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Abstract 
In recent years, Rwanda’s rapid economic development has created the 
“Rwanda Africa Wonder”, but it has also led to a substantial increase in 
energy consumption with the ambitious goal of reaching universal access by 
2024. Meanwhile, on the basis of the rapid and dynamic connection of new 
households, there is uncertainty about generating, importing, and exporting 
energy whichever imposes a significant barrier. Long-Term Load Forecasting 
(LTLF) will be a key to the country’s utility plan to examine the dynamic 
electrical load demand growth patterns and facilitate long-term planning for 
better and more accurate power system master plan expansion. However, a 
Support Vector Machine (SVM) for long-term electric load forecasting is 
presented in this paper for accurate load mix planning. Considering that an 
individual forecasting model usually cannot work properly for LTLF, a hy-
brid Q-SVM will be introduced to improve forecasting accuracy. Finally, 
effectively assess model performance and efficiency, error metrics, and model 
benchmark parameters there assessed. The case study demonstrates that the 
new strategy is quite useful to improve LTLF accuracy. The historical elec-
tric load data of Rwanda Energy Group (REG), a national utility company 
from 1998 to 2020 was used to test the forecast model. The simulation re-
sults demonstrate the proposed algorithm enhanced better forecasting ac-
curacy. 
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1. Introduction 

With nowadays Artificial Intelligence (AI) role in the countries’ fourth industrial 
revolution development, the Government of Rwanda (GoR) intends to shift from 
a lower to a middle-income country. To achieve the objectives, the GoR has con-
tinued to implement energy programs and projects aimed at delivering universal 
access to electricity by 2024. With the current total installed generation capacity 
with load demand rate, probabilistic load generation, and demand forecasting 
[1], several reports and research on the subject focused on the available energy 
resources, transmission, and distribution plans and programs. Rwanda has en-
dowed with natural energy resources, including hydro, solar, wind, and methane 
gas. In this scheme with a highly new connection rate, the Public Private Part-
nership (PPP) strategy and Energy Access Roll-out Program (EARP) were adopted 
to accelerate the connectivity rate and the government focuses on transmission 
and distribution projects through REG, the country’s utility company [2]. In ac-
cordance with Ministry of Infrastructure (Mininfra) report [3], Rwanda’s con-
nectivity rate is currently evaluated at 72%, up from 6% in 2008, whereas 51% 
and 22% are grid and off-grid connected, respectively.  

Moreover, despite Africa’s vast energy resources and progress in establishing 
regional power pools over the past two decades, the country’s power grid and 
distribution plans still are underdeveloped and inadequate power generation 
system, which leaves millions of people inaccessible to electricity [4]. Electrical 
load forecasting is based on available load demand data, Rwanda used to gen-
erate, import, and export electricity loads. Billed loads (kWh) in 2000 were 
203,856,357 kWh of which domestic loads were 110,843,390 kWh, import loads 
were 94,088,250 kWh and export loads were 1,074,283 kWh. However, there 
has been a significant increase in 2020, with billed loads of 1,762,393,073 kWh, 
of which the domestic load was 1,338,801,836 kWh, the imported load was 
204,219,150 kWh and the exported load was 11,145,955 kWh [5]. Electricity load 
forecasting as a complex non-linear problem related to economic, demographic, 
GDP, and weather factors. Long-term load forecasting provides useful informa-
tion for power system maintenance planning, proper assessment, and limited 
energy resources.  

Therefore, proper electrical load forecasting requires particular “forecasting 
intervals” for incomplete time series with max-margin classification [6]. Howev-
er, when implementing a quadratic SVM prediction model, the interval length is 
chosen arbitrarily, which has a significant positive impact on model performance. 
Based on forecasting intervals, load forecasting is divided into three types: short, 
medium, and long-term as STLF, MTLF, and LTLF, respectively [7]. In this pa-
per, the SVM forecasting model can be used to solve long-term load forecasting 
problems in power systems. LTLF methods and models were described in [8], 
which stated a forecasting interval of one year to several years. Capuno et al. pro-
posed a Very Short-Term Load Forecasting (VSTLF) based on Algebraic Predic-
tion (AP) [9]. Therefore, Mobarak et al. developed a hybrid of Long Short-Term 
Memory (LSTM), Gated Recurrent Units (GRU), and Recurrent Neural Networks 

https://doi.org/10.4236/jpee.2023.118003


E. Uwimana et al. 
 

 

DOI: 10.4236/jpee.2023.118003 34 Journal of Power and Energy Engineering 
 

(RNN) algorithms for LF [10].  
Electrical load forecasting has been a subject of research for decades, and the 

accuracy of long-term load forecasting has implications for generation planning 
and development of energy infrastructure. Liu et al. introduced LTLF based on a 
Time-variant ratio multi-objective optimization with a fuzzy time series mod-
el [11]. Many AI models and methods, especially LTLF, were critical for many 
applications such as provisioning power generation and distribution plan-
ning. The SVM model with LTLF method is very important for system security 
and management as the critical to economic performance. In recent years, a 
new strategy for improving the accuracy of load forecasting methods has been 
adopted [12].  

The above methods are mainly applied for accurate forecasts, which enable 
better execution of basic operational tasks such as unity deployments, economic 
use, and fuel planning and unit maintenance [13]. However, load forecasting is a 
challenging issue as the load of a particular hour depends not only on the load of 
the previous hour, but also on the same hour of the previous day, with the same 
denomination, on the same hour of the day with non-linear, social variability, 
and economic environments, etc. [14]. Different methods have been applied, Wi 
et al. divided into statistical methods and computational intelligence methods 
for holiday load forecasting using fuzzy polynomial regression [15], the preced-
ing comprises of regression analysis and time series [16]. The modern includes 
neural networks, expert systems, fuzzy logic, etc. [17] [18] [19]. Many scholars 
pay more attention to the uncertainty hybrid methods, Amjady et al. introduced 
a new hybrid forecast technique for MTLF [20], Hooshmand et al. proposed a 
hybrid intelligent algorithm based on STLF [21], and Soliman et al. modeled a 
long-term electrical load forecasting [22].  

Notwithstanding the above-mentioned methods available, Electrical Energy 
Demand (EED) forecasting, a deep belief network-based electricity load fore-
casting is carried out on the Macedonian load system [23]. Jiang et al. [24] dis-
posed of deep learning in power system operation and energy trading. As LTLF 
can play key strategies for energy dispatch, ANN load forecasting and eco-
nomic dispatch based on PSO have been demonstrated [25]. Regardless of the 
difficulty in electrical load forecasting, the optimal and proficient economic set-up 
of electrical power systems has continually occupied a vital position in the elec-
trical power industries [26]. The main purpose of this study is to apply SVM and 
quadratic models with different types of kernel functions to predict next year’s 
load demand for different load types for 23 consecutive years (kWh). The effec-
tiveness of the proposed method is demonstrated using Rwanda utility load data 
(1998 to 2020). The SVM method consists of various methods to test the ro-
bustness of the solution to the proposed problem. Moreover, the Q-SVM me-
thod is adopted in conclusion to improve forecasting performance. 

2. The Combined Forecasting Model 

In recent years, short-term, medium-term, and long-term electrical load fore-
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casting has been intensively studied. Theoretical investigation on a combined 
model for medium and long-term load forecasting based on load decomposition 
and big data technologies [27]. Combining a predictive model based on Back 
Propagation (BP) powered by PSO with its application was tackled [28], and a 
BP neural network based on a gray forecast model and a Markov chain was used 
to forecast China’s load demand [29]. Application of neural network and fuzzy 
theory in STLF [30], optimization of electrical load forecasting for SVM model 
based on data mining and Lyapunov exponent was described [31], SVM fore-
casting method improved by chaotic PSO and its application [32], combined 
RS-SVM forecasting model is applied in power supply demand [33]. 

Although the above-mentioned long-term load forecasting methods have come 
a long way, neural networks and support vector machines still have certain issues: 
Subject to localized extrema, overlearning, etc. Lorena et al. tackled the issues of 
parameter selection for SVM based on genetic algorithms [34], and parameter se-
lection for LS-SVM based on modified ant colony optimization is used to optim-
ize SVM parameters [35]. However, GA requires many complex operations such as 
encoding, selection, crossover, and mutation, whereas PSO is relatively smooth. 
Moreover, according to Issam, a new quadratic kernel-free non-linear SVM called 
QSVM is introduced [36]. SVM optimization can be specified as follows: 
 Maximized the underlying geometric margin of all training data with a fea-

ture margin greater than a constant (equal to 1 in this case). 
 Comparison of QSVM and SVM using Gaussian and polynomial kernel func-

tions. 
Furthermore, Liu et al. performed the QSVM algorithm utilizing quadratic 

kernel SVM functions to improve data source authentication for wide-area syn-
chro-phasor measurements [37]. For better understanding, SVM was introduced, 
and then the quadratic kernel function is involved to illustrate the process of the 
QSVM algorithm. To demonstrate the effectiveness of the model, Xu et al. 
conducted research on a proposed method based on fusing quadratic with resi-
dual forecasting [38]. Therefore, in this study, we built a long-term load- fore-
casting model and used SVM to optimize the core parameters of QSVM. The 
proposed model was analyzed and validated using actual electrical load data 
from Rwanda.  

3. Applied SVM to Load Forecasting  

Learning machine methods, such as SVM considered a promising alternative, 
either for multi-factors modified PSO-SVM algorithm [39], or classification and 
regression [40]. Abe introduced a tutorial about SVMs applications in pattern 
classification and recognition problems [41]. Extending this technique to deal 
with regression problems, the SVM method has been considered highly compet-
itive, and it’s possible to highlight the applications involving nonlinear gated ex-
perts for time-series forecasting [42]. The learning strategy of SVM is based on 
the theory of statistical learning and aims to propose a learning method that 
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maximizes the generalization ability [43]. Besides this, the number of free para-
meters of SVM does not explicitly depend on the input dimensions of the prob-
lem at hand. Another important feature of SVM is that the optimization prob-
lem is unique and lacks local minima resulting from the application of the Mercer 
constraint when defining the kernel function [44]. However, the applicability of 
SVM was hampered by the need to pre-select the kernel function (responsible 
for mapping), the optimal parameters of the kernel function (responsible for con-
figuration), and the loss function (penalty). 

4. Long-Term Load Forecasting Background 

Long-term load forecasting is a crucial component in transforming the energy 
system, and it is gaining traction in academics and industry. Theoretically, a 
load-forecasting model, in theory, seeks to quantitatively express the relationship 
between load and influencing parameters. As such, the model was identified 
with coefficients used to forecast future values by extrapolating the relationship 
with desired lead times. Ultimately, Essallah et al. highlighted the SVM, regula-
rization, optimization, and beyond with kernels function [45], the accuracy of 
the model depends on both the chosen model and the estimated parameters. 

Literature analysis revealed that LTLF received more attention than STLF due 
to the complexity involved in making accurate forecasts. LTLF is based on inte-
grating concepts from the theoretical foundations of economic theory with know-
ledge of finance, statistics, probability, and applied mathematics to draw conclu-
sions about load growth, decay, and technological development. As illustrated by 
Zhang et al., China’s power load development is facing a new situation in which 
policies such as the new economic norm, industrial structure adjustment, energy 
conservation, and emission reduction are deeply promoted load growth [46], 
Hong conducts a survey of past, current, and future trends in energy forecasting 
to highlight trends in spatial, short-term, LTLF, and energy price forecasting 
[47]. Feinberg et al. [48] and Hong et al. [49] propose three techniques suitable 
for long-term load forecasting, including time series, econometric, and end-use 
techniques. Hong et al. reported long-term probabilistic load forecasting and nor-
malization [50]. Overestimating the long-term electrical load results in a large 
and wasted investment in building power infrastructure, while underestimating 
the future power load leads to under-production and under-demand. Distinctive-
ly, considering volatility, the Multiplicative Error Model (MEM) was used for 
long-term electrical load forecasting [51] whereas MEM with heterogeneous 
components was highlighted by Han et al. [52]. And Kobali et al. explained that 
LTLF plays an important role in energy systems and planning [53]. However, 
previous studies on LTLF are based on regression methods and cannot accurate-
ly represent energy system behavior in volatile electricity markets. A new ap-
proach for LTLF had been introduced [54], forecasting based on economic and 
demographic data was applied on Türkiye [55], using grey system theory [56], 
based on Mg-CACO and SVM method [57], Grey Feed-back modification [58], 
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with Neural Fuzzy model [59], using CPSO-GM model [60], improved recurrent 
neural network [61].  

5. Materials and Methods 
5.1. Overview of SVM Regression and Forecasting 

SVM was first proposed by Vapnik, based on small sample statistical learning 
theory [62]. However, it was mostly employed in the investigation of small sam-
ples according to SVM financial time series forecasting [63], and was widely used 
in pattern classification and SVM time series forecasting [64]. 

The dataset sample given as ( ){ }, | 1, 2, ,i iD X y i n= =  , where n
ix ∈  

represents the input variables and n
iy ∈  predicts the output variables. Ac-

cording to Equation (1), the SVM finds an inconsistent mapping from the input 
space to the output space φ. Through this mapping, data X, is mapped to a fea-
ture space Γ, and linear regression is carried out in the feature space with the 
following function: 

( ) ( )f x X bω ϕ= × +                       (1) 

: mφ →Γ  
where b is a threshold value, Γ is the future space. According to statistical learn-
ing theory, SVM determines the regression function by minimizing the objective 
function: 

( )2 *

1

1min
2

n

i i
i

Cω ξ ξ
=

 
+ + 

 
∑                   (2) 

S.t. ( ) *;i iy X bω ϕ ε ξ− ⋅ − ≤ +  

( ) ;i iX b yω φ ε ξ⋅ + − ≤ +  
*, 0i iξ ξ ≥  

where C, is a weight parameter, also called penalty factor, to balance model 
complexity and training error. This is pre-established to control the contribution 
to the complexity of each term of the regression function in Equation (2) and the 
resulting of SVM. The value of the parameter k is adjusted according to the re-
sidual loss function, which is an auxiliary regression function of ε, which is the 
insensitive loss function. In Equation (3), *

iξ  is a relaxation factor and expressed 
as follows: 

( )
( ) ( )

*
0,

,
i

i
i i

f x y

f x y f x y

ε
ξ

ε ε

 − ≤= 
− − − >

               (3) 

By solving the dual problem Equation (2), Lagrange factors *,i ia a  can be ob-
tained, so that the regression Equation (4) coefficient is as follow: 

( )*
1 i i

n
ii a a xω

=
= −∑                        (4) 

The SVM regression equation is as follows: 

( ) ( ) ( )*
1 ,i i ii

nf x a a K x x b
=

= − +∑                    (5) 
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For simplicity, Equations (2), (5) were usually converted into an equivalent 
equation defined in a dual space. Considering the parameter k, f can be deter-
mined by solving a novel quadratic optimization problem: 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

* *

2* * * *
, ,

, 1 1

2* * *

1 1 1

min , min ,

,

i i i i

N N

i i i i j j i j ia a a a
i j i

N N N

i i i i i i
i i i

N NL a a a a a a K x x a
K KC

N a a a y a a
KC

ε

= =

= = =

≡ − − +

+ − − +

∑ ∑

∑ ∑ ∑
 (6) 

Subject to Equation (6), *
1 1

N
i ii

N
ia a

= =
=∑ ∑ , * 0ia ≥ , 0ia ≥ , 1, ,i N=  , where 

( ) ( ) ( )T,i j i jK x x X Xϕ ϕ=  is a special kind of function called a kernel. It strict-
ly follows the constraints imposed by Mercer’s theorem and provides a one-step 
implicit computation of intermediate products ( )ixφ  and ( )jxφ .  

Different learning machines with unique nonlinear decision surfaces per-
formed depending on how this inner product core has been achieved. ( ),iK x x  
Is the kernel function of SVM, which includes linear kernels, polynomial ker-
nels, and radial basis function. The penalty factor C, the insensitive loss function 
ε, and the kernel function parameter σ determine the SVM performance. σ re-
sponds to the properties of the training dataset, and ε determines the complexity 
of the solution, and affects the generalizability of the penalty for large adjust-
ment deviations. Too large a value can lead to over-learning, while too small a 
value tends to lead to under-learning, all measures minimized in the optimization 
procedure, which is vital in improving SVM performance. 

5.2. The SVM Flowchart Model  

Furthermore, the proposed Q-SVM model will be performed based on the SVM 
optimization results and aforesaid selected technique. For our case, we put for-
ward a structure that is established on load data processing, selection by classifi-
cation and regression, extraction, evaluation, and forecasting. SVM was used for 
processing and optimization for QSVM results. Besides, for model evaluation, 
SVM and QSVM results are assessed separately. The forecasting flowchart (Figure 
1) displayed a detailed used model. 

6. Exploring the Load Data 

The accuracy of forecasts is highly dependent on the quality of available histori-
cal data. As shown in Table 1, hourly load data from 1998 to 2022 was extracted 
to sample monthly aggregate load. Monthly timestamps were used to under-
stand the monthly load mix consumption. This study used 23 years (annual 
and monthly) of Rwanda’s electricity load demand and billing data load, including 
data collected from the period of quarter one of 1998 to the fourth quarter of 2020, 
and the evaluation was made annually. 

In addition, the years 1998 to 2010 were chosen for the dataset training file, 
while the years 2011 to 2020 were picked for the dataset testing file. The follow-
ing data analysis can provide relevant information that will be considered in the 
future phase when adjusting a forecasting model.  
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Figure 1. The flowchart of the modeling SVM process. 

 
Table 1. A country’s electrical load scenario (kWh). 

Year Generated Load Imported Load Exported Load Billed Energy 

1998 186,740,123 60,461,017 896,874 164,567,890 

1999 197,509,297 70,215,550 887,833 169,345,786 

2000 203,856,357 94,088,250 1,074,283 171,370,457 

2001 209,350,019 121,501,850 1,429,081 187,345,908 

2002 225,511,388 135,691,250 8,393,952 187,908,456 

2003 235,251,447 120,918,350 3,307,583 190,564,723 

2004 204,027,563 115,705,320 2,214,177 195,789,321 

2005 203,101,585 89,050,137 1,822,661 198,257,098 
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Continued 

2006 246,681,228 80,016,600 2,033,200 201,011,234 

2007 227,305,784 76,518,580 1,946,525 202,346,264 

2008 272,526,554 84,491,627 2,324,950 225,433,700 

2009 305,541,633 62,260,580 2,914,851 245,612,132 

2010 358,319,655 79,754,580 2,805,750 286,585,870 

2011 416,078,235 77,192,135 2,491,400 359,210,183 

2012 480,559,988 89,735,625 289,349 384,968,807 

2013 505,651,723 94,408,691 2,524,680 412,570,980 

2014 557,413,978 88,587,986 3,600,020 509,418,298 

2015 606,985,601 87,163,047 3,906,349 561,764,236 

2016 685,257,965 73,345,355 4,378,095 626,595,503 

2017 746,304,381 76,696,638 4,118,676 661,786,326 

2018 816,863,770 93,775,090 4,508,124 687,808,689 

2019 872,312,744 96,102,406 5,320,545 702,597,060 

2020 1,753,176,323 204,219,150 5,584,477 916,674,234 

7. SVM Modelling and Verification 
7.1. Proposed a Quadratic SVM Model 

SVM with quadratic kernel function (Q-SVM) is divided into two parts: one part 
is for training and the other part is for testing. 
 We apply the proposed model to the training data to make an estimate, find 

the forecasted value on the test data, and apply the QSVM optimization to 
maximize the geometric margin on all training data where the feature margin 
exceeds a constant.  

 Q-SVM consists of a training phase in which the parameters are fitted to the 
model and a validation phase in which the performance of the fitted parame-
ters is analyzed. 

 We evaluate the forecasting accuracy of the models using five metric models, 
with the goal of formulating a multi-objective function with parameters de-
fined in Equations (7)-(11) as follows: 

 Mean Absolute Percentage Error (MAPE) 

1

100MAPE
N

t t

t t

R P
N R=

−
= ∑                      (7) 

 Root Mean Square Error (RMSE): 

( )2

1

1RMSE
N

t t
t

R P
N =

= −∑                     (8) 

 Mean Absolute Error (MAE): 

1

1MAE
N

t t
t

R P
N =

= −∑
                       (9) 
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 Maximum Absolute Percentage Error (MAP): 

1, ,
MAP max 100 t t

t N
t

R P
R=

 −
= ×  

 

                  (10) 

 Mean Square Error (MSE): 

( )2

1

1MSE
N

t t
t

R P
N =

= −∑                      (11) 

where Rt denotes the actual load and Pt denotes the forecasted load at time in-
stant t, and N is the number of forecasters made for in a particular time interval. 

Monthly pattern consumption of the energy mix, including both import and 
export loads, starts with low values (no production) of loads from solar energy, 
peat, methane gas, and exports from the first quarter of 1998 to 2008. However, 
peat energy holds off until 2017 for the first production. The significant increase 
in production is driven by hydropower and import loads, which are the domi-
nant load patterns for multi-year load demand (refer to Figure 2). 

7.2. Benchmark Model Metric Parameter Descriptions 

However, the forecasting method employs actual data to build a good LTLF 
model. We are required to start with a large historical dataset, secondly, build 
models, find appropriate models, and lastly analyze anticipated results. Figure 3 
illustrates the load forecasting process using Q-SVM. RMSE was chosen as the 
standard metric for calculating loss functions, but it is more difficult to interpret 
than MAE. According to [65], lower values for MAPE, MAE, MSE, and RMSE  
 

 
Figure 2. Energy mixing and electrical load series over 276 months (1998-2020). 
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Figure 3. SVM model for Q-SVM forecasting optimization. 

 
indicate a more accurate regression model. Moreover, high R-squared values and 
low MAE are considered desirable in our case. Among that, De Myttenaere et al. 
[66], highlighted metrics of a MAPE of less than 5% is considered to indicate 
that the forecast is fairly accurate, while a MAPE greater than 10% and less than 
25% indicates poor but acceptable accuracy, finally, a MAPE greater than 25% 
indicates very poor accuracy. 

In addition to visual inspection, an expected loss function is required to eva-
luate model performance and test model accuracy. Using an appropriate loss func-
tion also aims at summarizing the accuracy of point estimates and future distri-
butions. The two loss functions used in this study are MAPE and MSE. 

7.3. Proposed Model: Q-SVM Optimization Process 

The LTLF for QSVM optimization model is shown in Figure 3. Following are 
steps required to forecast for the electricity load: load data, feature extraction, 
model establishment and classification, optimization, and performance evalua-
tion.  

As highlighted in Figure 4, (a) generated, (b) exported, (c) imported, and (d) 
total billed load forecasting. 

In Figure 5, horizontal bands indicate the criterion of statistical significance at 
the 80% level. There is a significant autocorrelation between the residuals of the 
QSVM models for all hydropower load demands over 23 years, and the models 
represent a common load forecast. For all years of the study period, the autocor-
relation of the model residuals shows the modeled dynamics, because the result 
plots the positive and negative lags closer to the forecast margin bar. Results are 
summarized in Table 2. 

Figure 6 proves that the year 2003, 2004, 2005, 2009, 2010, and 2011 had rec-
orded a significant negative (lagging), while the 2018 year recorded a positive  
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Figure 4. Comparison of Q-SVM forecasting for the different load series from 20 years of actual load scenario.  

 

 
Figure 5. Autocorrelation of QSVM residuals in the training data set. 
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Table 2. Q-SVM residual load forecasting accuracy. 

Initial Ratio RMSE MAE MAPE R-squared PS (Obs/Sec) TT (Sec) 

Residual Load Training 1.1518e+08 2.1032e+08 6.9 1 16,000 9.2809 

 Testing 1.7119e+08 2.2967e+08 5.2 0.95 15,500 12.8015 
 

 
Figure 6. Forecasted comparison of total residual billed load. 

 
(lead) billing residual load and the load forecast was meet. The rest of the year 
ended up with zero residual. 

Residual loads (c) and (d) show positive prediction results, with the imported 
loads showing very low residual loads compared to the exported loads as indi-
cated in Figure 7. 

In Figure 8, each of the four approximations: (green) is the actual and (yellow) 
is the forecasted electrical load obtained with a kernel function, quadratic SVM. 

As can be observed in Figure 9, horizontal bands indicate the relationship 
with the significance level of the model. There is a significant autocorrelation 
between the residuals of SVM models for hydro, methane, thermal, solar, and 
peat with common residual lead loads. The autocorrelation and an optimal fo-
recasting margin (Figure 10) of the model residuals over the entire year of the 
inspection interval suggested the modeled dynamics and (Figure 11) depicts the 
quadratic SVM performance using hyper-parameter metrics across the SVM 
model.  

According to Figure 12(a) and Figure 12(b), an SVM forecasting model 
presents a significant increase in residual load, which implies its difficulties in 
forecasting accuracy. While Figure 12(c) and Figure 12(d) figure out the QSVM 
forecasting model as the results of a and b (SVM) optimization response. 
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Figure 7. Generated electrical load, with imported (a), and exported (b) load forecasting balances. 

 

 
Figure 8. Actual (hydropower vs methane gas, thermal, solar, and peat) electrical load forecast. 
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Figure 9. Autocorrelation of SVM residuals in the test data set.  
 

 
Figure 10. Optimal forecasting margin from actual load response and predicted load re-
sponse under different forecasting steps of the SVM model. 
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Figure 11. Minimum hyper-parameter metrics for Q-SVM forecasting performance. 

 

 
Figure 12. Billing load forecast accuracy for SVM and QSVM. 

 
Table 5 illustrates the overall results of the models, with QSVM results out-

performing SVM. An R-squared of 1 for both testing and training gave superior 

5 10 15 20 25 30

Iteration

1.1

1.2

1.3

1.4

1.5

1.6

1.7

M
ini

m
um

 M
SE

10 17

Estimated minimum MSE

Observed minimum MSE

Bestpoint hyperparameters

Minimum error hyperparameters

2000 2005 2010 2015 2020

Year                                (a)

2

4

6

8

10

B
ille

d 
E

ne
rg

y 
(k

W
h)

10 8

Actual Load

Forecasted Load (SVM)

2000 2005 2010 2015 2020

Year                                  (b)

2

4

6

8

10

B
ille

d 
E

ne
rg

y 
(k

W
h)

10 8

Actual Load

Forecasted Load (SVM)

Residual Load

2000 2005 2010 2015 2020

Year                          (c)

-5

0

5

10

B
ille

d 
E

ne
rg

y 
(k

W
h)

10 8

Actual Load

Forecasted Load (QSVM)

2000 2005 2010 2015 2020

Year                             (d)

-5

0

5

10

B
ille

d 
E

ne
rg

y 
(k

W
h)

10 8

Actual Load

Forecasted Load (QSVM)

Residual Load

https://doi.org/10.4236/jpee.2023.118003


E. Uwimana et al. 
 

 

DOI: 10.4236/jpee.2023.118003 48 Journal of Power and Energy Engineering 
 

MAPE outcomes of 5.80% and 6.17%, respectively, with faster prediction speed 
and longer training and testing times. SVM is statistically outperformed by the 
proposed approach. Furthermore, as QSVM raises PS and TT, the outcomes be-
come more ideal. 

8. Forecasting Performance, Q-SVM Optimization Results,  
and Discussions 

Electrical distribution systems count on load forecasting, this study used the 
Rwanda Energy Group’s historical data on electrical loads for the last 23 years 
(1998-2020).  

Simulation results for SVM and Q-SVM optimization show reasonable and 
ideal results for both models, as stipulated in Table 5 and Figure 11. To better, 
assess the accuracy of the model, simulations run on 276 load samples with 95% 
confidence intervals. A total of 30 iterations were performed for all data training 
and test analysis. Table 2, Table 3, Table 4, and Table 5 summarized the model  
 

Table 3. Forecasting accuracy for different Q-SVM model parameters. 

Load Type RMSE MAE MAPE R-squared PS (Obs/Sec) TT (Sec) 

Billed 2.3548e+06 1.0371e+06 7.1 0.99 18,000 4.4162 

Generation 4.6341e+06 2.9012e+06 5.3 0.94 270 5.4673 

Exports 1.8014e+06 2.0185e+06 5.9 0.95 820 0.6635 

Imports 1.7546e+06 1.4383e+06 5.7 0.77 780 0.5817 

G vs I (Gen vs Imp) 3.1297e+06 4.0557e+06 6.3 0.78 780 0.6383 

G vs Exp 5.8696e+06 3.3783e+06 6.5 0.88 720 1.6414 

PA 2.4548e+06 1.2431e+06 7.4 0.98 20,000 4.2405 

 
Table 4. Energy mix forecasting results. 

Energy Mix RMSE MAE MAPE R-squared PS (Obs/Sec) TT (Sec) 

Hydro vs Methane Gas 1.3017e+06 1.6798e+06 7.3 0.94 12,000 4.0447 

Hydro vs Thermal 1.2402e+07 1.4002e+07 5.8 0.85 11,200 4.5675 

Hydro vs Solar 1.2431e+06 1.4510e+06 4.3 0.91 15,900 5.0025 

Hydro vs Peat 1.3045e+06 1.5003e+06 4.7 0.92 19,600 4.1984 

Actual vs Forecast 1.3781e+06 1.6101e+06 5.1 0.98 20,000 4.2405 

 
Table 5. SVM and Q-SVM forecasting error metric results and accuracy. 

Initial Function Ratio RMSE MAE 
MAPE 

(%) 
R2 

PS/ 
Obs/Sec 

TT/Sec 
Box  

Constraint 
Epsilon 

Kernel 
Scale 

SVM 
Linear Training 2.7518e+09 4.9032e+08 4.66 0.99 16,000 9.2809 0.65599 7.4244e+09 1 

 Testing 4.5009e+08 4.1967e+08 5.58 0.95      

Optimizable 
Q-SVM 

Kernel Training 1.565e+08 2.5157e+08 5.80 1.00 21,000 289.47 0.83523 7.4245e+09 0.075844 

 Testing 1.4713e+08 2.483e+08 6.17 1.00      
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forecasting results. MAPE and MSE results adhere to the benchmarking prin-
ciple of billed, imported, and exported load forecast metrics. Figure 12 clearly 
shows positive forecast results for the billing load for QSVM compared to SVM. 
The model optimization is summarized as follows:  

1) Simulation results are trained and tested from an actual load demand ob-
served in various load scenarios over a specified time interval. 

2) To evaluate the effectiveness of the model, the original dataset was split into 
training and testing phases, during the training phase, the performance of indi-
vidual models is evaluated.  

3) Compare methods to their respective benchmarks using MAPE and MSE 
error metrics. 

The best possible values of Dtrain and Dtest given in Table 2 and Table 5 are used 
as constraints for a variable multi-objective function with model parameters. 
RMSE, MAE, MAPE, and R-squared have been applied as constraints on the ra-
tios of other variable metrics. While a hyper-parameter as a metric benchmark 
model utilized during Q-SVM optimization to assess its efficiency. Epsilon and 
kernel scales, minimum error hyper-parameters, the best point hyper-parameters, 
and training phase solutions are provided in Table 5. This research will enable 
REG to study dynamic increases in electric load demand patterns and facilitate 
continuity planning for more appropriate and accurate load generation and ex-
pansion strategies. Consequently, inaccurate forecasts can lead to power shortages 
and surpluses, leading to “dumsor” and unnecessary threats to the power system.  

9. Conclusion and Future Work 

Electricity load forecasting is key to promoting energy equity and integration 
across households in the country. The purpose of this study on Rwanda is to 
achieve universal energy access by 2024. The proposed artificial intelligence model 
(QSVM) aims to solve the long-term electricity demand forecasting problem from 
1998 to 2020. QSVM was optimized by SVM results to accurately formulate the 
correlation between historical load data and forecasted load. Note that experi-
mental results show that the QSVM model is applicable to LTLF due to its high-
er prediction accuracy and significantly lower error metric compared to those of 
the SVM model. Compared with other long-term forecasting methods and mod-
els, the proposed models use less prediction speed and lower training time. By 
setting the forecasting process reasonably, the QSVM load forecasting effect is 
more accurate than the current application methods. In spite of its higher fore-
casting accuracy, this study has some limitations that lead to unconformity of 
model metrics performance: 1) small sample size, 2) hourly dataset arrangement. 
In future work, with hourly dataset arrangement, the model accuracy will be 
improved and compared with PSO and ANN for the Middle-Term Load Fore-
casting method. 
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