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Abstract 
A. Peres constructed an example of particles entangled in the state of spin 
singlet. He claimed to have obtained the CHSH inequality and concluded that 
the violation of this inequality shows that in a measurement in which some 
variables are tested, other variables, not tested, have no defined value. In the 
present paper is proved that the correct conclusion of the violation of the 
CHSH inequality is different. It is proved that the classical calculus of proba-
bilities of test results, obeying the Kolmogorov axioms, is unfit for the quan-
tum formalism, dominated by probability amplitudes. 
 

Keywords 
CHSH Inequalities, Kolmogorov Axioms, Photon Singlet of Polarization, 
Malus Law 

 

1. Introduction 

J. S. Bell developed in his famous work [1] an inequality for three observables, 
and it was extended to more observables [2]. These inequalities were found to 
disagree with the quantum mechanics (QM). The violation of these inequalities 
was proved by the experiment, [3]-[11], and is typically interpreted as indicating 
that the quantum world allows nonlocal influences between measurement results 
of entangled quantum objects [1] [3] [4] [5] [6] [12]-[18] (see also the references 
in [18] and also a generalization of the Bell-type inequalities in [19]). 

In his famous article “Unperformed experiments have no results” [20] (see 
also [21]) A. Peres claimed to have deduced from the violation of Bell-type in-
equalities, a new conclusion, namely, that incompatible observables cannot 
take definite values in the same test. By incompatible is understood that the 
operators corresponding to the observables don’t commute. So, Peres con-
cluded that if the observables A and B are measured and produce definite values, 
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the wave-function (w-f) cannot predict definite values for non-measured obser-
vables, A' and B', not commuting with A respectively B. 

It may though be that there are effects beyond the predictions of the w-f, e.g. 
that the QM admits a substructure. For example, if the quantum object behaves 
according to Bohm’s mechanics [22], some observables may take values al-
though the w-f does not acknowledge them.  

It is argued in the present article that what in fact is proved by the violation of 
the Bell-type inequalities is another feature, namely, that the classical calculus of 
distribution of probabilities, satisfying the Kolmogorov axioms, is incompatible 
with the predictions of the w-f. The assumption of locality of measurement re-
sults yields just a particular case of such a distribution. 

The next sections are organized as follows: Section 2 defines the most general 
distribution of probabilities of variables’ values, for which the Bell-type inequali-
ties can be derived; no locality assumption is made. Section 3 derives the CHSH 
inequality using this general distribution. Section 4 compares the consequences 
of this distribution with the quantum predictions, and a contradiction is found. 
Section 5 contains conclusions. 

2. A Probability Distribution under the Komogorov Axioms 

Consider a set of events { }1 2, , , nE E E  with probabilities P from a common 
space satisfying the Kolmogorov axioms 

1) ( )0 1iP E≤ ≤ , 
2) ( ) ( ) ( ) ( )OR OR ORi j k i j kP E E E P E P E P E= + + +  . 
In this text we will have to do with four binary variables: A and A' belong to a 

photon 1, B and B' belong to a photon 2. All the four variables are polarizations, A 
and A' along the directions a respectively a', B and B' along the directions b respec-
tively b'. We will denote the polarization along a direction u by “+u” and perpen-
dicular to u by “−u”. So, in a measurement of the variable A for photon 1 and B for 
photon 2 we will get the result “+a” for A and “−b” for B with the probability 
( )a bP + − . 
Assumption A: in a test of the two particles, each one along some direction, all 

the four variables take definite values, i.e. the non-measured variables take val-
ues as well as the measured ones. 

Therefore we will have to do with probabilities of the form ( )' a a' b b'ABP + + + −  
where the indexes A and B' after P indicate which observables were in fact 
measured. 

Applying then the Komogorov axioms one has 

( ) ( ) ( ) ( ) ( )' a b' ' ' ' 'AB AB AB AB ABP P P P P+ − = + + + − + + + − − + + − + − + + − − − .  (1) 

We omitted here and so we will do in the rest of the article, the indexes inside 
the round parentheses in the four-variable probabilities, but we will keep the 
convention that the order of the results is a a' b b'± ± ± ± .  

Assumption B: the distribution of four-variable probabilities is independent of 
which variables are actually measured. 
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That means  

( ) ( ) ( )
( )

a a ' b b ' ' a a ' b b ' ' a a ' b b '

' ' a a ' b b '

         

   ,
AB A B AB

A B

P q q q q P q q q q P q q q q

P q q q q

= =

=
        (2) 

with [ ]a a ' b b ', , , ,q q q q ∈ + − . That gives us the possibility to omit the specifica-
tion of the actual measurement in the four-variable probability, e.g. we will write 
simply ( )a a ' b b '   P q q q q . We will also omit the specification of the actual mea-
surement in the two-variable measurement, because it appears inside the paren-
theses, i.e. ( ) ( )a b a b  ABP q q P q q= . 

3. A General Derivation of the CHSH Inequality 

With the distribution of probability developed in the previous section we can 
obtain the following results 

( ) ( ) ( ) ( ) ( )a bP P P P P+ + = + + + + + + + + − + + − + + + + − + − , 

( ) ( ) ( ) ( ) ( )a bP P P P P+ − = + + − + + + + − − + + − − + + + − − − , 

( ) ( ) ( ) ( ) ( )a bP P P P P− + = − + + + + − + + − + − − + + + − − + − , 

( ) ( ) ( ) ( ) ( )a bP P P P P− − = − + − + + − + − − + − − − + + − − − − , 

The average AB  of the results of the joint measurement of A and B can be 
expressed according to the above equalities as  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

         

         

         

AB P P P P

P P P P

P P P P

P P P P

= + + + + + + + + − + + − + + + + − + −

− + + − + + + + − − + + − − + + + − − −

− − + + + + − + + − + − − + + + − − + −

+ − + − + + − + − − + − − − + + − − − −

      (3) 

One can similarly express in terms of four-variable probabilities, the averages 
'A B , 'AB , ' 'A B  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

a ' b a ' b a ' b a ' b

a b ' a b ' a b ' a b '

a ' b ' a ' b ' a ' b ' a ' b '

' ,

' ,

' ' .

A B P P P P

AB P P P P

A B P P P P

= + + − + − − − + + − −

= + + − + − − − + + − −

= + + − + − − − + + − −

        (4) 

e.g. 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

'

          

          

          .

A B P P P P

P P P P

P P P P

P P P P

= + + + + + + + + − + − + + + + − + + −

− + + − + + + + − − + − + − + + − + − −

− + − + + + + − + − + − − + + + − − + −

+ + − − + + + − − − + − − − + + − − − −

      (5) 

Since ( )
,  ', , '

, ', , ' 1
A A  B  B

P A A  B  B =∑ , one has 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 1

P P P P

P P P P

P P P P

P P P P

+ + + + + + + + − + + + − + + + + − −

+ + − + + + + − + − + + − − + + + − − −

+ − + + + + − + + − + − + − + + − + − −

+ − − + + + − − + − + − − − + + − − − − =

        (6) 

From the Equalities (3) and (4) one can find by direct substitution and reduc-
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ing identical terms that 

( ){ ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

' ' ' '

2

  

  

  .

AB A B AB A B
P P P P

P P P P

P P P P

P P P P

+ − +

= + + + + + + + + − − + + − + − + + − −

− + − + + + + − + − − + − − + + + − − −

+ − + + + − − + + − + − + − + − − + − −

− − − + + − − − + − + − − − + + − − − −

        (7) 

Comparing with (6) one can see that  

' ' ' ' 2AB A B AB A B+ − + ≤ .                   (8) 

Indeed, if the sum of all the four-variable probabilities is equal to 1, the sum in 
which some of the probabilities appear with minus should be in general less than 1. 

The inequality (8) is the CHSH inequality. 

4. Then What in Fact Prove the Bell-Type Inequalities? 

It is known that the CHSH inequality is violated if one considers the photon 
singlet. For a measurement of the polarization of the photon 1 along a direction 
u, and a measurement of the polarization of photon 2 along a direction v, the 
averaged product of the two results is equal to uvcos(2θ 〉 , where uvθ  is the an-
gle between the two directions. Choosing for the observables A and A' the pola-
rization of the photon 1 along the directions a and a', and for the observables B 
and B' the polarization of the photon 2 along the directions b and b', as in the 
Figure 1 and Figure 2, the quantum formalism predicts 
 

 
Figure 1. Four coplanar directions. 
See explanations in the text. 

 

 

Figure 2. Arrangement of a CHSH experiment involving different polarization directions. 
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The wave-packet of the photon 1 (2) is split according to the polarization di-
rections a' and perpendicular to a' (b' and perpendicular to b'). Then, the two 
wave-packets are merged back into one and split according to the polarization 
axes a and perpendicular to a (b and perpendicular to b). 

' ' ' ' 2 2AB A B AB A B+ − + = ,             (9) 

This result disagrees with the inequality (8). 
This violation proves that some of the assumptions made in the derivation of 

the distribution ( )a a ' b b '   P q q q q  in Section 2 must be wrong. These assump-
tions are the Kolmogorov axioms 1 and 2 and the assumptions A and B. Some of 
them must disagree with the QM, and it is known that QM was never disproved 
by the experiment. 

Whether the assumptions A and B disagree with the QM is not obvious. But it 
is obvious that the axiom 2 of Kolmogorov does disagree with the QM. Indeed, 
by this axiom the probability of occurrence of a result q1 or q2 satisfies 

( ) ( ) ( )1 2 1 2Prob OR Prob Probq q q q= + .              (10) 

However, in the quantum formalism the basic element in the calculus of 
probability of a result q is not the probability Prob (q), but the amplitude of prob-
ability ( )qA , with 

( ) ( ) 2
1 1Prob q q= A , ( ) ( ) 2

2 2Prob q q= A ,            (11) 

and instead of (10) one has by the QM 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2
1 2 1 2

* *
1 2 1 2 2 1

Prob OR

Prob Prob .

q q q q

q q q q q q

= +

= + + +

A A

A A A A
 (12) 

Let’s exemplify the problem on the probability ( )a bP + + , i.e. the actual 
measurement is done in the base { }a a,+ −  for photon 1 and { }b b,+ −  for 
photon 2, and we retain the pairs producing the response “++”. We will show 
that QM and the Kolmogorov-type calculus yield different expressions, as do 
(10) and (12). For this purpose we write the w-f of the photon singlet putting in 
evidence the polarizations along a', a, and b', b, and we denote by uvθ  the angle 
between directions u and v.  

So, we start from the expression of the w-f in the polarization base { }a' a',+ −  
for photon 1, and { }b' b',+ −  for photon 2 

( ){ ( )

( ) ( ) }
( ) ( )
( ) ( )

a'b' a' b' a'b' a' b'

a'b' a' b' a'b' a' b'

a' b' a' b' a' b' a' b'

a' b' a' b' a' b' a' b'

1 cos sin
2
sin cos

.

ψ θ θ

θ θ

= + + + + −

− − + + − −

= + + + + + + − + −

+ − + − + + − − − −

A A

A A

          (13) 

Following the evolution of the pair in the apparatus, see Figure 2, let’s pass to 
the base { }a a,+ −  for photon 1 
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( ) ( )
( ) ( )

a' a'a a a'a a

a' a'a a a'a a

cos sin

sin cos

θ θ

θ θ

+ = + + −

− = − + + −
              (14) 

( ) ( ) ( ){
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) }

a'b' a'a a b' a'a a b'

a'b' a'a a b' a'a a b'

a'b' a'a a b' a'a a b'

a'b' a'a a b' a'a a b'

1 cos cos sin
2
sin cos sin

sin sin cos

cos sin cos

ψ θ θ θ

θ θ θ

θ θ θ

θ θ θ

 = + + + − + 

 + + − + − − 
 − − + + + − + 

 + − + − + − − 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

a' a b' a b' a' a b' a b'

a' a b' a b' a' a b' a b'

a' a b' a b' a' a b' a b'

a' a b' a b' a' a b' a b' .

= + + + + + + + − + − +

+ + + − + − + + − − − −

+ − + + + + + − − + − +

+ − + − + − + − − − − −

A A

A A

A A

A A

         (15) 

Finally we pass from the base { }b' b',+ −  for the photon 2 to the base 
{ }b b,+ −  

( ) ( )
( ) ( )

b' b'b b b'b b

b' b'b b b'b b

cos sin

sin cos

θ θ

θ θ

+ = + + −

− = − + + −
                 (16) 

and get 

( ) ( ) ( ) ( ){ } a bψ = + + + + + + + + − + + − + + + + − + − + + +A A A A  (17) 

where the order inside the round parentheses is a a ' b b ', , , q q q q , and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

a'b' a'a b'b

a'b' a'a b'b

a'b' a'a b'b

a'b' a'a b'b

cos cos cos 2

sin cos sin 2

sin sin cos 2

cos sin sin 2

θ θ θ

θ θ θ

θ θ θ

θ θ θ

+ + + + =

+ + + − = −

+ − + + =

+ − + − =

A

A

A

A

            (18) 

According to the QM from these amplitudes of probability one can calculate 
the probability of getting the result a b+ +  

( ) ( ) ( ) ( ) ( ) 2
a bP + + = + + + + + + + + − + + − + + + + − + −A A A A .    (19) 

Substituting in (19) the expressions in (18) one gets after a simple calculus of 
trigonometry 

( ) ( )2
a b abcos 2P θ+ + = .                     (20) 

However, if we equate ( ) ( ) 2
a a' b b' a a' b b'      P q q q q q q q q= A , one can imme-

diately see that the sum of the absolute squares of the amplitudes in (18) does 
not lead to the quantum result (20). 

A similar problem of disagreement between the classical probability calculus 
and the quantum formalism was posed by Tarozzi [23] and later by Božić et al. 
[24]. Both referred to the two-slit experiment in which the intensity of the image 
on a screen S  beyond the slits B and C, ( ) 2

, tψ r , differs from the sum of the 
intensities of the images created with only one of the slits open, ( ) 2

,B tϕ r  and 
( ) 2

,C tϕ r . Indeed,  
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
, , , , , ,B C B Ct t t t t X tψ ϕ ϕ ϕ ϕ= + = + +r r r r r r , 

where ( ),X tr  is the interference term ( ) ( ) ( )*, 2Re , ,B CX t t tϕ ϕ =  r r r .  
For solving the dilemma why the whole differs from the sum of its parts, Božić 

et al. suggested to regard the experiment in which both sits are open as having 
a different configuration than the experiments in which only one slit is open 
and in consequence, what passes through the apparatus is different in the two 
types of experiment. They suggested to write for the interference experiment 

( ) ( ) ( )2 2 2
, , ,B Ct t tψ ϕ ϕ= + r r r , where each one of ( ),B tϕ r  and ( ),C tϕ r  

contains also a part from ( ),X tr . 
This idea seems appealing for the experiment in the Figure 2 too. That means, 

to construct a distribution of probabilities in which ( )a a' b b'   P q q q q  contains 
besides the absolute square of the respective four-variable amplitude, a part of 
the interference terms. 

But that turns to be impossible. Let’s take as an example the probability 
( )a a' b b'   P q q q q = + − + + , which according to (18) should be equal to  
( ) ( ) ( )2 2 2

a'b' a'a b'bsin sin cosθ θ θ . This expression cannot be modified since it is 
dictated by the Malus law. It says that if the particle 1 took the path −a', the par-
ticle 2 takes the path +b' with probability ( )2

a'b'sin θ . Next, the particle 1 takes 
the path +a with probability ( )2

a'asin θ  and the particle 2 takes the particle +b 
with probability ( )2

b'bcos θ . There is no possibility for changing ( )a a' b b'   P q q q q . 

5. Conclusions 

In his article “Unperformed experiments have no results” [20], Peres concluded 
that the assumption A, see Section 2, is wrong. However, as shown here, the 
correct cause of the violation of the CHSH inequality is the incompatibility be-
tween the classical calculus of probabilities, governed by the Kolmogorov 
axioms, and the quantum probabilities governed by the calculus of amplitudes of 
probability. 

It has to be mentioned that 16 years after the publication of Peres’ article, Berndl 
et Goldstein also concluded [25], in an examination of the celebrated Hardy’s ar-
ticle “Quantum Mechanics, Local Realistic Theories, and Lorenz-Invariant Realis-
tic Theories” [26], that observables that were not measured may have no defi-
nite values in a test in which other observables were actually measured. But, 
again, this conclusion does not result from the violation of the Bell-type in-
equality. 

No locality was assumed in the derivation of the distribution ( )a a ' b b '   P q q q q  
obtained here. The hypothesis of locality of measurement results leads to a par-
ticular case of ( )a a ' b b '   P q q q q . The distribution derived here covers not only 
distributions obtained in base of the locality assumption, but also distributions 
of results dependent both on a local setup as well as on a distant setup. 

The fact that the quantum probabilistic formalism is based on superposition 
of amplitudes of probability stresses the wave nature of the quantum object. 
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