
Journal of Quantum Information Science, 2020, 10, 43-71 
https://www.scirp.org/journal/jqis 

ISSN Online: 2162-576X 
ISSN Print: 2162-5751 

 

DOI: 10.4236/jqis.2020.103005  Sep. 2, 2020 43 Journal of Quantum Information Science 
 

 
 
 

Practical Meta-Reinforcement Learning of 
Evolutionary Strategy with Quantum Neural 
Networks for Stock Trading 

Erik Sorensen, Wei Hu 

Department of Computer Science, Houghton College, Houghton, NY, USA 

 
 
 

Abstract 
We show the practicality of two existing meta-learning algorithms Model- 
Agnostic Meta-Learning and Fast Context Adaptation Via Meta-learning us-
ing an evolutionary strategy for parameter optimization, as well as propose 
two novel quantum adaptations of those algorithms using continuous quan-
tum neural networks, for learning to trade portfolios of stocks on the stock 
market. The goal of meta-learning is to train a model on a variety of tasks, 
such that it can solve new learning tasks using only a small number of train-
ing samples. In our classical approach, we trained our meta-learning models 
on a variety of portfolios that contained 5 randomly sampled Consumer Cyc-
lical stocks from a pool of 60. In our quantum approach, we trained our 
quantum meta-learning models on a simulated quantum computer with port-
folios containing 2 randomly sampled Consumer Cyclical stocks. Our find-
ings suggest that both classical models could learn a new portfolio with 0.01% 
of the number of training samples to learn the original portfolios and can 
achieve a comparable performance within 0.1% Return on Investment of the 
Buy and Hold strategy. We also show that our much smaller quantum me-
ta-learned models with only 60 model parameters and 25 training epochs 
have a similar learning pattern to our much larger classical meta-learned mod-
els that have over 250,000 model parameters and 2500 training epochs. Given 
these findings, we also discuss the benefits of scaling up our experiments 
from a simulated quantum computer to a real quantum computer. To the 
best of our knowledge, we are the first to apply the ideas of both classical me-
ta-learning as well as quantum meta-learning to enhance stock trading. 
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Stock Market, Algorithmic Trading 

 

1. Introduction 

Profitable stock trading is vital to investment companies. In order for stock 
trading to be profitable, an investment strategy must be in place to maximize 
performance, which can be measured in expected return. However, many dif-
ferent factors must be considered to measure expected return, such as future es-
timated value or risk of loss, which makes it difficult for market analysts to make 
quick decisions about how to trade their many stocks profitably in their portfo-
lios. 

The problem of trading profitably on the stock market has been solved with 
some success with the recent developments of Deep Reinforcement Learning 
(DRL) [1]. This method treats the stock market as a Markov Decision Process 
(MDP) where the algorithm sees only the data currently available to it and 
makes a decision based strictly on that data [2]. Similar algorithms have been 
created that not only use stock market data but other data as well, such as senti-
ment data from Twitter [3]. 

One of the largest issues with training deep learning algorithms to trade on 
the stock market is that once they have successfully learned to trade a certain set 
of stocks, that learning does not translate to other stocks, even if those stocks are 
very similar to the ones it has previously learned. This problem is called overfit-
ting, and is one of the biggest hurdles in training DRL models [4]. Because of 
overfitting, in order for a DRL algorithm to learn to trade a new set of stocks, it 
has to completely forget what it has learned before and spend extra time training 
on this new set of stocks. This can cause problems if a trading firm wants to up-
date a portfolio it has with new stocks in a short amount of time. The time the 
algorithm spent training on the old portfolio is now completely wasted, which 
could be time the algorithm is maximizing returns and making profits on the 
stock market. 

In order to solve this problem, we propose a novel meta-learning approach to 
trading on the stock market. Meta-learning is a field of reinforcement learning 
that enables the learning agent to generalize previous knowledge to similar 
areas it has learned before which enables it to learn new environments with 
very little training time. We propose to use the meta-learning algorithms Mo- 
del-Agnostic Meta-Learning (MAML) [5] and Fast Context Adaption Via Meta- 
learning (CAVIA) [6] to learn how to trade on new but similar portfolios with 
much less training. To the best of our knowledge, we are the first to apply me-
ta-learning techniques to enhance stock trading. 

Furthermore, the stock market is a very complex environment with many va-
riables at play and classical computers can struggle to learn effectively with this 
much data. The recent developments of Quantum Computing is a promising 
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solution to train an algorithm quickly on the large amounts of data the stock 
market provides, which has the potential to increase our performance when 
trading. With these exciting developments in mind, we also explore quantum 
implementations of the meta-learning algorithms MAML and CAVIA on a si-
mulated quantum machine using our novel quantum algorithms Q-MAML and 
Q-CAVIA. To the best of our knowledge we are also the first to create quantum 
meta-learning algorithms. In summary our main contributions of this paper are 
as follows: 
• We provide a new way to increase training performance when learning new 

stock portfolios via meta-learning. 
• We create new quantum implementations of these meta-learning algorithms 

used to enhance stock trading. 
• As far as we know, we are the first to explore both meta-learning to enhance 

stock trading and the first to create a quantum implementation of the me-
ta-learning algorithms MAML and CAVIA. 

2. Background 

In this section we give a brief background in the fields of reinforcement learning, 
evolutionary strategies, meta-learning, and continuous variable quantum com-
puting. 

2.1. Reinforcement Learning 

Reinforcement learning (RL) is one area of machine learning in which an agent 
interacts with an environment to learn how to maximize rewards by taking cer-
tain actions within that environment [7]. The goal of RL is to find a policy, 
which describes which actions to take in certain states, that maximizes the re-
ward. More concretely, a policy (π ) is a probability distribution that maps states 
s∈  to actions a∈ , or stated differently [ ]: 0,1π × →  . Each task in 
RL is a MDP which contains a tuple ( )0, , , ,i r q q=   , where   is a set of 
states,   is a set of actions, ( )1, ,t t tr s a s +  is a reward function, ( )1 | ,t t tq s s a+  
is a transition function which gives the probability of moving from ts  to 

1t
s  

by doing action ta  at time t, and ( )0 0q s  is an initial state distribution. The 
optimal policy is a policy that receives the greatest cumulative reward   under 
π , 

( ) ( )
0

1

, , 1
0

, ,
H

t
q q t t t

t
r s a sππ γ

−

+
=

 =   
∑                 (1) 

where H ∈  is the horizon and [ ]0,1γ ∈  is the discount factor which deter-
mines how much the agent cares about rewards in the distant future relative to 
those in the immediate future. 

RL is very useful, especially when we are trying to learn complicated environ-
ments that would be too difficult to write instructions for by hand. By only de-
fining the rewards the agent will seek, it will teach itself how to best navigate the 
environment and maximize its reward. All methods of RL have this same goal, 
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which is to find the optimal policy to maximize reward. 
RL algorithms that use neural networks are defined as Deep Reinforcement 

Learning algorithms. Neural networks are a technique of function approxima-
tion that can learn continuously complex environments faster and more effec-
tively. Neural Networks are able to do this via activation functions which enables 
them to learn on these more complex environments [8]. 

2.2. Evolution Strategies 

Evolutionary Strategies (ES) are an alternative to Stochastic Gradient Descent to 
optimize deep learning models. These strategies were created from the family of 
Evolutionary Algorithms (EA). The idea behind these algorithms is to mimic 
what natural selection does to species in biology. Over time, natural selection 
works by naturally propagating “good” genes. Organisms that have these “good” 
genes are more likely to survive from predators and perpetually pass these genes 
to their offspring. This cycle continues until all the organisms of the species have 
these “good” genes. 

We can apply this same idea of natural selection to optimize a deep learning 
model. Recall that in deep learning, the goal is to reach the optimal policy that 
receives the greatest cumulative reward by updating the parameters of the neural 
network. In other words, we can find the optimal configuration of parameters 
θ  to find the optimal policy π  for any state x, which is described as ( )xπ . 
This alternative way for optimizing parameters is shown in Algorithm 1 [9]. 

There are a few important lines to note in Algorithm 1. First, we apply a “jit-
ter” to each of the samples from step 4. The “jitter” is created through random 
variance based on a hyper parameter, σ , which controls how much random 
variance we have in “jittering”. Then, based on the samples chosen with this 
random variation we can evaluate the fitness of them in line 5 in accordance 
with our fitness function f at state ix , and then perform our update to our pa-
rameters θ  toward the optimal policy π  via the computed log-derivatives 
shown in step 9. 

Furthermore, ES is effective for deep reinforcement learning. It has been  
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shown that ES scales very well with multiple CPUs for parallelization, even with 
up to 1000 CPUs [10]. This allows us to train deep networks to solve compli-
cated environments in a short amount of time. ES has also been found to be a 
great black box optimization technique because it is not impacted by delayed 
rewards, does not require value function approximation, and does not need 
temporal discounting, which all cause problems to train an agent on a complex 
environment. These factors make ES effective for deep reinforcement learning. 

2.3. Meta-Reinforcement Learning 

Reinforcement Learning struggles with the problem of overfitting, or learning 
one task very well while failing to generalize what it has learned to other tasks, 
even ones that are very similar. One of the things that humans can do very well 
is generalize things that they have learned previously to new tasks. One such 
example is that once a human learns to ride a bicycle, it takes little or no instruc-
tions to figure out how to ride a motorcycle. These two tasks are very similar in 
practice, and our human minds can automatically detect the similarities between 
these two tasks and transfer our previous knowledge to learn the new task 
quickly. This is impossible to do for traditional RL algorithms, which require 
completely different training sessions for each individual task, even if the two 
tasks are very similar. 

The field of meta-reinforcement learning hopes to solve this problem. The 
goal of meta-reinforcement learning is to create good models that are capable of 
adapting or generalizing to new tasks and environments that it never encoun-
tered during training time. In order to adapt to these new tasks, the meta-rein- 
forcement learning algorithm is shown small batches of this new task with li-
mited exposure. Eventually, the algorithm will be able to perform well on this 
new task with much less training. The research field of meta-learning is very 
broad whose goal is to learn how to learn, but for the purposes of our paper, 
whenever we say meta-learning we mean meta-reinforcement learning, which 
applies meta-learning ideas to reinforcement learning algorithms. 

Some examples of how meta-learning could be used in the real world are: 
• A image classifier trained to detect cat images can learn to detect non-cat 

images quickly with only a few images [11]. 
• A game bot learning to play checkers after it has already learned chess. 
• A meta learned regression algorithm can learn shapes of new sine curves with 

only seeing a few of them [5]. 
The goal of few-shot meta-learning, or learning with very few training steps, is 

to enable the agent to quickly discover the optimal policy for a new task using 
only a small amount of experience from the new test setting. However, gra-
dient-based optimization is designed to work with large sample sizes, not the 
small amount of training required for meta-learning to take place. MAML and 
CAVIA are two algorithms that look to solve this problem using the optimiza-
tion approach for meta-learning. 
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2.3.1. MAML 
MAML stands for Model-Agnostic Meta-Learning and its purpose is to be a 
general meta-learning algorithm that is compatible with all models that use 
some form of gradient descent to update learning parameters [5]. It is used in 
reinforcement learning to accelerate the learning for neural network policies 
when the agent only has a little bit of exposure to the new environment. The idea 
behind MAML is to use two separate training loops, an inner loop (lines 4 - 9 in 
Algorithm 2) that learns task specific knowledge updating a set of parameters 
θ ′ , and an outer loop (lines 2 - 11 in Algorithm 2) that learns global knowledge 
across tasks updating another set of parameters θ  based on the task specific 
parameters θ ′  for each training batch of tasks. Therefore, we can use the θ  to 
quickly learn new tasks that are similar to the tasks θ ′  were trained on. The 
complete algorithm for MAML for reinforcement learning is shown in Algo-
rithm 2. 

MAML has been shown to be a successful way to quickly train a model on a 
variety of popular reinforcement learning environments such as the 2D Naviga-
tion environment and the complex MuJoCO 3D quadruped environment. In 
both cases, MAML achieved the desired goal for both environments with only a 
few training iterations [5]. 

2.3.2. CAVIA 
Fast context adaptation via meta-learning, or CAVIA, is an extension of MAML 
which claims to be less prone to meta-overfitting, which has been shown to be a 
problem for MAML [12], is easier to parallelise, and is more interpretable. This 
is done by splitting the model parameters into two parts: the context parameters 
which are used as an additional input to the model and are adapted to individual 
tasks, and shared parameters that are meta-trained and shared across all tasks. 
The context parameters are also only updated during test time which leads to a 
low-dimensional task representation which boosts performance during training. 

In MAML, the gradients of the model parameters θ  are calculated before the 
inner-loop update, which means that the outer-loop update involves a higher 
order derivative of θ . This increases complexity of the algorithm and decreases 
performance while training. CAVIA removes the higher order derivative calculation 
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by adding the context parameters φ  which are calculated within the inner loop 
for each task, and is separate from the model parameters θ  which are me-
ta-leaned and calculated in the outer loop and shared across tasks. This is done 
by updating the model parameters θ  with the average of the context parame-
ters φ , which means that the higher order gradients are already included in θ  
due to its dependence on φ . The full algorithm can be found in more detail in 
Algorithm 3 [6]. 

2.4. Continuous Variable Quantum Computing 

A recently popular model of quantum computing is continuous variable (CV) 
quantum computing which serves as a continuous method of computation and 
leverages wavelike properties found in nature where quantum information is not 
encoded in bits but in the quantum states of fields, such as the electromagnetic 
field. The particles that encode this information are called qumodes, which carry 
more information than bits and are more powerful due to their quantum prop-
erties. For example, qumodes can be in a quantum superposition of multiple 
states at the same time. The state of the qumodes are manipulated using quan-
tum gates and multiple gates applied successively to qumodes make up a quan-
tum algorithm. 

Qumodes can be represented by the wavefunction representation, where we 
specify a single continuous variable, say x, and represent the state of the qumode 
through a complex-valued function of this variable called the wavefunction 
( )xψ . The single continuous variable x can also be interpreted as a position 

coordinate, and ( ) 2
xψ  as the probability density of a particle (photon) being 

located at x. Based on elementary quantum theory, we can use a wavefunction 
based on a conjugate momentum variable, ( )pφ . The position x and the mo-
mentum p can also be pictured as the real and imaginary parts of a quantum 
field, such as light [13]. A physical model of one of these computers consists us-
ing optical systems [14] in the microwave regime [15] and using ion traps [16]. 

The CV model is largely unexplored when it comes to machine learning, but 
there have been some recent research that have shown the usefulness of the con-
tinuous nature of a CV quantum circuit being used as a kernel-based classifier 
[17]. Even more promising is the use of CV quantum circuits to create neural  
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networks [13]. The CV model is a good fit to create neural networks due to them 
being continuous in nature. Neural networks are the most expensive part com-
putationally of RL algorithms and Quantum neural networks aim to speed up 
computation time exponentially when run on a quantum computer. 

A quantum neural network is made with a specific set of quantum gates that 
manipulate qumodes as they pass through them. Gates can either be Gaussian or 
not. Gaussian gates are the “easy” operations for a CV quantum computer. The 
rotation ( )R φ , displacement ( )D α , and squeezing ( )S r  gates are Gaussian 
operations and are applied to one qumode. Another Gaussian gate, called beam- 
splitter ( )BS θ , can be understood as a rotation between two qumodes. These 
gates can be represented as matrix transformations on phase space and are as 
follows, 

( ) ( ) ( )
( ) ( )
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x x
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The ranges for the parameter values are [ ], 0, 2φ θ ∈ π , 2α ∈ ≅   and  

r∈ . To help visualize what these Gaussian transformations do, we can map 
the phase space as a quasi probability density, therefore simulating what each of 
the gates look like when they are applied to a qumode. 

One more non-Gaussian gate is used to build quantum neural networks, the 
Kerr gate which is represented by the function ( ) ( )2ˆexpK i nκ κ= . A universal 
gate set for CV quantum computing consists of all of the Gaussian transforma-
tions shown above, and one non-Gaussian gate such as the Kerr gate. With a 
universal gate set, we can approximate any function with CV quantum compu-
ting. This universal gate set is visualized in Figure 1. Parallels can be drawn to 
classical neural networks, where the Gaussian gates are the same as linear trans-
formations in classical neural networks and the non-Gaussian gates are non-linear 
transformations. 

These gates can then make up a neural network algorithm that is similar to 
how classical neural networks operate. We can use these quantum neural net-
works in place of the classical neural networks to speed up computation time on 
a quantum computer. In the future, we could use a classical computer to run the 
RL algorithms together with a quantum chip that runs quantum gate operations 
to compute the neural networks very quickly [18]. 
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Figure 1. These images, in order, are the vacuum state, which is the initial state of the 
qumodes with no gate applied, the rotation gate, the displacement gate, the squeezing 
gate, and the Kerr Gate. These visualizations show the probability of photons location and 
momentum in phase space. Location and momentum make up each axis while the peaks 
of green show high probabilities of photons being at that location and momentum, and 
red shows low probabilities. The quantum gates manipulate this probability distribution 
of the photons in phase space. Note how the Kerr gate can achieve negative probabilities 
[13]. 

3. Problem Statement 

Instead of trying to teach a reinforcement learning agent to master a game on 
the Atari, which is a very popular and standard way to benchmark RL perfor-
mance, we are going to train a RL agent to trade on the stock market. The stock 
market is an attractive alternative environment for testing RL performance be-
cause it offers a more practical application for learning than playing a video 
game. Also, all of the data on the stock market is publicly available and easily 
accessible. The goal of this paper is to not create an algorithm to make a lot of 
money on the stock market but to show how a combination of reinforcement 
learning, meta learning, and quantum computing can effectively learn to trade 
on a practical environment like the stock market. 

In our paper, we will train an agent to manage m multiple portfolios at the 
same time, each with n number of stocks. Then, using meta reinforcement 
learning our agent will learn to trade a single portfolio that contains completely 
different stocks than what it has learned to trade with before with much less 
training required. 

In order to train the RL agent we must model the stock trading process as a 
MDP which is the baseline assumption required for all of the RL methods de-
scribed above. This frames the problem as a maximization problem, where the 
goal of the RL agent is to maximize the amount of trading profits it will receive 
when trading on the stock market. Figure 2 shows what this MDP looks like. 
This MDP includes: 
• State ts m= : which includes a vector of size 1n + , where n is the number of 

stocks in the portfolio plus 1 for the amount of total cash we hold. The clos-
ing prices p∈  for all of the stocks in each portfolio m have time-step 
measure t, where t denotes the day we are trading. 

• Action a: which is the action the agent can perform on each portfolio m. The 
actions are encoded by the portfolio weights [ ]0,1tw ∈  which describe the 
percentage amount each stock makes up the portfolio at each timestep t 
where the sum of all tw  in the portfolio m is 1. 

• Reward ( ), ,r s a s′ : which is the change of the portfolio value when action a  
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Figure 2. As the stock price changes from s to s′ , action a is taken which is encoded as 
portfolio weights ( )0 1 2, , ,w w w �  chosen by the agent, leading to the next portfolio value. 

All of the portfolio weights sum up to one. 
 

is taken at state s and arrives at the new state s′ . The total portfolio value is 
the sum of the closing prices in all held stocks in the portfolio plus the total 
remaining cash we are holding that is not put in stocks. The goal of the agent 
is to maximize r for a given time frame. 

• Policy ( )sπ : which denotes the trading strategy of stocks at state s, which is 
the probability distribution of a at state s. 

• Action-value function ( ),Q s aπ : which is the expected reward achieved by 
action a at state s following policy π . 

Each portfolio is composed of a vector of weights [ ]0,1tw ∈ , which describes 
how much percentage the portfolio is composed of each asset at timestep t. 
These weights are then the output of our agent, and how it decides how much of 
each asset in the portfolio to hold, which always sum up to one by definition, 

, 1ti w i =∑ . The first weight is special as it describes how much cash is being 
held. At timestep 0, the cash weight is always 1 because no trading has occurred 
yet so all of our assets are in cash. The rate of return at timestep t is then: 

1: 1t t tp y w −= ⋅ −                         (2) 

where at time t, tp  is the rate of return of the portfolio, ty  is the vector of 
closing prices of each stock in the portfolio, and tw  is the assigned vector of 
weights by the agent. The corresponding logarithmic rate of return is 

1: ln .t t tr y w −= ⋅                          (3) 

The logarithmic rate of return is used to normalize the reward function so that 
it is easier for the agent to learn. This ensures that when the model goes to up-
date its gradients, that the gradients all get updated on the same scale. This 
makes training more stable which should also increase performance of our model. 

If there is no transaction cost, the final portfolio value will be 
11

0 0 1
1 1

exp ,
ff tt

f t t t
t t

p p r p y w
++

−
= =

 
= = ⋅  

 
∑ ∏                 (4) 

where 0p  is the initial investment amount. The goal of the reinforcement 
learning agent is to maximize the portfolio value fp  for a given time frame. 

Assumptions 

In this work, only back-test tradings are considered. This means that our model 
pretends to be “back in time” at a point in market history and then trades on 
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unknown “future” market data. In order to perform backtesting we must make a 
couple of assumptions: 

1) Zero slippage: The liquidity of all market assets is high enough that each 
trade can be carried out immediately at the last price when an order is placed. 
This also includes the ability to always place orders immediately at the end of the 
day. 

2) Zero market impact: The capital invested by the agent is insignificant 
enough to not influence the market. 

In a real-world trading environment, if the volume in the market is high 
enough, then these two assumptions are near to reality. The Consumer Cyclical 
stocks that we will be trading are all high volume stocks so our assumptions are 
justified. Furthermore, we assume that there are no transaction costs to trading. 
In the modern world of stock trading there are many online brokerages that of-
fer no cost trading, several of which are Robinhood, Fidelity, and E-Trade. Since 
we will only trade stocks once per day we can assume no transaction costs will be 
charged if one of these online brokerages are used. 

4. Related Works 

Algorithmic trading on the stock market is a very active research domain. Here 
we will focus on those algorithms which use different deep reinforcement learn-
ing techniques. 

One deep reinforcement learning strategy used a Portfolio-Vector Memory 
(PVT) technique to form the problem as optimizing a portfolio of assets, where 
each asset in the portfolio has an assigned weight given to it by the learning agent 
[19]. The learning agent was then constructed using a Convolutional Neural Net-
work (CNN), a basic Recurrent Neural Network (RNN) and Long Short-Term 
Memory (LSTM). Our research used a similar method to form the trading prob-
lem using the portfolio of asset weights, but differed in how the learning agent 
was constructed. Their method also learned to trade a portfolio of Cryptocur-
rencies, while we focus on stocks in the New York Stock Exchange (NYSE). 

Utilizing quantum computing for algorithmic trading is a new field of re-
search but is increasing in activity. One method explores using a Quantum-ins- 
pired tabu search to find trading rules that will optimize profits when trading on 
the stock market [20]. This research uses quantum states to intensify the search 
for these optimal trading rules, which allows it to more effectively explore the 
stocks in the market, avoiding negative results. This research is one of the few 
that explores using quantum states to find optimal trading strategies, but differs 
from our research as it does not explore using quantum neural networks and a 
reinforcement learning technique to find an optimal trading strategy. 

Another branch of algorithmic trading with quantum computers explores us-
ing quantum artificial neural networks (QuANNs) as a way to build and simu-
late financial market models with adaptive selection of trading rules [21]. The 
idea is that QaANNs can build a model of financial market dynamics that in-
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corporates quantum interference and quantum adaptive computation in the 
probabilistic description of financial returns. While this field of research is still 
in its early stages, this research shows that QuANNs are able to successfully 
model financial markets and bridge the fields of financial dynamics and risk 
modeling. In our research, we also use a form of quantum neural networks, but 
ours is modeled after the continuous form of quantum computing, while this 
research uses discrete quantum computing. 

At the time of writing, there is no current research that uses continuous quan-
tum neural networks to learn to trade on financial markets. Furthermore, there 
is also no research that looks into applying the field of meta-learning algorithms 
to better improve the agent’s learning of financial markets. Our research is the 
first to combine both the fields of meta-learning and continuous quantum neur-
al networks to teach an agent to trade on financial markets. 

5. Methods 
5.1. Data Treatments 

Our trading experiments were done on stocks that are classified as Consumer 
Cyclical (CC) stocks. Consumer Cyclical is a category of stocks that rely heavily 
on the business cycle and economic conditions. It includes industries such as 
automotive, housing, entertainment, and retail. 

We extracted a total of 60 different CC stocks from finance.yahoo.com. In our 
experiments, our agents trained on m multiple portfolios, each having a vector 
of size n + 1, where n is the number of stocks inside the portfolios and where n + 
1 includes the amount of cash the agent has available to purchase stocks with. To 
fill the portfolios during training time, we randomly sample n stocks from 55 
of the 60 stocks available. The random sampling is done so that the meta-lear- 
ning algorithm learns how to trade CC stocks as a whole and not just individ-
ual stocks. For our classical experiments m and n were set to 5. This means 
that our agent trained on 5 different portfolios, each containing 5 randomly 
chosen CC stocks. 

We then split this data into a training set that contains the first 70% of the da-
ta and a testing set that contains the last 30% of the data. Then, to test our agents 
performance, we train the agent with only a few training iterations on 1 portfolio 
that contains the last 5 of the stocks that were not included in the random sam-
pling during training. This test portfolio contained the same set of CC stocks 
across all tests. These stocks were ABC, AKAM, APD, AVP, and BAC. The test 
portfolio data is also split with the same 70/30 train/test split like the training set. 
We then meta-train the agent with only a few training iterations on the 70% test 
set, and then run a back test on the last 30% of the test portfolio to validate the 
performance of the agent on data it has not seen before. Back testing is a stan-
dard way to measure how well a strategy or model would have done at some 
time period in the past. In our case, our period of back testing is our 30% split of 
our testing dataset. The stock data we used were from the dates 1/2/2001 to 
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6/12/2002. Therefore, with the 70/30 train/test spit described above, the agent 
trained on stock data from 1/2/2001 to 1/4/2002 and was back-tested on stock 
data from 1/7/2002 to 6/12/2002. This is shown in Figure 3. It is important to 
note that the data we have contains only days the stock market is open, which is 
most week days (Monday through Friday) excluding any major holidays. 

Like mentioned before, each portfolio is a vector of size n + 1 where n is the 
number of stocks in the portfolio plus one for the amount of cash the agent cur-
rently has to trade with. The data available to us for each day includes the open-
ing price, the highest price in the day, the lowest price in the day, the closing 
price of the day, and the volume or the amount of stock traded in the day. In 
order to make the problem simpler and to reduce the total amount of data the 
agent needs to process to make training time quicker, we only use the closing 
price of the day. While giving the agent more data to train on has the potential 
to increase its trading performance, for the purposes of this paper, we think that 
the closing price offers enough information to show the potential of meta-learning 
on trading on the stock market. Future work could include using more data to 
further boost performance. 

In order for the agent to more effectively learn from the data, we group mul-
tiple days together as one input into the model. We do this because it would be 
near impossible for the model to make a decision from just one days closing 
price. With only one days worth of information, the model doesn’t know if the 
stock price is going up or down and therefore cannot make a judgement on if its 
a good time to purchase the stock in order to make a profit. To solve this, we 
input ws stocks at a time, where ws is called the window size. In our experi-
ments, the window size is 10. This means that at every timestep t, the agent is 
given the data from the past 10 days from t, or t − 9, for each of the stocks in the 
portfolio, which can be seen in Figure 4. This makes the size of the input data  

 

 
Figure 3. Data Splitting. 

 

 
Figure 4. For each training iteration, the input data shifts to include the last 10 days of data from the current time-
step t. 
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for each day of training m × n × ws. 
Another very common strategy to improve the stability of learning is to nor-

malize the data that it receives so that variation between the data is reduced. In 
order to do this, we apply two strategies. First, we have selected to train and test 
only on stocks that have a price between $0 and $50. This way, there are no very 
large stocks that could cause a high variance in training our model. Second, we 
also normalize our data by using the logarithmic rate of return shown in Equa-
tion (3). 

5.2. Two Classical Models for Meta Stock Trading 

In this section, we will discuss how our models were created and how learning 
takes place. We have a total of 4 algorithms being tested: MAML, CAVIA, and 
our quantum implementations of these algorithms Quantum MAML (Q-MAML) 
and Quantum CAVIA (Q-CAVIA). All of these algorithms use the NES model 
for updating the gradients. Normally, MAML and CAVIA use gradient descent 
to update the gradients, but they are both general purpose meaning that any 
method to update the gradients of our model parameters will work. We chose to 
use the NES algorithm to replace the derivative calculations in MAML and 
CAVIA because it is has been shown to avoid overfitting and scales well with 
parallel computing [10]. We will then compare our model’s performances in the 
next section and discuss the benefits for using these models. 

In our implementation of MAML and CAVIA using NES, we have a neural 
network with 2 hidden layers of size 50 × 100 and 500 × 500, and an input layer 
of size 1 × 50 and an output layer of size 500 × 5 + 1 (see Figure 5). The outputs 
are encoded with a softmax so that our final outputs are a vector of portfolio 
weights where each weights value is between 0 and 1 and the sum of all of the 
portfolio weights equals 1. Each of these numbers describes how much cash and 
how much of each stock we should hold as a percentage of our portfolio for that 
day of trading. Each of the parameters in the hidden layers of our neural net-
work then act like a voting system, where each of them contribute weight for 
each item in the portfolio weight vector. 

 

 
Figure 5. NES neural network implementation for stock trading: This is a realization of how the inputs for one 
portfolio are mapped to outputs in our model. The inputs include the closing prices of all n stocks where ws is our 
window size which we have set to 10. Then the inputs are applied to the weights of our neural network with a li-
near activation function (matrix multiplication). The last step we add a cash bias and apply the softmax function 
which maps the neural network weights to a portfolio vector of size m + 1. This means that each item in the vector 
is the agents decision of the percentage of each asset to hold at the current timestep. 
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The NES algorithm updates each of these weights following Algorithm 1, 
where our fitness function f is the reward function, or the expected portfolio 
value, our learning rate is set to 0.03, our σ  which applies the “jitter” is set to 
0.1, and our population size is set to 15. 

Our goal in meta-learning is not to learn to trade one portfolio, but to learn 
how to trade CC stocks as a whole. Because of this, our training loop trains on 5 
separate portfolios, each containing 5 CC stocks. In order to do this, we loop 
through each portfolio, updating our agents parameters on each portfolio one at 
a time. This means we have one set of parameters for all of our portfolios. 
Training in this way makes the training essentially maximize the reward over all 
of the stocks, or in other words, it learns the average best policy for all of the 
portfolios that contain CC stocks. We do this for 2500 epochs, meaning that we 
train the algorithm over each portfolio 2500 times. We chose 2500 epochs be-
cause training progress slowed down significantly around this point. 

Then, we train the meta-algorithm on 1 previously unseen portfolio with only 
20 epochs, which is significantly less epochs required than during training time. 
How the meta-algorithm is trained is different for each MAML and CAVIA al-
gorithms. 

5.2.1. Training MAML for Stock Trading 
The MAML algorithm requires a separate set of model parameters θ ′  to be 
trained separately along with the main parameters θ . In our implementation 
θ ′  is initialized with the same structure as the normal parameters and they are 
also updated via the NES algorithm. The difference between these parameters is 
when they are updated. After each θ  parameter is updated for each of the 
portfolios, we save the gradients from each of these updates. We then use each of 
these gradients from θ  to update our meta-gradients which are then used to 
update our meta-parameters θ ′ . These parameters are then used to speed up 
our training on our new unseen test portfolio, which only requires around 20 
epochs to learn. 

In summary, MAML requires two different gradients to be computed which 
increases computational complexity due to having to compute 2nd order gra-
dients. This is done to train the θ ′  parameters which are essentially an average 
of the normal θ  parameters and are used to dramatically increase training 
speed on an environment that is similar to what the θ  parameters were trained 
on. 

5.2.2. Training CAVIA for Stock Trading 
CAVIA aims to increase the performance of MAML by taking away the 2nd or-
der gradients and replacing it with context parameters φ . The context parame-
ters are initialized with a vector of size 5, which gives one context parameter for 
each stock in the portfolios. Training takes place in 2 separate loops, the inner 
loop and the outer loop. In the inner loop the context parameters are initialized 
to 0, as described in the CAVIA paper, and are updated in accordance to how 
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close the θ  parameters are to the optimal policy via an NES update of the gra-
dients. These context parameters are then concatenated to the input layer along 
with the portfolio’s stock closing price data. This means that the size of our input 
layer doubles. Then in the outer loop, the model parameters θ  are updated like 
usual, but with the addition of the context parameters from the inner loop being 
concatenated onto the inputs to the model. 

In summary, CAVIA removes the 2nd order gradients because the context 
parameters are not dependant on any gradients computed before, but are instead 
computed before the weights are updated in the inner loop. The context para-
meters are then added to the input where then the θ  parameters are trained 
like normal through the model via the NES algorithm. Because there is one con-
text parameter for each stock in the portfolio, and these context parameters are 
updated over time for each portfolio through θ , the context parameters serve to 
boost training speed when we train on another environment that is similar to 
what was learned before. 

5.3. Training Quantum Meta Models for Stock Trading 

Our quantum implementation is created using the Python package Pennylane 
from Xanadu. This package simulates a quantum machine on a classical com-
puter and gives support for quantum machine learning. It is important to note 
that Pennylane simulates a Continuous Variable Quantum Machine. We use this 
package to create our quantum neural networks. We then use those networks 
instead of our classical networks in our MAML and CAVIA algorithms. Because 
of how the quantum neural networks work, the inputs and outputs of the net-
work have to be changed slightly in order for learning to take place in the quan-
tum network. Everything else from the classical algorithms remains the same, 
including how we update the gradients via NES. 

We decided to test two different implementations of a quantum neural net-
work, one that uses the beamsplitter gate that entangles qumodes, and one that 
does not use the beamsplitter gate. Quantum entanglement is a property of 
quantum computers where two quantum particles are united in a perfectly 
shared existence, even at immense distance. Harnessing this quantum property 
has the potential to dramatically increase the amount of calculations we can do 
in parallel [22]. Our hypothesis is that the quantum neural network using the 
beamsplitter gate will perform better than the one without it because it will be 
able to identify different patterns of the stocks that the agent can use to maxim-
ize rewards even further. The first implementation without the beamsplitter 
gates uses a rotation, squeezing, another rotation, a displacement, and a kerr 
gate, which can be seen in Figure 6 and Figure 7. The second implementation 
with the beamsplitter uses a displacement gate followed by two sets of a squeez-
ing gate, a kerr gate, and beamsplitter gate that entangles 2 wires at a time, which 
can be seen in Figure 8 and Figure 9. 

Both of our quantum neural networks have 4 layers of gates. These gates are 
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applied to the “wires” of the simulated quantum computer, and each gate has a 
parameter which controls how the gates behave to map the inputs to the outputs. 
These parameters are updated through the NES algorithm in the same way that 
the classical models parameters were updated. The input data, the closing price 
of stocks, is applied through each of these wires individually via a displacement 
gate which encodes the input data into a quantum state so that the quantum 
computer can apply other operations to it. Because each bit of input data must 
be encoded onto its own separate wire, the data has to be structured differently 
than in the classical case so that the quantum neural network can properly utilize 
the data for learning. The quantum neural network outputs the same vector of 
voting weights as the classical neural network after mean displacement in the 
phase space along the x axis of each wire [13]. Similar to the classical implemen-
tation, the softmax is then applied to these voting weights which gives us the 
vector of portfolio weights. 

Another thing to note is that simulating a quantum computer on a classical 
computer is a very computationally heavy task. With each additional wire the 
task becomes exponentially more difficult, and exponentially more RAM is re-
quired to store all of the quantum states and the interactions between them. For 
this reason, with the computer hardware available to us, we were only able to 
simulate a quantum computer with up to 5 qumodes, or 5 wires. With a budget 
of only 5 wires, we could only simulate portfolios that contained 2 stocks in 
them. Furthermore, the number of portfolios the quantum agents trained on was 
2, so the quantum agents trained on 2 portfolios that each contained 2 randomly 
sampled CC stocks. This was done in order to reduce training time to a mana-
geable level. These 2 stocks in the portfolios each had to take up their own wire, 
along with an additional wire that was used for the cash bias layer. The other 
wires in our budget had to be used in order to implement both MAML and 
CAVIA. To reduce training time even further, our data set included only 180 
days instead of 360. Because we trained our quantum agents on portfolios of size 
2, our testing portfolios had to be the same size, so our test portfolio only con-
tained the stocks ABC and AKAM. Using the same 70/30 train/test split, the 
quantum training data set were between the dates 1/2/2001 and 6/29/2001, and 
the quantum testing data set were between the dates 7/2/2001 and 9/21/2001. 

5.3.1. Training Q-MAML for Stock Trading 
Our Q-MAML implementation used a total of 3 wires: 2 wires for each stock in 
the portfolio and 1 wire for the cash bias layer. Our Q-MAML implementations 
can be seen in Figure 6 and Figure 8. 

5.3.2. Training Q-CAVIA for Stock Trading 
Our Q-CAVIA implementation used a total of 5 wires: 2 wires for each stock in 
the portfolio, 1 wire for the cash bias layer, and another 2 wires to encode the 
context parameters. Recall that in the CAVIA algorithm we have one context 
parameter for each stock. Our CAVIA Quantum implementations can be seen in 

https://doi.org/10.4236/jqis.2020.103005


E. Sorensen, W. Hu 
 

 

DOI: 10.4236/jqis.2020.103005 60 Journal of Quantum Information Science 
 

Figure 7 and Figure 9. 
Even though we have more wires in the budget for our Q-MAML implemen-

tation that we could use to trade more stocks, we wanted the input data to be the 
same for both the Q-MAML and Q-CAVIA so that we could compare their per-
formances. Q-CAVIA was limited to trading on only 2 stocks, so we trained the 
Q-MAML on the same 2 stocks so that we could appropriately compare their 
performance. 

6. Results 

The performances of all of our meta-learned and quantum meta-learned models 
were compared to that of what we call the market value of the portfolio. The 
market value is measured by simply equally spreading the total initial amount of  

 

 
Figure 6. One layer of our MAML quantum neural network without the beamsplitter 
gate. Each wire is represented by a horizontal line in which our stock data is encoded into 
a quantum state with the displacement gate ( )D α , and flows through each wire over 

time through the quantum gates going from left to right. For better visualization of each 
quantum gates manipulation on phase space refer to Figure 1. The last horizontal line c 
represents our classical reading of the quantum states. Each box represents a different 
quantum gate, where each has a parameter inside the parenthesis that will be updated by 
the NES algorithm in the same way our classical neural network’s parameters are up-
dated. Each gate is labeled based on their mathematical formulation. The X is not a gate 
but is rather when we measure each wire, getting the classical output for that wire which 
translates into our actions for the stock encoded on that wire. 

 

 
Figure 7. One layer of our Q-CAVIA neural network without the beamsplitter gate. 
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Figure 8. One layer of our Q-MAML neural network with the beamsplitter gate. 

 

 
Figure 9. One layer of our Q-CAVIA neural network with the beamsplitter gate. 
 

the fund into each asset in the portfolio and holding them without making any 
purchases or sales until the end [23]. This benchmark is also called the “Buy and 
Hold” strategy for investing. We will quantify these measurements using Return 
on Investment (ROI) which is stated in (5). The goal is for our models to per-
form better than the market value, or in other words, achieve a higher ROI than 
the buy and hold strategy. 

End Portfolio Value Initial Amount InvestedROI 100
Initial Amount Invested

−
= ∗        (5) 

6.1. Classical Meta-Learning Results 

For the classical experiments, we ran each of the experiments 12 times in order 
to reduce the chances that our results are an anomaly. The training and market 
test plots in this section show the mean and ± standard deviation from the mean 
of our portfolio values over all 12 experiments. The mean value is shown in the 
dark blue line and the ± standard deviation from the mean is shown in the light 
blue background. 

6.1.1. Running Our Experiments 
For our Classical Experiments, recall that we trained both MAML and CAVIA 

https://doi.org/10.4236/jqis.2020.103005


E. Sorensen, W. Hu 
 

 

DOI: 10.4236/jqis.2020.103005 62 Journal of Quantum Information Science 
 

over 2500 epochs on 5 portfolios each with 5 stocks randomly sampled from a 
pool of 50 CC stocks over the dates between 1/4/2001 and 1/7/2002. For Figure 
10 and Figure 11 showing model training we can see for both MAML and 
CAVIA two sets of training plots. The first one (a) is where we trained the model 
over 2500 epochs on 50 different CC stocks between the dates 1/4/2001 and 
1/7/2002. During this training, the models learned how CC stocks behave in 
general. The second graph (b) shows our model learning our specific test portfo-
lio containing the stocks ABC, AKAM, APD, AVP, and BAC. This training only 
lasts for 20 epochs, and shows that we can achieve good reward with much less 
training epochs. If we look at Figure 10, we can see that the graph (b) reaches a 
reward of almost 4 at just 18 epochs, where the graph (a) took about 150 epochs 
to reach the same reward. This means that meta-learning has taken place and the 
model has successfully learned how CC stocks behave and has generalized what 
it has learned to quickly learn our test portfolio. 

6.1.2. Back Testing Results 
Recall that for testing our classical models, the portfolio contained the stocks  

 

 
Figure 10. MAML Training. The 1st graph shows training on CC stocks and the 2nd graph shows meta-training on the test 
portfolio. 

 

 
Figure 11. CAVIA Training. The 1st graph shows training on CC stocks and the 2nd graph shows meta-training on the test 
portfolio. 
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ABC, AKAM, APD, AVP, and BAC, and was back tested between 1/7/2002 and 
6/12/2002. The market value of this portfolio over this time period starting with 
$10,000 was $10,085.50, or 0.86% ROI. 

 
Classical Model Performance 

Model End Amount Mean ROI STD 

Market Value $10,085.50 0.86% NA 

MAML $10,075.89 0.76% 16.12 

CAVIA $10,016.01 0.16% 27.37 

6.2. Comparing MAML and CAVIA Results 

In Figure 12 we can see that both the MAML and CAVIA models did not out-
perform the baseline Market Value, and MAML outperformed CAVIA by 0.60%. 
Both MAML and CAVIA were trained on their test portfolios with only 20 
epochs, or 0.01% of the training time compared to when it trained on the CC 
stocks, and MAML and CAVIA both still traded for a positive amount even with 
that small amount of training. It is also worth noting that MAML had 11.25 less 
standard deviation than CAVIA which indicates it consistently found a similar 
strategy across all 12 experiments. This indicates that MAML had more stable 
learning. Something that is interesting to note looking at Figure 12, is that 
MAML followed how the market traded much more closely, where CAVIA 
traded more like the average of all of the prices. Notice in the graphs that be-
tween trading days 0 and 30 MAML dips with the market at the beginning, tak-
ing some losses, where CAVIA does not follow the market dip and actually out-
performs the market at those trading days. This could mean that CAVIA has 
learned a more conservative strategy, taking small gains and avoiding losses, and 
MAML has a more aggressive trading strategy, trading closer to how the market 
behaves. 

 

 
Figure 12. Our classic meta-learning models back testing results. We can see that MAML chose a more aggressive trading strategy 
while CAVIA has a more passive and safe trading strategy. This can be seen at trading days 0 through 30 when the market value 
falls. During this time MAML follows the market value and takes a negative ROI, while CAVIA maintains a higher ROI even when 
the market value falls. However, because of MAML’s more aggressive trading strategy, when the market value goes up MAML’s 
performance surpasses that of CAVIA’s safer trading strategy. 
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6.3. Quantum Meta-Learning Results 

For the quantum experiments, we ran each of the experiments 8 times to reduce 
the chances that our results are an anomaly. The plots below show the mean and 
± standard deviation from the mean of our portfolio values over all 8 experi-
ments. We chose to run them 8 times rather than 12 in order to reduce the 
amount of time spent training to a manageable amount. 

6.3.1. Running our Experiments 
For our quantum experiments, recall that we trained Q-MAML and Q-CAVIA 
with 25 epochs on 2 portfolios each of size 2 that were randomly sampled from a 
pool of 50 CC stocks over the dates between 1/2/2001 and 6/29/2001. For refer-
ence, Figures 13-16 show model training for both Q-MAML and Q-CAVIA, 
where the plot on the left are trained on the CC stocks and the plot on the right 
show the meta-model training on the test portfolio containing ABC and AKAM. 
Note that the plots on the right we set our meta-model training epochs to 5 in-
stead of 20 because our training on the CC stocks (plots on the left) were only 
trained for 25 epochs. This was done so that our meta-learning training epochs 
were set as a smaller fraction of the training on the CC stocks. If the number of 
epochs was larger, then we run the risk of overfitting our model on the particular 

 

 
Figure 13. Q-MAML with beamsplitter Training. The 1st graph shows training on CC stocks and the 2nd graph shows me-
ta-training on the test portfolio. 

 

 
Figure 14. Q-CAVIA with beamsplitter Training. The 1st graph shows training on CC stocks and the 2nd graph shows me-
ta-training on the test portfolio. 

https://doi.org/10.4236/jqis.2020.103005


E. Sorensen, W. Hu 
 

 

DOI: 10.4236/jqis.2020.103005 65 Journal of Quantum Information Science 
 

 
Figure 15. Q-MAML without beamsplitter Training. The 1st graph shows training on CC stocks and the 2nd graph shows 
meta-training on the test portfolio. 

 

 
Figure 16. Q-CAVIA without beamsplitter Training. The 1st graph shows training on CC stocks and the 2nd graph shows 
meta-training on the test portfolio. 

 
test portfolio. Remember that due to computational limitations we only trained 
on portfolios that contained 2 stocks instead of 5 for the quantum models. We 
also compared two variations of our quantum models, one constructed with the 
beamsplitter gates (Figure 6 and Figure 8) and one without (Figure 7 and Fig-
ure 9) for both the CAVIA and MAML models. 

6.3.2. Back Testing Results 
Recall that for testing our quantum models, the portfolio contained the stocks 
ABC and AKAM, and was back tested between 7/2/2001 and 9/21/2001. The 
market value of this portfolio over this time period starting with $10,000 was 
$8734, or −14.38% ROI. 

 
Quantum Model Performance 

Model End Amount Mean ROI STD 

Market Value $8734.43 −14.38% NA 

Q-MAML with beamsplitter $7230.92 −27.70% 1080.57 

Q-CAVIA with beamsplitter $7106.09 −28.93% 1077.74 

Q-MAML without beamsplitter $6314.80 −36.85% 1653.08 

Q-CAVIA without beamsplitter $6958.06 −30.41% 1290.30 
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6.4. Comparing Quantum Results 

The Quantum model performances can be seen in Figure 17 and Figure 18. As 
we can see, all Quantum models did not outperform the baseline market value. 
The model that performed the best was the Q-MAML with the beamsplitter seen 
in Figure 17. Also, all of the quantum models with beamsplitter performed bet-
ter than those without beamsplitter, which satisfies our hypothesis. Q-MAML 
with beamsplitter outperformed Q-MAML without beamsplitter by 9.15% ROI 
or $915, and Q-CAVIA with beamsplitter outperformed Q-CAVIA without 
beamsplitter by 1.48% ROI or $148. We can see in Figure 17 that between the 
models that contained the beamsplitter, Q-MAML performed better than 
Q-CAVIA by 1.23% or $123. The versions with the beamsplitter implemented 
also have less standard deviation. The model that benefited the most from the 
beamsplitter gate is Q-MAML which had a reduction in standard deviation by 
572.51 when the beamsplitter gate was added. This means that the models with 
the beamsplitter gates pick up on one trading strategy quicker than those models 
without the beamsplitter gates, and that learning is more stable. Another thing to  

 

 
Figure 17. Back Testing Results for Quantum Models with beamsplitter. These graphs look very similar but do have slight differ-
ences. The biggest difference can be seen at trading days 20 through 30, where Q-CAVIA has a less standard deviation from the 
mean than Q-MAML. The similarities in these graphs are likely caused by a low number of model parameters to update and lower 
epochs during training due to computation constraints. 
 

 
Figure 18. Back Testing Results for Quantum Models without beamsplitter. The differences in these graphs can be seen between 
trading days 10 and 20, where Q-CAVIA has less standard deviation from the mean than Q-MAML. The similarities in these 
graphs are caused by the same reasons listed in Figure 17. 
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note is that at trading days 10 - 25 in Figure 17, Q-CAVIA with beamsplitter has 
a lot less STD than Q-MAML with beamsplitter. This could show that at this 
time Q-CAVIA with beamsplitter was more confident in its trading strategy across 
all experiments. Clearly, the quantum implementation with the beamsplitter gates 
are better in terms of higher ROI and lower STD. 

6.5. Comparing Classical and Quantum Results 

It is more difficult to compare the classical results and quantum results for mul-
tiple different reasons. First of all, they both do not use the same test portfolio so 
they are trading on different stocks. The classical models were back tested with a 
portfolio that contained the stocks ABC, AKAM, APD, AVP, and BAC, where 
the quantum models were back tested with a portfolio that contained the stocks 
ABC and AKAM. Second, during training the classical models were trained on 
up to 25 different CC stocks (5 portfolios each with 5 randomly sampled CC 
stocks). Because of hardware constraints, our quantum models were trained on 
up to 4 different CC stocks (2 portfolios each with 2 randomly sampled CC 
stocks). We say up to x different CC stocks because random sampling could 
choose the same stock twice to be included in different portfolios. This means 
that our classical models were given the opportunity to better learn how CC 
stocks behave, and thus could then utilize that information better to increase its 
trading performance on its test portfolio. However, even with these differences 
we can make some meaningful comparisons between how the classical models 
and quantum models behaved. 

Our Q-MAML and Q-CAVIA trading graphs in Figure 17 and Figure 18 ap-
pear to follow a similar trading strategy where in our MAML and CAVIA trad-
ing graphs in Figure 12 the trading strategy is quite different. One reason this 
likely occurred is that the quantum algorithms did not get a good chance to 
learn a unique trading strategy between Q-MAML and Q-CAVIA because they 
were only trained for 25 epochs rather than 2500 epochs for the classical train-
ing, and they only trained on up to 4 total CC stocks rather than up to 25 total 
CC stocks for the classical training. Because the quantum models had a lot less 
exposure in both training time and number of stocks available to learn from, 
their learning would be limited, which means that there is not a chance for the 
model parameters to be updated enough to differentiate a unique strategy be-
tween Q-MAML and Q-CAVIA. The model parameters instead were closer to 
their initial value between all of the quantum models, so they all would look 
more similar. 

Another reason this could happen is how the quantum neural networks are 
constructed. Our largest quantum neural network, Q-CAVIA with beamsplitter, 
had a total of 65 model parameters. Our classical models had 257,500 model pa-
rameters. In general, the more parameters the model has the more complex 
problems the model can learn. This means that the classical models were con-
structed initially to handle a more complex environment like the stock market. 
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However, this isn’t exactly a fair comparison, as the classical model parameters 
were all connected linearly where the quantum models are connected conti-
nuously via the continuous variable quantum gates. This does begin to show the 
potential power of quantum computing as our quantum models were still able to 
learn how to trade on the stock market with a limited set of model parameters 
(60 for quantum vs 257,000 for classical). This is shown in Figures 13-16 where 
the rewards are increasing after each training epoch which shows learning is 
taking place. The quantum models training have a similar shape to the classical 
training in Figure 10 and Figure 11, which shows the quantum models can me-
ta-learn on the Consumer Cyclical stocks similarly to our classical models, even 
with a huge reduction in the amount of model parameters and exposure to the 
training data. Future research should continue to explore a scaled up version of 
the research we have done here on a real quantum computer with more layers of 
our quantum neural networks, more training epochs, and learning to trade a 
portfolio with a higher number of stocks. 

7. Conclusions 

We introduced a meta-learning approach to learn to trade on the stock market 
via both classical and quantum computing. Our approach has multiple benefits. 
With our method, we can learn to trade a new portfolio with similar but differ-
ent stocks with much less training time required. This means that firms who 
would like to update their portfolios with new stocks can do so much faster with 
this new method, which gets their algorithms trading on the market with mi-
nimal downtime, increasing their stock trading efficiency. Lastly, we have im-
plemented a new way to use the meta-learning algorithms MAML and CAVIA 
on a quantum computer with our Q-MAML and Q-CAVIA algorithms. While 
our results were limited due to a lack of computation power to simulate a large 
quantum computer, we show that quantum neural networks that contain the 
beamsplitter gate are superior than those that do not with 1.48% greater ROI, 
and that our quantum models are still able to achieve meta-learning on the stock 
market with comparable training performance to the classical models while hav-
ing only 60 model parameters vs the classical models which have over 250,000 
learning parameters. Therefore, Q-MAML and Q-CAVIA opens the door for more 
powerful computation when run on a real quantum computer. To the best of our 
knowledge, we are the first to explore using meta-learning and quantum meta- 
learning techniques to enhance algorithmic stock trading. In summary: 
• We are the first to explore using meta-learning to improve stock trading. We 

have found that meta-learning can be used to dramatically reduce the time it 
takes to learn a new stock portfolio, from 2500 training epochs to 20, while 
maintaining comparable trading performance within 0.1% of the market 
value. 

• Our novel quantum meta-learning algorithms Q-MAML and Q-CAVIA are 
able to learn to trade stock portfolios, even with limited computation power 
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and training parameters, and that the quantum algorithms that have the 
beamsplitter gate achieve 1.48% higher ROI than those without. At the time 
of writing, Q-MAML and Q-CAVIA are the first quantum meta-learning al-
gorithms. 

We believe that meta-learning is an important step in creating truly intelligent 
learning agents that can generalize previous learning to new tasks. Furthermore, 
enabling these agents to train on a quantum computer enables more possibilities 
in their learning with an increase in computational power. Our research has taken 
a first step in exploring the practical possibilities of meta-learning and quantum 
meta-learning to trade on the stock market. Future research can explore the pos-
sibilities of our quantum meta-reinforcement algorithms in new practical areas. 
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Notation 

Here is a list of notations so that you can read through equations in the paper 
more easily. 

 
Symbol Meaning 

s∈  States. 

a∈  Actions. 

r∈  Results. 

q A transition function which gives the probability of moving from one state to another. 

, ,t t ts a r  State, action, and reward at time step t for one trajectory. 

( )1, ,t t tr s a s +  Reward for taking action ta  at state ts  and moving to the new state 1ts + . 

Sometimes the notation ( ), ,r s a s′  is used as well. 

π  A reinforcement learning policy, which maps states to actions. ( ).θπ  is a policy 

parameterized by θ . 

( )π  Cumulative reward for a policy. 

H ∈  Horizon which is the length of time a reinforcement policy can do actions. 

γ  Discount factor which discounts future rewards. 

α  Step size hyperparameter. 

σ  Hyper parameter which controls how much random variance or “jitter” is applied to 
the Natural Evolutionary Strategy populations. 

fp  Final portfolio value. 

( )R φ  Quantum Rotation gate. 

( )D α  Quantum Displacement gate. 

( )S r  Quantum Squeezing gate. 

( )BS θ  Quantum Beamsplitter gate that allows for entanglement between two photons. 

( )K κ  Quantum Kerr gate. 
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