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Abstract 
Amid the randomness and volatility of wind speed, an improved VMD-BP- 
CNN-LSTM model for short-term wind speed prediction was proposed to as-
sist in power system planning and operation in this paper. Firstly, the wind 
speed time series data was processed using Variational Mode Decomposition 
(VMD) to obtain multiple frequency components. Then, each individual fre-
quency component was channeled into a combined prediction framework 
consisting of BP neural network (BPNN), Convolutional Neural Network 
(CNN) and Long Short-Term Memory Network (LSTM) after the execution 
of differential and normalization operations. Thereafter, the predictive out-
puts for each component underwent integration through a fully-connected 
neural architecture for data fusion processing, resulting in the final predic-
tion. The VMD decomposition technique was introduced in a generalized 
CNN-LSTM prediction model; a BPNN model was utilized to predict high- 
frequency components obtained from VMD, and incorporated a fully con-
nected neural network for data fusion of individual component predictions. 
Experimental results demonstrated that the proposed improved VMD-BP- 
CNN-LSTM model outperformed other combined prediction models in terms 
of prediction accuracy, providing a solid foundation for optimizing the safe 
operation of wind farms. 
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1. Introduction 

Wind energy, as a new and clean energy source with abundant reserves, has at-
tracted widespread attention worldwide. The introduction of the “peak carbon 
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emissions and carbon neutrality” goal has provided a boost to China’s wind 
power industry, which is currently experiencing stable growth. 

For large-scale wind farms, the randomness and volatility of wind speed can 
pose threats to the reliability and economic efficiency of power system opera-
tions, leading to significant social and economic losses [1]. In order to address 
the issues caused by this uncertainty, scholars have continuously proposed me-
thods to estimate and predict wind speed for a future period, aiming to optimize 
and plan the operation of wind power generation systems [2]. Accurate wind 
speed forecasting is crucial for the operation and scheduling of wind farms. For 
example, it can help optimize the power generation plan to ensure a stable power 
supply, as well as adjust the operating status of wind turbines to avoid turbine 
damage or safety issues caused by excessively high or low wind speeds. 

In terms of wind speed prediction, physical methods typically rely on weather 
systems, requiring the collection of various geographical and meteorological da-
ta. This method involves significant computational complexity and faces chal-
lenges in data collection. On the other hand, statistical methods struggle to en-
sure accuracy when dealing with nonlinear data [3]. With the advancement of 
computer technology, prediction models based on Artificial Neural Networks 
(ANN) have gained widespread application. Compared to traditional physical 
and statistical methods, ANN-based wind speed prediction models offer higher 
prediction accuracy [4]. Within neural network prediction models, LSTM were 
introduced to handle long-term dependencies and time sequence information in 
the data. LSTM has shown better performance in time series forecasting com-
pared to traditional neural networks [5]. To extract spatial features from wind 
speed, Cuixian Lu [6] and Ran Li [7] utilized a combination model called CNN- 
LSTM. The CNN module extracts spatial features from the data while the LSTM 
module captures temporal features, further improving prediction accuracy. Wang 
Yuxuan [8] proposed a method for ultra-short-term wind power prediction based 
on a combination of CNN-LSTM and Light Gradient Boosting Machine (Light 
GBM). This method solves the problem of inconsistent error magnitudes in sin-
gle prediction models at different prediction points. It achieves this by mathe-
matically combining the predictions and assigning larger weights to models with 
smaller prediction errors, thereby further improving the overall prediction ac-
curacy. Currently, CNN-LSTM prediction models are widely used in short-term 
wind power prediction. However, wind speed sequences exhibit characteristics 
such as volatility and non-stationarity, which can lead to significant errors when 
directly predicting the raw wind speed sequence. 

VMD technique can decompose non-stationary signals into different Intrinsic 
Mode Functions (IMFs). It is commonly used for noise reduction and multi- 
scale feature extraction. Compared to Wavelet Decomposition (WD) and Em-
pirical Mode Decomposition (EMD), VMD decomposition has two major ad-
vantages: it is less prone to mode mixing and allows for autonomous selection of 
the number of decomposition sub-sequences. Therefore, VMD is often used in 
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time series prediction. Gang Zhang [9] applied the VMD technique to wind 
power prediction and proposed a wind power prediction model that combines 
multi-frequency combination and feature selection. By using the VMD tech-
nique to reduce the volatility of the original sequence, the model effectively im-
proves the prediction accuracy. Bin Qin et al. [10] combined WD, VMD, and 
Least Squares Support Vector Machine (LSSVM) prediction models, and pro-
posed the WD-VMD-LSSVM model. Through comparative experiments, they 
demonstrated that WD and VMD decomposition techniques significantly im-
prove prediction accuracy. In recent years, researchers have started to combine 
VMD with CNN-LSTM. Tiantian Wang [11], in the context of storm prediction, 
first decomposed the data using VMD into multiple modes, then input them in-
to CNN-LSTM for prediction, and aggregated the individual predictions to ob-
tain the final prediction result. This method effectively improves prediction ac-
curacy. The above-mentioned methods have achieved good prediction results 
while leaving room for improvement. For example, they did not consider that 
different frequency components obtained from decomposition have different cha-
racteristics, and not all frequency components are suitable for a single prediction 
model. LSTM models are more suitable for capturing long-term dependencies 
and slow changes, but their accuracy may be lower for high-frequency compo-
nents. The proposed improved VMD-BP-CNN-LSTM method in this paper uses 
a BPNN model to predict the high-frequency components obtained from VMD, 
while the remaining components are predicted using the CNN-LSTM model. Pre-
viously, researchers simply added the prediction results obtained from each mode 
together. However, each component’s prediction result has its own limitations 
and uncertainties, and the simple summation still resulted in significant errors. 
In order to maximize the complementary nature of the predicted results from 
multiple components and improve the overall prediction performance, this pa-
per introduces a fully connected neural network after the prediction results of 
each mode component. The prediction results from each mode are input into 
the neural network for data fusion processing to obtain the final output predic-
tion result, thereby further reducing the prediction error. 

The rest of the paper is organized as follows: Section 2 presents the overall frame-
work of the improved VMD-BP-CNN-LSTM model and introduces the relevant 
principles; Section 3 provides an experimental comparative analysis of the pro-
posed prediction model; Section 4 concludes the paper. 

2. Improved Wind Speed Prediction Model Based on  
VMD-BP-CNN-LSTM 

2.1. Wind Speed Prediction Model Framework 

Based on the “Decompose-Predict-Fuse” concept [11], in this paper a combined 
prediction model is constructed. The model consists of BP+CNN-LSTM, incor-
porating VMD decomposition. The framework of the improved VMD-BP-CNN- 
LSTM wind speed prediction model is illustrated in Figure 1. 
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Figure 1. Prediction model framework. 
 

The framework is mainly divided into three parts: 
1) VMD decomposition: The wind speed sequence is decomposed using VMD, 

resulting in three modal components. 
2) BP+CNN-LSTM model for prediction: The high-frequency modal compo-

nent undergoes differencing and normalization operations before being input 
into the BPNN model for prediction. The remaining frequency components are 
input into the CNN-LSTM model for prediction. 

3) Fully connected neural network for data fusion of each component: The 
predicted results from each component are restored and then fed into a fully 
connected neural network for data fusion. Finally, the prediction result is ob-
tained. 

2.2. VMD 

VMD is a signal processing technique that has wide applications in signal de-
noising, feature extraction, data compression, and time series analysis. The cha-
racteristics of wind speed sequences, such as volatility and non-stationarity, pose 
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challenges to prediction accuracy. VMD can decompose the original complex 
data into multiple simpler sequences, thereby reducing the difficulty of predic-
tion and improving prediction accuracy [12]. In this paper, the wind speed sig-
nal is decomposed into several intrinsic mode functions, and each IMF is then 
subjected to the Hilbert transform. Gaussian smoothing is applied to estimate 
the bandwidth of each component, resulting in a minimization problem for ob-
taining the total sum of modal bandwidths [13]. 
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In the Equations (1) and (2), K represents the number of modal components 
to be decomposed; ku  represents the k-th decomposed modal component; kω  
represents the central frequency of modal component ku ; f represents the orig-
inal signal. 

Then, by introducing a quadratic penalty factor α  and a Lagrange multiplier 
operator ( )tλ , the problem is transformed into an unconstrained variational 
problem for further solving. 
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The wind speed data is decomposed using VMD in this paper. The VMD al-
gorithm is implemented using the vmdpy package in Python. VMD requires a 
predefined number of modes K. When the number of modes K is small, VMD 
tends to filter out some important information in the wind speed sequence, 
which can affect the performance of the prediction model. Conversely, when the 
central frequencies of some Intrinsic Mode Functions are close, it can lead to 
mode mixing or the generation of additional noise [14]. Additionally, larger 
values of K may increase the computational complexity and runtime of subse-
quent predictions. Based on reference wind speed prediction experiences, K val-
ues are generally chosen between 3 and 6. To further determine the number of 
modes K, this paper analyzes the correlation between adjacent decomposed mode 
components, as shown in Table 1. 

In Table 1, nmC  represents the Pearson correlation coefficient between the 
nth and mth decomposed modes. From Table 1, it can be observed that when K 
is less than 5, the correlation coefficients are all less than 0.1, indicating normal 
decomposition of each mode. However, when the correlation coefficient is greater 
than 0.1 (indicating K ≥ 5), the paper considers the occurrence of mode mixing 
in the mode components, leading to excessive decomposition of the wind speed 
signal. Taking into account the computational complexity, the paper selects K = 
3. 
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Table 1. Pearson correlation coefficient between adjacent modes.  

K C12 C23 C34 C45 C56 

2 0.08974966     

3 0.08545569 0.07960345    

4 0.0842692 0.08263681 0.09491308   

5 0.08363256 0.08473537 0.10278227 0.08692165  

6 0.08325264 0.08599266 0.10910449 0.1015569 0.054154 

 
The number of decomposed modes for VMD is chosen as K = 3, and the de-

composition results are shown in Figure 2. 

2.3. CNN-LSTM Prediction Model 

The CNN-LSTM prediction model is a deep learning model that combines the 
capabilities of CNN and LSTM. This model is commonly used for processing 
time series and spatial data, and it demonstrates strong performance in mul-
ti-step prediction tasks [15]. A typical CNN consists of convolutional layers, pool-
ing layers, hidden layers, and fully connected layers. It can effectively extract 
spatial features from input data by sliding convolutional kernels and computing 
weighted sums to capture different features. The introduction of LSTM units 
addresses the vanishing and exploding gradient problems observed in general 
Recurrent Neural Networks (RNNs). LSTM units utilize input gates, output gates, 
and forget gates to control the modification, access, and storage of internal states, 
enabling them to capture long-term temporal relationships within input sequences 
[16]. The combination of CNN and LSTM can handle both the spatial correla-
tion of data and the long-term dependency in time series, and has been widely 
used in wind speed prediction. To reduce overfitting, improve model generaliza-
tion, and enhance robustness, the CNN-LSTM combination model incorporates 
dropout layers. 

Given wind velocity data deconstructed via VMD into tripartite components 
(high, medium, and low frequencies), the predictive structure of the CNN-LSTM 
for the medium and low-frequency components encapsulates two one-dimensional 
convolutional layers (Conv1D), a duo of pooling layers, an LSTM layer, quartet 
of dropout layers, and three fully connected layers (FC). The network parame-
ters and architecture of the CNN-LSTM model are shown in Table 2. The CNN 
layers are used to extract spatial features from the data, followed by the LSTM 
layer for modeling the temporal information. The output is then transformed 
into the predicted result for each component using fully connected layers. 

2.4. BPNN Prediction Model and Fully Connected Neural Network 

BP Neural Network, also known as Backpropagation Neural Network, is a com-
mon type of feedforward artificial neural network. It updates the weights and bi-
ases of the network through error backpropagation during the learning process,  

https://doi.org/10.4236/jpee.2024.121003


C. M. Shu et al. 
 

 

DOI: 10.4236/jpee.2024.121003 35 Journal of Power and Energy Engineering 
 

 

Figure 2. Decomposition results graph. 
 
Table 2. CNN-LSTM model structure and parameter table. 

Network architecture Parameters 

Conv1d layer 
Number of neurons: 128 

Filters: 3 

Pooling layer  

Dropout layer Dropout rate: 0.5 

Conv1d layer 
Number of neurons: 64 

Filters: 3 

Pooling layer  

LSTM layer Number of neurons: 64 

Dropout layer Dropout rate: 0.2 

Fully connected layer Number of neurons: 64 

Fully connected layer Number of neurons: 64 

Dropout layer Dropout rate: 0.2 

Fully connected layer Number of neurons: 4 
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enabling model training and prediction [17]. A BP Neural Network consists of 
multiple layers, typically including an input layer, several hidden layers, and an 
output layer. The network structure is shown in Figure 3. 

The output of the ith neuron in the hidden layer can be written as:  

( )ij ij jy w bϕ= +∑                        (3) 

Equation (3), where ijw  represents the weight between the ith and (i − 1)th 
layers of the neural network, jb  represents the bias of the jth neuron in the ith 
layer, φ represents the activation function. In this paper, the output layer uses a 
linear activation function, and the hidden layer uses the rule activation function. 

Considering that high-frequency components exhibit rapid changes, LSTM 
models are better at capturing long-term dependencies and slow changes. How-
ever, they may not perform well for high-frequency components. In this paper, 
the high-frequency components obtained from VMD decomposition are pre-
dicted using the BPNN model, whilst retaining components are predicted using 
the CNN-LSTM model. Compared to predicting all components using the CNN- 
LSTM model, this improved approach considers the impact of the characteristics 
of different frequency components on prediction accuracy. Each component is 
assigned an appropriate prediction model, thereby improving overall prediction 
accuracy. The BPNN prediction model used for high-frequency components in 
the paper consists of one input layer, one hidden layer (with 64 neurons), and 
one output layer. The remaining frequency components are input into the CNN- 
LSTM model for prediction. 

Data fusion processing is the process of integrating and merging data from 
different sources or modalities. In the data fusion process, noise can be eliminated, 
accuracy can be improved, and robustness can be enhanced by automatically de-
tecting, correlating, and combining different data sources. Currently, data fusion  
 

 

Figure 3. Multilayer perceptron of BP Neural Network. 
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processing techniques are mostly based on machine learning and deep learning 
models, and they have been widely applied in various fields. Full-connected neural 
networks are widely used for data fusion and have achieved good results. For 
example, Yu Qian [18] applied a fully connected neural network to fuse the ex-
tracted features in short-term passenger flow prediction for urban rail transit, 
improving the prediction performance. In order to maximize the complementa-
ry nature of the predicted results from multiple components and further reduce 
prediction errors, another improvement proposed in the paper’s prediction model 
is the addition of a fully connected neural network for data fusion processing af-
ter the BPNN and CNN-LSTM prediction models. The fully connected neural 
network consists of two hidden layers and one fully connected layer, with each 
hidden layer containing 64 neurons. The predictions from both BPNN and CNN- 
LSTM, representing each modal component, are subsequently channeled into 
the fully connected neural network, yielding the comprehensive prediction. 

3. Experimental Results and Analysis 

To evaluate the performance of the improved VMD-BP-CNN-LSTM prediction 
model, the paper compares it with the CNN-LSTM model and the recently pro-
posed VMD-CNN-LSTM prediction model. The input data for all models is the 
same, collected from several years of historical data from the meteorological bu-
reau, obtained from  
https://github.com/fengjiqiang/LSTM-Wind-Speed-Forecasting. To conduct the 
experiments, the pre-training samples are decomposed using VMD, and 80% of 
the data is used as the training set, while the remaining 20% is used as the test 
set. The prediction time scale is set to 3 hours. Prior to predicting the data, the 
paper preprocesses the VMD-decomposed data to improve the performance of 
the prediction model. The paper applies differential operations to eliminate trends 
and seasonal variations, resulting in stationary time series data. Additionally, 
scaling operations are performed on the differentially transformed data to map 
the data range to a smaller interval. This helps eliminate differences in scales be-
tween different features, allowing neural networks to learn the weights of each 
feature more stably and improving the convergence speed of the model. 

After decomposing the wind speed data using VMD, different frequency com-
ponents are obtained. In order to test the prediction performance of the BPNN 
model and CNN-LSTM model on high and low-frequency components, we 
conducted comparative testing and calculated the Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) between the predicted results of each 
model and the actual data. These metrics were used as performance evaluation 
indicators for the prediction models. The results are shown in Figure 4 and 
Table 3. 

From Figure 4 and Table 3, it can be observed that on the high-frequency 
component, the CNN-LSTM model has significantly lower MAE and RMSE 
values compared to the BPNN model, indicating higher prediction accuracy.  
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Figure 4. Comparison chart of the prediction performance between BPNN and CNN-LSTM models. (a) high-frequency compo-
nent. (a) low-frequency component. 

 
Table 3. Performance metrics of the prediction for high-frequency and low-frequency 
component BPNN and CNN-LSTM models. 

component Prediction model MAE RMSE Training time 

High-frequency component 
CNN-LSTM 0.184 0.235 1720s 

BPNN 0.106 0.137 141s 

Low-frequency component 
CNN-LSTM 0.035 0.046 1213s 

BPNN 0.032 0.042 120s 

 
However, due to the complex structure of LSTM, the training time for the CNN- 
LSTM model is much higher than that of the BPNN model. Therefore, in the 
case of high-frequency components, the paper adopts the BPNN model for pre-
diction. Compared to the VMD+CNN-LSTM prediction model where all compo-
nents are predicted using the CNN-LSTM model after VMD decomposition, the 
VMD+BP+CNN-LSTM prediction model, which predicts the high-frequency 
component using the BPNN model and the low-frequency component using the 
CNN-LSTM model, shows its prediction results as shown in Figure 5. 
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Figure 5. Prediction results of two models. 
 

The computed MAE and RMSE values for the VMD+CNN-LSTM model are 
0.733 and 0.975, respectively, while for the VMD+BP+CNN-LSTM model, the 
MAE and RMSE values are 0.701 and 0.932, respectively. The MAE and RMSE 
values of the VMD+BP+CNN-LSTM model are lower than those of the VMD+ 
CNN-LSTM model. Additionally, from Figure 5, it can be observed that the 
prediction curve of the VMD+BP+CNN-LSTM model is closer to the actual 
values. Therefore, it can be concluded that predicting the high-frequency com-
ponent using the BPNN model improves the final wind speed prediction accu-
racy, demonstrating the effectiveness of the proposed improvement. To further 
improve the prediction accuracy, the proposed improved VMD-BP-CNN-LSTM 
model takes the predicted results of each component from the BPNN model and 
CNN-LSTM model and inputs them into a fully connected neural network for 
data fusion processing to obtain the final prediction result. Compared to the 
VMD+BP+CNN-LSTM model where the predicted results of each component 
are simply added together, the comparison of prediction results is shown in 
Figure 6. 

The VMD+BP+CNN-LSTM model, where the predicted results of each com-
ponent are simply added together, has MAE and RMSE values of 0.695 and 0.926, 
respectively. In contrast, the improved VMD-BP-CNN-LSTM model, which 
uses a fully connected neural network for data fusion processing, has MAE and 
RMSE values of 0.681 and 0.899, respectively. The use of data fusion processing 
techniques can reduce the MAE and RMSE values of the prediction results. 
Combined with Figure 6, it can be observed that the prediction curve of the im-
proved VMD-BP-CNN-LSTM model is closer to the actual values. Therefore, it 
can be concluded that utilizing a fully connected neural network for data fusion 
processing of the predicted results from each component can further improve 
the final prediction accuracy, demonstrating the effectiveness of the improve-
ment. 

To further validate the performance of the proposed improved VMD-BP- 
CNN-LSTM prediction model, a comparison is made with the widely-used basic  
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Figure 6. Comparison chart of the model’s prediction results before and after introducing a fully connected neural network for 
data fusion processing. 

 

 

Figure 7. Prediction results of different models. 
 
model CNN-LSTM and the recently proposed VMD-CNN-LSTM prediction 
model, which are commonly used in wind speed prediction. The prediction re-
sults of different models are shown in Figure 7 and Table 4. 

From Figure 7, it can be observed that the improved VMD-BP-CNN-LSTM 
prediction model is closer to the actual values and performs better in capturing 
peaks and valleys compared to the other two prediction models. Table 4 shows  
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Table 4. Performance indicators of each predictive model. 

Prediction model MAE RMSE 

CNN-LSTM 1.103 1.493 

VMD-CNN-LSTM 0.734 0.978 

Improved VMD-BP-CNN-LSTM 0.678 0.894 

 
that the MAE and RMSE values of the VMD-CNN-LSTM prediction model 
are lower than those of the CNN-LSTM model, indicating that incorporating 
VMD decomposition technique effectively reduces the MAE and RMSE val-
ues. The proposed improved VMD-BP-CNN-LSTM prediction model, which pre-
dicts the high-frequency component using the BPNN model and applies data fu-
sion processing using a fully connected neural network on the predicted results 
of each component, further reduces the MAE and RMSE values compared to the 
previously proposed VMD-CNN-LSTM prediction model. This demonstrates 
that the improved VMD-BP-CNN-LSTM model achieves the highest prediction 
accuracy, indicating the effectiveness of the improvement. 

4. Conclusions 

In response to the randomness and volatility of wind speed in wind farms, accu-
rate wind speed prediction is crucial for power system planning and operation. 
In this paper, an improved VMD-BP-CNN-LSTM prediction model is proposed. 
By introducing VMD decomposition into the conventional CNN-LSTM predic-
tion model, the high-frequency component obtained from VMD is predicted 
using the BPNN model, and a fully connected neural network is added to fuse 
the predicted results from each component. Compared to previous models, this 
approach achieves better prediction accuracy in short-term wind speed fore-
casting. 

The combination of decomposition techniques and neural network models 
opens up new possibilities for wind speed prediction in wind farms. Additional-
ly, we found that different frequency components exhibit varying temporal cha-
racteristics. By using suitable models for each component, prediction accuracy 
can be further improved. Future research can explore the use of more models 
and different model parameters for testing purposes. 
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