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Abstract 
The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic 
semimetal at ambient temperature and in some cases they become supercon-
ductor upon doping. In spite of so many years since its discovery it is still 
not known the mechanism that leads to superconductivity. The electronic 
structure study is used for determining key features of the SC mechanism in 
these materials. The calculations were performed using the modern suite of 
programs MOLPRO 2021. We performed quantum calculations of a cluster 
embedded in a background charge distribution that represents the infinite 
crystal. The Natural Population Analysis was used for determining the charge 
and spin distribution in the studied materials. As follows from our results, the 
possible mechanism for superconductivity corresponds to the RVB theory 
proposed by Anderson for high Tc superconductivity in cuprates. 
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1. Introduction 

The superconductivity (SC) in the Hg at very low temperatures, Tc = 4.19 K, 
was discovered in 1911 Kamerlingh Onnes [1]. For explaining the SC pheno-
menon, it was required the quantum mechanical conceptions. The quantum 
mechanics was created by Heisenberg, Born and Jordan [2] [3] in 1925-1926. 
After, Schrödinger [4] [5] introduced the wave function ψ  for describing the 
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microparticles and formulated his famous wave equation.  
The Iron based superconductors (IBSC) were discovered in the next century, 

in 2008, by Hosono and coworkers [6] [7]. They are characterized into six dif-
ferent families [8]. Among them, the 122 Ba-based family, here depicted as 
Ba-122, are widely used [9]-[15]. These crystals have high quality monocrystals 
and are easily to obtain. Very important that for these crystals was easy to pro-
duce SC materials with a variety of chemical substitutions. The SC phase was 
first observed by Co substitution on the Fe site [9]. The parent compound is a 
paramagnetic semimetal, it turns into superconductor upon electron doping by 
d-electrons atoms (substitution of Fe atoms by Co, Ni, Rh or Pd) or upon hole 
doping in the plane of the Ba atoms (e.g., substitution of Ba atoms by K). Also, 
the isovalent doping (substitution of Fe atoms by Ru) gives rise to SC state. On 
the other hand, some d-electron atoms: Cr [10], Mo [11] Mn [12] and Cu [13] 
[14] suppress the magnetism without stabilizing the high-Tc superconducting 
phase. To the best of our knowledge the reason for this is still unknown. The 
general features of the phase diagram are presented in Figure 1. As follows from 
Ref [15], the formation of a superconducting dome-like phase is observed with 
Rh at Tc = 23.2 K and with Pd at Tc = 19 K. 

IBSC materials were intensively studied by theorists. It was shown that the 
IBSC materials have a quite complicated band structure and several discon-
nected Fermi surfaces (FSs) [16] [17] [18]. According to these studies all five 3d 
orbitals of the Fe are involved in the formation of the FSs. IBSC belong to the 
broad category of strongly correlated superconductors such as heavy fermions 
and cuprates high-Tc SC, although the latter have rather different mechanism of 
SC. We recommend the readers the popular and comprehensive reviews by 
Norman [19] [20], Mazin [21], Wang and Lee [22], Chubukov [23], Kordyuk 
[24], Baquero [25] and Prosorov et al. [26]. 

 

 
Figure 1. Phase diagram following from experiments [15] for BaFe2As2 doped by Rh and 
Pd. 
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From the first year of the discovery of the IBSC, it has been accepted that the 
superconductivity in these materials is non-conventional, presenting an anti- 
ferromagnetic (AFM) order, see also the article by Ouni et al. [27], where au-
thors compared their DFT calculations with optical and vibrational properties. 
As was proposed by Mazin et al. [16] [17], the new superconducting materials 
tend to form AFM order, and the magnetism existing in the parent crystal at ze-
ro doping is suppressed by the AFM spin fluctuations, similar results were ob-
tained also by Singh and Du [18]. The AFM spin fluctuations can induce s-wave 
pairing with sign change of the order parameter between the electron like FSs 
and hole like FSs, denoted as s±. At the same time, Kuroki at al. [28] using ran-
dom-phase approximation applied to the model of five d-orbitals obtained simi-
lar results as in Ref [16] [18], but they accepted the d-wave symmetry. 

It is important to mention that basing on the five d-orbital model [28], Onari 
and Kontani [29], came to the conclusion that the interband impurity scattering 
is promoted by the d-orbital degree of freedom. Next year the authors [30] pro-
posed a mechanism where an s++-wave pairing was induced by orbital fluctua-
tion they presenting arguments opposing to the s±-wave pairing. 

In another interesting approach, the IBSC materials were considered as some 
kind of Mott insulator [31] [32] [33]. The physics of the Mott insulators, which 
was elaborated before the discovery of the IBSC materials, may play an impor-
tant role in the superconducting mechanism. If the IBSC materials are consi-
dered as doped Mott insulators, the anti-ferromagnetism and s±-wave pairing 
will appear. As was discussed in the review by Lee et al. [34], the Anderson re-
sonating valence bond theory that was first proposed for cuprates can be applied 
to the Mott insulating model. 

The RVB theory [35] for high Tc superconductors was proposed by Anderson 
just after the discovery of the cuprates. In his theory, the antiferromagnetic lat-
tice is melted into a spin-liquid phase composed by singlet pairs. When doping 
is applied, the singlets become charged giving rise to the superconducting state. 
His theory takes into account the separation between spin and charge, then the 
electronic excitation spectra can be presented as two different branches: charge 
spinless holons and chargeless spinons [36] [37]. 

In our previous publications [38] [39] [40] [41] we performed the comparative 
studies of the electronic structure of the pure BaFe2As2 and doped with substitu-
tions of Fe atom by different d-electron atoms, using the Embedded Cluster 
Method at the restricted open shell Möller-Plesset second order (ECM-ROMP2) 
electron correlation level [42] [43] [44].  

The charge and spin distributions we have obtained at the Natural Population 
Analysis level [45]. The found in our computer experiments peculiarities of the 
electronic structure of Fe-based superconductors, when we have used different 
dopants, for instance, the presence of spinless electron on the 3d orbitals, 
pointed out on the Anderson resonance valence bond (RVB) model as the possi-
ble mechanism for superconductivity for IBSC materials. 

In the current article we present our results for the electronic structure of the 
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embedded Ba4Fe5As8 cluster doped by Rh and Pd. The calculations were carried 
out at the electron correlation level using restricted open shell Möller-Plesset 
second order (RO-MP2) method. Calculations were performed by the MOLPRO 
2021 [46] [47] suite of programs.  

2. Methodology 

In our calculations, the embedded cluster method ECM-ROMP2 at the electron 
correlation level [42] [43] [44] was used. In this approach, the influence of the 
spin contamination is avoided. The methodology ECM-ROMP2 consists by two 
stages. In the first part, the cluster representing the crystal is selected and quan-
tum-mechanical calculations at the RO-MP2 electron correlation level are per-
formed with the restricted open shell Hartree-Fock (RHF) method as the ze-
ro-order approximation. A detailed description of UMP2 and RO-MP2 is given 
in Appendix 3 of book [48]. The selected cluster preserved the symmetry of the 
crystal (D2) and is presented in Figure 2.  

At the second stage, the cluster is embedded in a background charges distri-
bution that reproduces the Madelung potential for the infinite crystal on each 
cluster site. The symmetry of the crystal must be preserved and the cluster with 
the background charges must be neutral. The background charges are taken 
from our previous studies [38] [39] [40]. Then the cluster with the background 
charges is calculated at the RO-MP2 level. The charges are then modified and 
the whole system is recalculated, repeating this process until self-consistency is 
achieved, see Ref. [42]. The calculation scheme is presented on Figure 3. 

The calculations are performed with the MOLPRO 2021 [46] [47] suite of 
programs. For Fe and As all electrons are taken into account. We use the triple 
split valence basis set with polarization and diffuse gaussian functions, 6-31G(d, 
p) [49] for Fe atoms and the 6-311G(d, p) [50] for As. These basis sets were pro-
vided by the Basis Set Exchange data base [51] [52] [53]. On the other hand, for 
Ba, Rh and Pd, the Wood-Boring pseudopotentials [54] [55] are employed and 
they are included in the MOLPRO 2020.1 suite of programs. For Ba we use 
ECP46MWB [56] and for Rh and Pd we use the ECP28MWB [57]. 

 

 
Figure 2. Structure of the cluster. (a) Different views of the cluster Ba4Fe5As8. (b) The unit 
cell Ba2Fe2As2. 

https://doi.org/10.4236/jqis.2022.124010


R. Columbié-Leyva et al. 
 

 

DOI: 10.4236/jqis.2022.124010 115 Journal of Quantum Information Science 
 

 
Figure 3. Iteration scheme used in our calculation. 

 
After the calculations using the afore mentioned method are done, we analyze 

the orbital population using NPA by means of the Janpa software [58] [59]. 

3. Results and Discussions 

In Table 1 we present the pure and doped cluster energy calculated according to 
its multiplicity using MOLPRO 2020.1. For the pure cluster the ground state 
corresponds to multiplicity1 M = 2 (S = 1/2). Since we are using restricted open 
shell method all the eigenvalues2, of the 2S  operator, are exact. The ground 
state of the cluster doped by Rh is M = 3 (S = 1) and for Pd is M = 2 (S = 1/2).  

According to Table 1, the ground state for the isolated pure cluster is M = 6 (S 
= 5/2). For Rh doping the ground state is M = 5 (S = 2) and for Pd doping the 
ground state is M = 4 (S = 3/2). Let us mention, that the change in the ground 
state for isolated and embedded cluster is associated with the inclusion of the 
background charge distribution. In the following subsection the Natural Popula-
tion Analysis (NPA) to the calculated ground state embedded clusters will be 
presented.  

Let us note that the energy of the cluster depends on the initial orbital popula-
tion guess. According to MOLPRO manual [60], for high spin clusters the num-
ber of orbital population combinations that minimize the energy is greatly in-
creased, and the software cannot perform this task automatically. Therefore, a 
manual search for minimal energy configuration was made and only the lower 
energy is reported here. 

The atomic charge and the generalized valence orbital population obtained 
from the NPA analysis that is part of the NBO analysis are presented in Table 2, 
for RO-MP2 approach. In it only values for the atoms nearest neighbors (n.n.) to  

 

 

1The multiplicity M = 2S + 1. 
2The eigenvalue of the 

2S  operator is equal to S(S + 1). 
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Table 1. Energy of the states calculated at the RO-MP2 level using MOLPRO 2021.2 ac-
cording to different multiplicities for the embedded and isolated cluster, pure and doped. 

Multiplicity 
Embedded Cluster  

(MOLPRO RO-MP2) 
Isolated Cluster  

(MOLPRO RO-MP2) 

Ba4Fe5As8 Energy (a.u.) S2 (2) Energy (a.u.) S2 (2) 

2 −24288.8038001 0.75 (0.75) −24286.86140 0.75 (0.75) 

4 −24288.1955127 3.75 (3.75) −24287.14783 3.75 (3.75) 

6 −24287.9551222 8.75 (8.75) −24287.72156 8.75 (8.75) 

8 −24288.0924433 15.75 (15.75) −24286.57866 15.75 (15.75) 

Ba4Fe4RhAs8   

1 −23135.7686462 0 (0) −23134.14784 0 (0) 

3 −23137.1645838 2 (2) −23133.63805 2 (2) 

5 −23136.6737546 6 (6) −23135.19875 6 (6) 

7 −23136.4913259 12 (12) −23134.03125 12 (12) 

Ba4Fe4PdAs8   

2 −23154.8427642 0.75 (0.75) −23150.69902 0.75 (0.75) 

4 −23153.1261771 3.75 (3.75) −23152.54293 3.75 (3.75) 

6 −23153.7146883 8.75 (8.75) −23151.60083 8.75 (8.77) 

8 −23153.2263467 15.75 (15.75) −23151.78103 15.75 (15.87) 

 
Table 2. Charge distribution at the ground state by the RO-MP2 method in pure and 
doped Ba4Fe5As8 cluster, by NPA analysis using MOLPRO. 

 Atomic Charge Valence orbital population 

Ba4Fe5As8 S = 1/2 

Fe 0.64 4s0.463d6.57 

Fe(n.n.)a 0.99 4s0.493d6.42 

Fe(n.n.)b 0.29 4s0.613d7.77 

As(n.n.) −1.71 4s1.544p4.92 

Ba4Fe4RhAs8 S = 2 

Rh −1.62 5s0.294d7.425p1.92 

Fe(n.n.)a 1.10 4s0.523d6.08 

Fe(n.n.)b 0.16 4s1.123d4.9 

As(n.n.) −1.15 4s1.74p4.69 

Ba4Fe4PdAs8 S = 1/2 

Pd −1.81 5s0.254d8.85p1.98 

Fe(n.n.)a 0.91 4s0.453d6.59 

Fe(n.n.)b 0.22 4s0.683d5.9 

As(n.n.) −1.10 4s1.674p4.58 

 
the central atom are showed. The outer atoms of As and Ba are not presented 
since they are in the boundary of the cluster. We substitute the central atom of 
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the cluster by the dopant. The excited Rydberg orbitals are not presented, but 
they are taken into account for calculating the atomic charges. 

According to Table 2 the charge in the central atom for the pure material is 
0.64e. After doping a large negative charge appear on both dopant atoms. The 
negative charge for the As(n.n.) decreases upon doping and it is associated with 
the electron transfer from this atom to the dopant. In all Fe(n.n.) there is a small 
change in their charge. Thus, there is a charge transfer from As(n.n.) and Fe(n.n.)b 
atoms to dopants. This effect is related to the screening effect, since a large Z 
atom is being introduced into the cluster replacing the Fe atom. 

We compare the valence orbital population of the atoms in the undoped clus-
ter with the valence orbital population of free atoms: Fe: [Ar]3d64s2 and As: 
[Ar]4s24p3. According to Table 2, the Fe atoms in the pure cluster show a de-
crease on its 4s orbital population of 1.54e for the central atom, 1.51e for the 
Fe(n.n.)a and 1.39e for the Fe(n.n.)b. The population on the 3d orbitals is in-
creased, 0.57e for the central atom, 0.42e for the Fe(n.n.)a, and 1.77e for the 
Fe(n.n.)b. At the As(n.n) atoms a decrease is observed in the 4s orbital popula-
tion of 0.46e and an increase of 1.92e in the orbital 4p.  

For comparing the valence orbital population of the isolated atom Rh: 
[Kr]4d85s1 with the Rh doped crystal, as follows from Table 2, a decrease on the 
5s orbital population of 0.71e, of 0.58e in the 4d orbital and an increase of 1.92e 
for the 5p orbital population is observed. The population for the Fe(n.n.) in both 
directions decreases. For As(n.n.) a decrease of 0.3e and an increase of 1.69e in 
the 4s and 4p orbital population respectively is observed. The charge transfers 
from As(n.n.) atoms to the central atom Rh.  

When doping with Pd, with electronic structure [Kr]4d10, it is observed a de-
crease of 1.2e in the 4d orbital population, an increase in the 5s of 0.25e and also 
an increase of 1.98e for the 5p orbital population. For the nearest neighbor 
atoms, a decrease is observed in the population for the Fe(n.n.) in both direc-
tions. For As(n.n.) a decrease of 0.33e and an increase of 1.58e in the 4s and 4p 
orbital population respectively is observed. Just like in the Rh doping, it is ob-
served a charge transfer from As(n.n.) atoms to the central Pd and a rearrange-
ment of the orbital population in Pd, due to a significant population on Rydberg 
orbitals. 

In Table 3, the data of the detailed valence orbital population RO-MP2 for the 
pure and doped cluster in its ground state is presented. When doping with Rh, 
the 5p orbital population is distributed uniformly in all directions. The 4d orbit-
als on the dopant are occupied by at least one electron. The Fe(n.n.)a exhibit a 
population decrease on yzd  and 2 2x y

d
−

, an increase on xzd , whereas the oth-
ers remain the same upon the Rh doping. In the Fe(n.n.)b atom it is observed an 
increase on the xzd  orbital population, a decrease on xzd , yzd  and to the zero 
population on 2z

d , remaining the same for 2 2x y
d

−
. For the calculation by 

MOLPRO program and in the case of doping with Pd it is observed that the 5p 
orbital population of Pd is distributed homogeneously in all directions. The 4d  
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Table 3. Detailed charge orbital population for 3d(Fe), 4d(Rh, Pd), 5p(Rh, Pd) and 4p(As) 
at the ground state by the RO-MP2 method for pure and doped Ba4Fe5As8 clusters by 
NPA analysis using MOLPRO. 

Ba4Fe5As8 S = 1/2 

Fe 2 2 2
1.37 0.06 1.93 1.58 1.63
xy xz yz x y z

d d d d d
−

+ + + +  

Fe(n.n.)a 2 2 2
1.03 0.5 1.38 1.76 1.75
xy xz yz x y z

d d d d d
−

+ + + +  

Fe(n.n.)b 2 2 2
1.56 0.72 1.81 1.84 1.84
xy xz yz x y z

d d d d d
−

+ + + +  

As(n.n.) 1.6 1.66 1.66
x y zp p p+ +  

Ba4Fe4RhAs8 S = 2 

Rh 
2 2 2

1.72 1.16 1.45 1.29 1.8
xy xz yz x y z

d d d d d
−

+ + + +  
0.52 0.63 0.77
x y zp p p+ +  

Fe(n.n.)a 2 2 2
1.11 1.1 1.03 1.04 1.8
xy xz yz x y z

d d d d d
−

+ + + +  

Fe(n.n.)b 2 2 2
1.01 1.03 1.01 1.85 0
xy xz yz x y z

d d d d d
−

+ + + +  

As(n.n.) 1.69 1.5 1.5
x y zp p p+ +  

Ba4Fe4PdAs8 S = 1/2 

Pd 
2 2 2

1.74 1.71 1.74 1.68 1.93
xy xz yz x y z

d d d d d
−

+ + + +  
0.66 0.55 0.77
x y zp p p+ +  

Fe(n.n.)a 2 2 2
1.53 1.44 0.98 1.15 1.49
xy xz yz x y z

d d d d d
−

+ + + +  

Fe(n.n.)b 2 2 2
1.59 0.71 1.78 1.82 0
xy xz yz x y z

d d d d d
−

+ + + +  

As(n.n.) 1.5 1.54 1.54
x y zp p p+ +  

 
orbitals are almost fully occupied in all directions. In Fe(n.n.)a, the orbital pop-
ulation on yzd , 2 2x y

d
−

 and 2z
d  orbitals, is increased, and on xzd  and xyd  

orbitals its population is decreased upon doping. In the Fe(n.n.)b atom it is ob-
served a decrease to zero on the 2z

d  orbital population whereas all other direc-
tions remain the same when doping. 

In Table 4 and Table 5 we present the spin distribution calculated at RO-MP2 
electron correlation level. It is observed that the spin on central Fe is 0.72. The 
spin practically disappears on all atoms when doping with Pd. According to the 
results obtained, there is no apparent spin transfer direction when doping. Let us 
note that the zero-spin density on all orbitals of the dopant is in agreement with 
the charge populations in both dopants.  

As follows from Table 3 and Table 5, the orbitals yzd  and 2 2x y
d

−
 of Fe(n.n.)a, 

and xzd  of Fe(n.n.)b for Pd doping are practically occupied by one electron 
with zero spin population. Whereas, for the orbitals 2 2x y

d
−

 of Fe(n.n.)b for Rh 
doping a charge population of 2e is observed with spin S = 1/2. The presence of 
one electron charge on the orbital population with no component of spin is ob-
served. This is in agreement with the spinless holons proposed by Anderson in 
his RVB model of high Tc-SC [35] [36] [37]. 
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Table 4. NPA spin distribution at the ground state of the embedded cluster, pure and 
doped, at the RO-MP2 level. 

 Spin () Valence orbital spin population 

Ba4Fe5As8 S = 1/2 

Fe 0.72 4s03d0.71 

Fe(n.n.)a 0.03 4s0.013d0.04 

Fe(n.n.)b −0.05 4s0.033d−0.05 

As(n.n.) 0.04 4s04p0.08 

Ba4Fe4RhAs8 S = 2 

Rh 1.61 5s0.014d1.465p0.24 

Fe(n.n.)a 3.86 4s0.043d3.84 

Fe(n.n.)b −4.62 4s0.143d−3.88 

As(n.n.) 0.18 4s04p0.37 

Ba4Fe4PdAs8 S = 1/2 

Pd 0.08 5s0.014d−0.085p0.16 

Fe(n.n.)a −0.03 4s−0.013d−0.01 

Fe(n.n.)b 0.01 4s0.023d0.02 

As(n.n.) 0.07 4s−0.014p0.06 

 
Table 5. Detailed spin orbital population for 3d(Fe), 4d(Rh, Pd), 5p(Rh, Pd) and 4p(As)at 
the ground state of the embedded cluster, pure and doped, at the RO-MP2 level. 

Ba4Fe5As8 S = 1/2 

Fe 2 2 2
0.59 0 0.01 0.24 0.35
xy xz yz x y z

d d d d d−

−
+ + + +  

Fe(n.n.)a 2 2 2
0.09 0.04 0 0 0.01
xy xz yz x y z

d d d d d− −

−
+ + + +  

Fe(n.n.)b 2 2 2
0.04 0.02 0.01 0 0

xy xz yz x y z
d d d d d− −

−
+ + + +  

As(n.n.) 0.04 0.04 0
x y zp p p+ +  

Ba4Fe4RhAs8 S = 2 

Rh 
2 2 2

0.22 0.24 0.31 0.53 0.16
xy xz yz x y z

d d d d d
−

+ + + +  
0.08 0.11 0.05
x y zp p p+ +  

Fe(n.n.)a 2 2 2
0.87 0.88 0.95 0.94 0.2
xy xz yz x y z

d d d d d
−

+ + + +  

Fe(n.n.)b 2 2 2
0.86 0.97 0.95 0.97 0.13

xy xz yz x y z
d d d d d− − − − −

−
+ + + +  

As(n.n.) 0.09 0.14 0.14
x y zp p p+ +  

Ba4Fe4PdAs8 S = 1/2 

Pd 
2 2 2

0.12 0.01 0.02 0 0.01
xy xz yz x y z

d d d d d
−

+ + + +  
0.02 0.03 0.03

x y zp p p− − −+ +  

Fe(n.n.)a 2 2 2
0.09 0.02 0.02 0.01 0.05

xy xz yz x y z
d d d d d− −

−
+ + + +  

Fe(n.n.)b 2 2 2
0 0.03 0.01 0.02 0.02
xy xz yz x y z

d d d d d− −

−
+ + + +  

As(n.n.) 0.02 0 0.04
x y zp p p+ +  
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4. Concluding Remarks 

A charge transfer from the As and Fe(n.n.)b atoms to the central atoms was ob-
served for both dopants. From our tables follows asymmetries in the occupancy 
of the Fe(n.n.) 3d orbitals in a and b directions. Also follows from our tables that 
the charge transfers from nearest neighbor atoms to the central dopants, while 
there was no evident direction of spin transfer. 

It is important to mention that for Pd dopant, the spin disappears on the do-
pant whereas for Rh dopant there is a spin population different from cero. From 
this follows that charge and spin transfer are completely independent. According 
to the calculated charge and spin orbital distributions, it follows the existence of 
spinless electrons (Anderson’s holon). This indicates the possibility of the su-
perconductivity mechanism in this material proposed by Anderson in his RVB 
theory. 

The IBSC material studied in our paper is consisting of planes of (FeAS)2. 
Upon doping on the planes appears charge transfer from Fe(n.n.)_b to the cen-
tral atom in the selected cluster. The modified orbitals are projected perpendi-
cular to the plane. It would be interesting to study, using a five-band orbital 
Hubbard model, the behavior of these atoms in the proposed configuration of 
our cluster. 
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