sensor qubit begins in the state 0 .  
2) A Hadamard gate is applied bringing the state to, 0H = + .  
3) The signal is applied to the qubit, giving it a signal dependent phase,  

( ) ( ) ( ) ( )1 10 1 0 e 1
2 2

i
L LP P φφ φ+ = × + = + .  

4) A Hadamard gate is applied again, bringing the state to  

( )1 1 e 1 e0 e 1 0 1
2 22

i i
iH

φ φ
φ + −

+ = + .  

5) Measuring in the z-basis, the probability of obtaining 1  is 
2

1 e
2

iφ− , 

from which φ  can be inferred.  

The continuous phase gate ( )LP φ  is the signal and acts on the computation-
al basis states as, 

( ) 1 0
0 eL iP φφ
 

=  
 

                        (1) 

The Ramsey measurement protocol requires that there is a continuous sym-
metry around the z-axis of the qubit for ( )LP φ  to be fault tolerantly applied. 
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As logical gate sets do not typically include any continuous gates, it is not 
straightforward to apply this protocol directly to an error-corrected logical qubit 
of distance 3 or larger. Instead, current error-corrected sensing protocols use 
codes with smaller distances, leaving the logical qubit vulnerable to certain local 
errors. For example, these sensors often employ codes such as the bit flip or am-
plitude damping codes [7] [8] [9]. This design choice ultimately allows for 
transverse operators to generate the signal, for example, magnetic fields in flux 
tunable superconducting qubits [7]. 

The reason for this difficulty in designing error-corrected quantum sensors 
fault tolerant to single qubit errors comes from the Eastin-Knill theorem. This 
theorem states that no quantum error-correcting code that can correct local er-
rors can also have a continuous symmetry which acts transversely on the qubits 
[10]. This is proven by demonstrating that the set of fault tolerant gates on any 
local error-correcting code is finite and cannot have any continuous symmetries 
as a continuous symmetry would imply an infinite number of fault tolerant gates. 
Since a continuous symmetry is required in many sensing protocols such as 
Ramsey measurement shown above, the Eastin-Knill theorem complicates the 
design of error-corrected quantum sensors. This is the reason why current er-
ror-corrected quantum sensors leave a degree of freedom uncorrected and 
therefore preserve a continuous symmetry for the signal. However, as was prov-
en in [3], the presence of any noise along this symmetry will make these sensors 
revert to the Standard Quantum Limit as they will no longer satisfy the HNLS 
criterion. 

The Eastin-Knill theorem uncovers an interesting question in quantum sens-
ing, is it possible to realize continuous logical operators for error-corrected 
sensing on a logical qubit? Therefore, in Sections 3 and 4 we will construct a 
non-transverse logical phase operator, ( )LP φ , acting on the logical subspace for 
the purpose of creating quantum error-corrected sensors. The difficulty con-
structing this operator is likely what has prevented prior exploration into cor-
recting arbitrary local errors in quantum sensors. 

2. Arbitrary Diagonal Unitary Gate  

One problem in creating a fault tolerant phase operator is that errors may occur 
between the gates constructing this operator. This would increase the number of 
possible errors, requiring a larger code which can recognize these new error 
syndromes. To circumvent this problem, we will consider diagonal unitary op-
erators and demonstrate that they can be built from commuting gates which 
could be applied simultaneously. Additionally, restricting the operator to be di-
agonal greatly reduces its complexity from (2n)2 to 2n degrees of freedom. We 
will also find the requirements for a creating logical phase gate are simpler when 
restricted to a diagonal unitary. 

This operator can be constructed from a single qubit z-axis rotation gate, 
( )ZR φ , controlled by n qubits where { }0,1, ,n N∈   with the total number of 
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qubits N (ex. ( )
1ZR φ , ( )

21 ZC R φ , ( )
41 3 ZC C R φ …). As these controlled-phase 

gates are all diagonal and therefore commute, it may be possible to realize them 
simultaneously and prevent errors from occurring between these gates. Whether 
these multi-qubit gates can be created in superconducting quantum circuits is a 
topic for future investigation, and we will focus only on constructing the logical 
operators. 

Alternatively, other ways to efficiently create diagonal unitaries have been 
previously explored [15]. However, these diagonal unitaries are built from 
non-commuting single and two-qubit gates, increasing the number of distinct 
errors which can occur. 

Next, we will programmatically construct an arbitrary diagonal unitary oper-
ator from controlled-phase gates. We begin by noting that, for any given N, 
there are 2N degrees of freedom in a diagonal unitary, and 2 1N −  different con-
trolled-phase gates. We will eliminate the first diagonal entry through the appli-
cation of a global phase, without any loss of generality. 

We can now construct an arbitrary diagonal unitary operator through the fol-
lowing protocol. 

1) Initialize an array to the Identity, in which we will store the constructed 
operator, 1lCU = .  

2) Let the index i loop through each diagonal entry of the desired operator 

dU .  
a) Convert the current index i into binary. This binary representation shows 

the basis state on which this entry will act (ex. 9 1001i = ⇒ ).  
b) Apply a ( )ZR φ  gate to one of the qubits in a 1  state, which is controlled 

by all other qubits in a 1  state. This gate is given a value such that, when applied 
to the constructed operator, the current diagonal element will obtain the desired 
phase, ( )( )[ ][ ] [ ][ ]Z C dCC R U i i U i iφ × = . 

c) Update the constructed operator with this new gate. ( )C Z CU CC R a U′ = × .  
3) Return the constructed operator CU , and the phases applied at each index.  
This protocol will construct any desired diagonal unitary from commuting 

controlled-phase gates, as the list of applied phases at each index can be used to 
determine the gates applied. The correctness of this protocol can be proven 
through induction, as each gate affects only the current and later diagonal entries 
in the constructed operator. Each diagonal entry has a unique operator which can 
tune its phase without affecting previously considered entries, except for the first 
entry which can be removed through an application of a global phase. This unique 
operator is found by applying a phase gate controlled by the binary representation 
of the state corresponding to the index of the entry. Therefore, we can simply con-
struct the desired operator by making greedy decisions at each entry. Now that the 
construction of diagonal unitary operators from commuting gates has been 
stated, we will put forward a simple example to clarify. 

Constructing a Simple Diagonal Unitary Operator  

Here is an example of this protocol used to construct the following desired uni-
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tary dU , 

00 01 10 11  

2

1 0 0 0
0 e 0 0
0 0 e 0
0 0 0 1

i

i

φ

φ

 
 
 
 
 
 

 

First we loop through each diagonal entry. For each entry, the value can be 
changed by the phase gate controlled by the values of 1  in the binary repre-
sentation of the index. 

( )
1

01 e 01i
d ZU Rφ φ= ⇒                     (2) 

which in turn gives our constructed operator (previously initialized to 1l ) as, 

( )
1

1 0 0 0
0 e 0 0

1l
0 0 1 0
0 0 0 e

i

C Z

i

U R
φ

φ

φ

 
 
 = × =
 
 
 

                 (3) 

Next we find, 

( )
2

210 e 10 2i
d ZU Rφ φ= ⇒                    (4) 

This makes our constructed operator, 

( ) ( )
1 2 2

3

1 0 0 0
0 e 0 0

2 1l
0 0 e 0
0 0 0 e

i

C Z Z i

i

U R R
φ

φ

φ

φ φ

 
 
 = × × =
 
 
 

           (5) 

Lastly, viewing the final entry, 

11 11dU =                           (6) 

Currently, our constructed operator gives the value,  
311 e 11i

CU φ=                          (7) 

This indicates that we must apply ( )
21 3ZC R φ− , giving us the final operator, 

( ) ( ) ( )
1 2 21 2

1 0 0 0
0 e 0 0

2 3 1l
0 0 e 0
0 0 0 1

i

C Z Z Z iU R R C R
φ

φφ φ φ

 
 
 = × × − × =
 
 
 

      (8) 

Which is exactly the desired operator, decomposed into two phase gates and 
one controlled-phase gate. As was discussed previously, these gates commute 
and could therefore be applied simultaneously to prevent errors from occurring 
between them. 

3. Creating a Logical Phase Gate  

Next we want to create a logical phase gate from a diagonal operator. To start, 
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we must consider the code words of the chosen code on which we will be acting. 
Since our operator must function as a logical z-rotation gate, it must satisfy the 
two conditions, 

( ) 0 0L L LP φ =                         (9) 

( ) 1 e 1i
L L LP φφ =                       (10) 

These constraints are straightforward when applied to a diagonal operator, as 
we simply must ensure that all diagonal elements which are multiplied by the non-
zero basis states in 1 L

 have a value of eiφ  while all diagonal elements which are 
multiplied by the nonzero basis states in 0 L

 have a value of 1 . 
For an example, if the logical eigenstates of a desired code were, 

[ ]0 000 001 000 100 1 1 1 0 1 0 0 0L = + + + =  

[ ]1 101 110 101 011 0 0 0 1 0 1 1 1L = + + + =  

These code words would restrict our diagonal logical phase operator to 

( )

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 e 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 e 0 0
0 0 0 0 0 0 e 0
0 0 0 0 0 0 0 e

i

L

i

i

i

P
φ

φ

φ

φ

φ

 
 
 
 
 
 =  
 
 
 
  
 

 

as this diagonal unitary uniquely results in,  

( ) 0 0L L LP φ =                        (11) 

( ) 1 e 1i
L L LP φφ =                       (12) 

Through application of the protocol from Section 2, we find this operator can 
be realized by the simultaneous application of the gates ( )

21 ZC R φ , ( )
31 ZC R φ , 

( )
32 ZC R φ , and ( )

31 2 2ZC C R φ− . 

Ambiguous Entries  

In most codes, however, code words do not include a superposition of every basis 
state. This leaves ambiguous or unconstrained degrees of freedom in the constructed 
operator. For an example, consider a code with the code words 0 00L =  and 
1 11L = . This leaves an ambiguous logical phase operator, 

( )

1 0 0 0
0 0 0
0 0 0
0 0 0 e

L

i

a
P

b
φ

φ

 
 
 =
 
 
 

                   (13) 

We can therefore tune these variables a and b as needed. For another more 
applicable example, the Steane code logical states include a superposition of 8 
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states out of 128 basis states. 

(

)

10 0000000 1010101 0110011 1100110
8
0001111 1011010 0111100 1101001

L = + + +

+ + + +
       (14) 

This logical code word restricts only 8 of the 128 diagonal values of the logical 
operator. The 1 L

 state similarly restricts 8 more leaving 112 tunable values. In 
the next section, we will consider constraining these values in the Steane code in 
an attempt to make our logical phase operator fault tolerant through satisfying 
the Knill-Laflamme conditions. 

4. The Fault Tolerance of Designed Logical Phase Gates  

Now that we can construct a diagonal logical phase operator for any er-
ror-correcting code given its logical code words, we may now test if the con-
structed logical operator is fault tolerant. This can be done by satisfying the 
Knill-Laflamme conditions, which are both sufficient and necessary for error 
correction [16]. 

The Knill-Laflamme conditions for a code with code words Wσ  fault tolerant 
to errors { }1 2, , ,i nK K K K=   is, 

†
l k lkW K K Wσ σ σσα δ′ ′=                    (15) 

The coefficients lkα  must have no dependence on σ  or σ ′ . When consi-
dering local errors, the Kraus Operators iK  are the single qubit Pauli gates 

{ }, , ,i i i iK X Y Z∈  . 
Assuming we want to make our logical phase operator fault tolerant, we need 

to expand the Kraus operators such that we account for errors taking place both 
before and after the application of the logical operator. Since we can construct 
this operator from simultaneously applied commuting gates as shown in Section 
2, we will not consider errors occurring between gates constructing the logical 
operator. 

With ( )LP φ  as a logical operator, we need to expand the Knill-Laflamme 
conditions to the following four equations. 

( ) ( )† †
L l k L lkW P K K P Wσ σ σσφ φ α δ′ ′=              (16) 

( ) ( )† †
l L k L lkW K P K P Wσ σ σσφ φ β δ′ ′=              (17) 

( ) ( )† †
L l L k lkW P K P K Wσ σ σσφ φ β δ′ ′=              (18) 

( ) ( )† †
l L L k lkW K P P K Wσ σ σσφ φ γ δ′ ′=              (19) 

A logical phase gate which satisfies these conditions will additionally be fault 
tolerant to single qubit errors. The error detection and correction operators can 
then be derived from the Knill-Laflamme equations [16]. 

We must now return our attention to the tunable elements of the logical phase 
unitary noted in Section 3.1. We will attempt to satisfy the Knill-Laflamme con-
ditions shown in Equations (16)-(19) by using these values. 
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Consider the simple example explored in section 3.1 with code words 0 00L =  
and 1 11L = , in the presence of 1X  errors, { }1iK X= . Equations (16)-(19) 
require 1a =  and eib φ= , making the following logical phase gate tolerant to 
these 1X  errors, 

( )

1 0 0 0
0 1 0 0
0 0 e 0
0 0 0 e

L i

i

P φ

φ

φ

 
 
 =
 
 
 

                   (20) 

As can be seen by applying the protocol from section 2, this is simply a z-axis 
rotation gate on the second qubit ( )

2ZR φ . Now we will attempt to apply this 
approach to a more powerful error-correcting code, the Steane Code. 

5. Results in the Steane Code  

The Steane Code is one of the simplest and most well-studied error-correcting 
codes of distance 3, meaning it can correct any single local error [17]. Since this 
code can correct local errors, the Eastin-Knill theorem requires the signal to be 
non-transverse. However, the approach designed in Sections 2, 3, and 4 is not 
restricted to transverse operators, and therefore is not forbidden from creating a 
fault tolerant continuous operator. We will now apply our process for making 
logical phase gates to the Steane Code. 

Using the code words of the Steane code (shown below), we restrict the cor-
responding diagonal elements of our operator as shown in Section 3.  

(

)

10 0000000 1010101 0110011 1100110
8
0001111 1011010 0111100 1101001

L = + + +

+ + + +
       (21) 

(

)

11 1111111 0101010 1001100 0011001
8
1110000 0100101 1000011 0010110

L = + + +

+ + + +
       (22) 

The diagonal elements of the desired logical operator dU  must behave as, 

0 0d L LU =                         (23) 

1 e 1i
d L LU φ=                        (24) 

This leaves 112 unconstrained degrees of freedom in the logical phase opera-
tor. However, when applying the Knill-Laflamme conditions as shown in Section 
4, it is found that the following condition is unsatisfiable. 

( ) ( ) ( ) ( )† †
0 4 4 0 1 4 4 1L L L LW X P X P W W X P X P Wφ φ φ φ=          (25) 

This can be interpreted as an error on the middle qubit of the Steane code be-
fore ( )LP φ , which is indistinguishable from an error after the application of 

( )LP φ  when restricting ( )LP φ  to be diagonal. 
More precisely, the value of β  in ( ) ( )†

4 4L LW X P X P Wσ σ σσφ φ βδ′ ′=  
changes sign based on the value of σ  and σ ′ . This indicates that an 4X  error 
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before ( )LP φ  changes the state differently than an 4X  error after ( )LP φ , but 
both errors are recognized by the same error syndromes and are indistinguisha-
ble. Therefore, this approach unfortunately does not succeed in creating a logical 
phase operator in the Steane code. 

6. Conclusions and Future Directions  

In this paper a protocol for designing fault tolerant continuous logical operators 
from diagonal unitary gates is proposed and tested. This protocol greatly reduces 
the complexity of the potential fault tolerant operator by restricting it to be  

a diagonal unitary, reducing its degrees of freedom from ( )
2

2N  to 2N . This  

restriction also has the added benefit that the designed operator may be constructed 
from simultaneous application of commuting diagonal gates, and therefore errors 
between gates constructing the logical operator can be disregarded. 

Current error-corrected quantum sensor designs are limited to codes of distance 
less than 3 due to the Eastin-Knill theorem. The protocol introduced here may be 
able to overcome this limitation as the designed operator is non-transverse. Al-
though this protocol is unable to create a fault tolerant operator in the Steane code 
due to X errors on the middle qubit of the code, this protocol may be able to de-
sign Heisenberg limited quantum sensors when applied to larger codes, or codes 
with a larger distance. Additionally, a continuous logical operator may have other 
benefits, such as a logarithmic speedup in fault tolerant quantum computation. 

The [11, 1, 5] code is typically tolerant to two qubit errors and may still be to-
lerant to a single local error when designing a continuous logical operator. Due 
to the increased code distance, it is possible that even if an error propagates 
through the multi-qubit gates of the logical operator, the larger distance of this 
code may still be able to correct these errors. 

Additionally, the Shor Code and the distance 3 surface code [18] [19] have a 
higher qubit count, which may be able to accommodate more error syndromes 
and correct more errors than the Steane code. Therefore, diagonal operators in 
these codes may still be fault tolerant. 

Also, as the Solovay-Kitaev theorem allows for universal computation to be 
achieved from Clifford + T gates in ( )( )logcO m m ε  [20], a logarithmic spee-
dup may be possible using a continuous operator instead of the T gate. However, 
a logarithmic speedup is not often significant compared to the quadratic or ex-
ponential speedups commonly provided by quantum algorithms. 

One of the most interesting outcomes may be that it is impossible to construct 
a fault tolerant continuous logical operator in error-correcting codes that can be 
decomposed into physically realizable gates. If this is the case, it would poten-
tially indicate the presence of new and interesting theorems for error correction 
and quantum sensing. 
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