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Abstract 
This paper presents findings on dynamic cell modeling for state-of-charge 
(SOC) estimation in an autonomous electric vehicle (AEV). The studied cells 
are Lithium-Ion Polymer-based with a nominal capacity of around 8 Ah, opti-
mized for power-needy applications. The AEV operates in a harsh environment 
with rate requirements up to ±25C and highly dynamic rate profiles, unlike 
portable-electronic applications with constant power output and fractional C 
rates. SOC estimation methods effective in portable electronics may not suf-
fice for the AEV. Accurate SOC estimation necessitates a precise cell model. 
The proposed SOC estimation method utilizes a detailed Kalman-filtering 
approach. The cell model must include SOC as a state in the model state vec-
tor. Multiple cell models are presented, starting with a simple one employing 
“Coulomb counting” as the state equation and Shepherd’s rule as the output 
equation, lacking prediction of cell relaxation dynamics. An improved model 
incorporates filter states to account for relaxation and other dynamics in 
closed-circuit cell voltage, yielding better performance. The best overall re-
sults are achieved with a method combining nonlinear autoregressive filtering 
and dynamic radial basis function networks. The paper includes lab test results 
comparing physical cells with model predictions. The most accurate models 
obtained have an RMS estimation error lower than the quantization noise floor 
expected in the battery-management-system design. Importantly, these mod-
els enable precise SOC estimation, allowing the vehicle controller to utilize 
the battery pack’s full operating range without overcharging or undercharg-
ing concerns. 
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1. Introduction 

The focus of this paper is to outline several techniques for capturing the electric-
al input-output characteristics of lithium-ion polymer battery (LiPB) cells. We 
approach the modeling of these cells as nonlinear dynamic systems and represent 
them in a discrete-time state-space framework. More specifically, we adopt the 
following structure: 

( )
( )

1 ,

, ,
k k k k

k k k k

x f x u w

y g x u v
+ = +

= +
                       (1) 

where xk represents the system state vector at discrete-time index k. The system 
input uk refers to the measured exogenous system input at time k (which may 
include measurements of battery-pack current, temperature and so forth) and wk 
is unmeasured “process noise” affecting the system state (and also models the 
inaccuracy of the cell model, to some extent). The system output is yk and vk is 
the measurement noise that usually models noise in sensors. The functions, f( ) 
and g( ) in the equations describe the (possibly nonlinear) behavior defined by 
the specific cell model employed. To elaborate further, the system input vector 
uk usually comprises the instantaneous cell current ik. It may also encompass ad-
ditional information such as the cell temperature Tk, an estimate of the cell’s ca-
pacity C, and/or an estimate of the cell’s internal resistance Rk, for example. The 
system output is typically a scalar, but can also be a vector. In this context, we con-
sider the output as the loaded terminal voltage of the cell, not its at-rest open 
circuit voltage (OCV). The system’s state vector xk in a summarized manner 
represents the cumulative effect of all past inputs to the system, enabling the pre-
diction of the present output solely based on the state and present input. Know-
ledge of past input values is not necessary. Our method mandates the inclusion 
of state of charge (SOC) as one component within the state vector, as described 
in Section 3. 

Numerous cell models have been proposed in various studies, serving differ-
ent purposes. In Section 2, we provide an overview of a few of these models. Our 
specific focus is on modeling cell dynamics for state-of-charge (SOC) estimation 
in autonomous electric vehicle (AEV) battery packs. The AEV application poses 
significant challenges, including demanding rate requirements of approximately 
±25C, highly dynamic rate profiles, and operating temperatures ranging from 
−30˚C to 50˚C. This stands in contrast to relatively fewer demanding scenarios 
like portable electronic applications with constant power output and fractional C 
rates. It is worth noting that methods for cell modeling and SOC estimation that 
perform well in portable electronic devices often fall short in the AEV applica-
tion. Thus, achieving precise SOC estimation in an AEV necessitates a highly 
accurate cell model. The cells considered in this paper are Lithium-Ion Poly-
mer-based, developed collaboratively by Compact Power Inc. in the United States 
and LG Chem, Ltd. in Daejeon, Korea. These cells have a nominal capacity of ap-
proximately 8 Ah and are optimized for power-intensive applications. The ap-
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proach presented in this paper offers a remarkably precise representation of the 
dynamics exhibited by these cells. Moreover, the method exhibits a high level of 
generality, making it applicable to a wide range of battery systems with varying 
chemistries and applications [1]. 

The structure of this paper is as follows: First, we provide a concise review of 
SOC estimation methods that incorporate companion cell modeling approaches. 
Next, we elucidate how our approach differs, emphasizing the essential require-
ment of including SOC as a component of the system state, and highlighting the 
advantages associated with this choice. Subsequently, we propose potential struc-
tures for the cell model and outline methods for determining the model parame-
ters. We also detail the testing equipment, cells, and regimen employed for cell 
modeling. Finally, we evaluate the results obtained and draw conclusions based 
on our findings. 

2. Methods for Cell Modeling and SOC Estimation 

We begin by examining the existing literature to assess if the current methods 
align with our requirements. Our specific application involves modeling cell dy-
namics to estimate SOC in an AEV battery pack. We observe that many papers 
on cell modeling do not directly address SOC estimation, while many papers on 
SOC estimation include some discussion on cell modeling. Consequently, several 
references cited in this paper are focused on SOC estimation. For a comprehen-
sive overview of these methods in greater detail than presented here, we refer 
readers to reference [2]. In our intended application, it is crucial for the cell 
model to exhibit accuracy across all operating conditions. These conditions en-
compass high rates, where many papers consider rates up to approximately ±1C 
for portable electronic applications, whereas we need to consider rates up to 
about ±25C. Furthermore, the model must account for temperature variations 
within the automotive range of −30˚C to 50˚C and accommodate highly dynamic 
rates, distinguishing it from the comparatively milder conditions encountered in 
portable electronics and battery electric vehicle applications. It is also essential to 
consider charging (regen) in the method. 

Additionally, we require non-invasive techniques that rely solely on readily 
available signals. This requirement arises from the AEV environment, where the 
battery management system (BMS) lacks direct control over the current and vol-
tage experienced by the battery pack, as this falls within the domain of the ve-
hicle controller and inverter. Therefore, we must rely on measurements such 
as instantaneous cell terminal voltage, cell current, and cell external temperature. 
Furthermore, our choice of cell chemistry restricts the range of approaches we 
can consider. Techniques specific to lead-acid chemistries, for example, are not 
suitable for LiPB cells. 

2.1. Laboratory and Chemistry-Dependent Methods 

Several methods are not applicable to our specific application. Firstly, a laboratory 
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method that involves completely discharging a cell to determine its remaining 
capacity cannot be employed in the AEV context. This approach is both unfeasi-
ble and counter-productive for our purposes. Secondly, chemistry-dependent 
techniques designed for lead-acid batteries, such as the Coup de Fouet measure-
ment or the measurement of electrolyte physical properties, are unsuitable since 
our application employs LiPB cells. Lastly, open-circuit voltage (OCV) measure-
ments are not practical for dynamic SOC estimation. While OCV can be used to 
infer SOC by referencing a lookup table, this method requires extended periods 
of battery inactivity, sometimes spanning hours, for the terminal voltage to ap-
proach OCV. Hence, this approach is impractical for our dynamic SOC estima-
tion requirements. 

2.2. Electro-Chemical Modeling 

One approach to modeling cell electrical dynamics involves a meticulous con-
sideration of the chemical reactions and processes taking place within the cell. 
This approach delves into the specific reactions occurring at the anode and ca-
thode, as well as the ion transfer process within the electrolyte. These models, as 
exemplified in reference [3], can yield highly accurate predictions of terminal 
voltage. However, extracting SOC directly from these models poses a challenge, 
and it would be arduous (if even possible) to measure the numerous physical pa-
rameters required on a per-cell basis, particularly in high-volume consumer prod-
ucts. Consequently, we have not pursued this particular approach. 

2.3. Impedance Spectroscopy 

Another broad category of cell modeling involves the measurement of cell im-
pedances across a wide range of AC frequencies [4]. Typically, an equivalent cir-
cuit model of the cell is constructed using resistors, capacitors, inductors, and/or 
complex impedances. The values of the model parameters are determined through 
the least squares fitting based on measured impedance values [5] [6]. SOC is 
typically considered as an input to the model, as cell impedance exhibits a de-
pendency on SOC. Consequently, SOC can be indirectly estimated by measuring 
cell impedance and establishing correlations with known impedances at different 
SOC levels. 

However, we must disregard this method for our specific application, as we 
lack a direct means to introduce signals into cells for impedance measurements. 
We rely on the vehicle to generate and dissipate all the energy flowing through 
the battery pack, leaving us unable to inject specific signals. Although the im-
pedances could potentially be generated using a fast Fourier transform (FFT) 
approach, utilizing available measurements as ( ) ( ) ( )e e ej j jZ E Iω ω ω= , we 
would need to ensure that the current signal ( )i t  is persistently exciting and 
that ( )e jI ω  does not have any zero values. This guarantee would be violated, 
for instance, if the battery pack remained inactive for a certain period, which is a 
common occurrence. Moreover, depending on the block length of the FFT, this 

https://doi.org/10.4236/jpee.2023.118001


Q. Ajao, L. Sadeeq 
 

 

DOI: 10.4236/jpee.2023.118001 5 Journal of Power and Energy Engineering 
 

method could introduce an unacceptable time delay in measuring impedance 
and consequently estimating SOC [7] [8]. 

2.4. Circuit Models 

A number of papers propose equivalent circuit models for cells [9]. These mod-
els commonly incorporate a high-valued capacitor to represent the open circuit 
voltage (OCV), while the rest of the circuit represents the cell’s internal resis-
tance and dynamic effects like terminal voltage relaxation [10]. SOC can be in-
ferred from the OCV estimate through table lookup. Both linear and nonlinear 
circuit models can be employed for this purpose. However, our findings indicate 
that linear circuit models do not achieve the desired level of performance [11] 
[12]. 

2.5. Coulomb Counting 

The final method discussed in the literature focuses on SOC estimation directly 
through Coulomb counting. This can be done in an “open-loop” fashion, which 
is often imprecise due to sensor errors, or a more accurate “closed-loop” ap-
proach. The feedback mechanism can be designed empirically [13] or employ a 
theoretically justified method such as Kalman filtering [14] to generate the feed-
back. All the Kalman filtering-based methods described in the literature (that we 
are aware of) utilize a circuit model of the cell where capacitor voltages represent 
OCV and relaxation effects, enabling the estimation of OCV and subsequent in-
ference of SOC. Our approach also utilizes the Kalman filtering method [15]. 
However, the fundamental aspect that distinguishes our model from those re-
ported in the literature is that SOC is directly considered as a state of the system. 
This approach offers a significant advantage in that the Kalman filter provides a 
dynamic estimate of SOC and its uncertainty. This concept is discussed in more 
detail in [1]. Instead of providing a single SOC value to the vehicle controller at a 
particular time (e.g. “about 55%”), our algorithm is capable of reporting that the 
SOC is 55% ± 7%, for instance. This enables the vehicle controller to confidently 
utilize the battery pack’s full operating range without concerns of over- or un-
der-charging cells. 

3. Model Structures 

In order to use the Kalman methods we propose to estimate SOC, the cell model 
must be represented in discrete-time state-space form. Specifically, we assume 
the form of Equation (1). The difference between the models, then, depends on 
the definitions of xk, uk, f( ) and g( ). We also require that SOC is a member of 
the state vector. To be complete, we give a list of definitions culminating in a 
careful definition of SOC. 

Definition: The cell high operational voltage limit is called hv . Here, we may 
use 4.2 Vhv = . 

Definition: The cell low operational voltage limit is called lv . Here, we may 
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use 3.0 Vlv = . 
Definition: A cell is fully charged when its voltage reaches hv v=  after being 

charged at infinitesimal current levels. 
Definition: A cell is fully discharged when its voltage reaches lv v=  after be-

ing drained at infinitesimal current levels. 
Definition: The capacity of a cell is the maximum number of Ampere-hours 

that can be drawn from the cell before it is fully discharged, at room temperature 
(25˚C), starting with the cell fully charged. Definition: The nominal capacity of 
the cell is the number of Ampere-hours that can be drawn from the cell at room 
temperature at the C/40 rate, starting with the cell fully charged. 

Definition: The SOC of the cell is the ratio of the remaining capacity to the 
nominal capacity of the cell, where the remaining capacity is the number of 
amp-hours that can be drawn from the cell at room temperature at the C/40 rate. 

With these definitions in place, we can then investigate some mathematical 
relations involving SOC. Particularly: 

( ) ( )
( )( ) ( )

0
SOC SOC 0 d

t i i
t

C
η τ τ

τ= − ∫                  (2) 

where C is the nominal capacity of the cell, ( )i t  is the cell current at time t, and 
( )( )i tη  is the Coulombic efficiency of the cell (here, we use ( )( ) 1i tη =  for dis-

charge and ( )( ) 0.995i tη =  for charge). 
A discrete time approximate recurrence may then be written as: 

( )
1SOC SOC k k

k k

i i t
C

η
+

∆
= −                      (3) 

where Δt is the sampling period (in hours). Equation (3) is the basis for includ-
ing SOC in the state vector of the cell model as it is in state equation format al-
ready, with SOC as the state and ik as the input. Our cell models will then be dif-
ferentiated by the additional components in the state vector and the functional 
form of f( ) and g( ). 

3.1. Models with a Single State 

We will first investigate models with a single state, i.e. SOC. These models share 
a common process Equation (3). The difference between them is then the output 
equation. Several different forms are suggested in reference [16]. 

Shepherd model: 4.2 SOCk k i ky Ri K= − −                (4) 

Unnewehr universal model: 4.2 SOCk k i ky Ri K= − −            (5) 

Nernst model: ( )14.2 ln SOCk k ky Ri K= − +               (6) 

Modified Nernst model: ( ) ( )2 34.2 ln SOC ln 1 SOCk k k ky Ri K K= − + + −   (7) 

In these models, yk is the cell terminal voltage, R is the cell internal resistance 
(different values may be used for charge/discharge and at different SOC levels if 
desired), Ki is the polarization resistance and K1, K2, and K3 are constants chosen 
to make the model fit the data well. The “modified Nernst” model of (7) reflects 
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an additional term that we added to the Nernst model to cause it to fit our data 
better. All of the terms of (4) through (7) may be collected to make a “combined 
model” that performs better than any of the individual models alone. 

Combined model: 

( ) ( )0 1 2 3 4SOC SOC ln SOC ln 1 SOCk k k k k ky K Ri K K K K= − − − + + −    (8) 

The unknown quantities in (8) may are estimated using a system identifica-
tion procedure. This model has the advantage of being “linear in the parameters”; 
that is, the unknowns occur linearly in the output equation.  

A simple way to find the parameters is then as follows: First form the vector 
[ ]T1 2, , , NY y y y=   and the matrix 

TT T T
1 2, , , NH h h h =   . The rows of H are 

(transposes of) ( ) ( ) T
1, , ,1 SOC ,SOC ,ln SOC ,ln 1 SOCj j j j j j jh i i+ − = −  , where 

ji+  is equal to ji  if 0ji > , ji−  is equal to ji  if 0ji < , else ji+  and ji−  are 
zero. 

Then, 

Y Hθ= ,                            (9) 

where 
T

0 1 2 3 4, , , , , ,K R R K K K Kθ + − =    is the vector of unknown parameters. 
The least-squares solution for θ  is: 

( ) 1T TH H H Yθ
−

=                        (10) 

This may be evaluated in MATLAB, for example, as theta \a H Y= . 

3.2. Models with Multiple States to Track Relaxation 

The combined model presented in Equation (8) can be identified and imple-
mented swiftly. However, a significant drawback of this model is its omission of 
any description of cell relaxation. Considering the necessity for accurate predic-
tion of cell behavior in a dynamic AEV environment, it becomes essential to in-
corporate relaxation effects. In a state-variable model, the dynamics are described 
by the state Equation (1). To account for relaxation effects, we need to expand 
the state vector by introducing additional filter states. In our approach, we opt to 
implement filtered versions of SOC and the input current. This leads to the fol-
lowing augmented model: 

[ ]

1 2
1

4 5 3

5 4

8
6 7 10 11 12

,1 9

1 0 0 0 1 0
0 0 0 1

0 0 0 0
0 0 1 0

10

mod
k

k k

mod
k k k

k

w w I
x x

w w w
w w

wy w w I w w w x
x w

+

−   
        = +          −   

= + + +
+

         (11) 

where ( ) Δnmod
k k k pI i i t Cη= , n is the Peukert exponent and Cp is the Peukert 

capacity. The first state of xk (that is, xk,1) is SOC, as before. The output yk is ter-
minal voltage, as before. The parameters of the model are found by system iden-
tification using measured cell data. We found that the model was able to predict 
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cell behavior best when different sets of parameters were used for different levels 
of input current ik. To estimate the state of a dynamic system, such as the cell 
SOC, we will employ a Kalman filter. A comprehensive explanation of this ap-
proach can be found in [1]. For a detailed understanding of the system identifi-
cation procedure, it is recommended to consult this reference, which provides 
in-depth information on Kalman filtering. Additional insights can be gained from 
reference [17]. Moreover, we can utilize a Kalman filter for system identification 
purposes. In this case, the weights or parameters of the cell model are regarded 
as the state of a presumed “true” dynamic system: 

1k k

k k k

W W
d y v

+ =

= +
                            (12) 

where Wk is the “truth/optimum” weight vector at time k and has as compo-
nents the weights w1 through w12. The optimum weight vector is constant, ex-
plaining the dynamics in the top line. The “output” of the optimum weight dy-
namics is the desired response, which is equal to the cell output plus the estima-
tion error. We can create an extended Kalman filter to iteratively estimate the 
state (weight vector) of the cell model: 

( )1

1T

T
1

ˆ ˆ
k k k k k

k k k k k k k

k k k k k

W W L d y

L P C C P C R

P P L C P

+

−

+

= + −

 = + 
= −

                     (13) 

where Pk is the approximate conditional error covariance matrix, initialized to 
a diagonal matrix with small values, 1kR ≤ , and T d dk kC y W= . To compute 
d dky W , we first note that ( ), ,mod

k k ky fn x I W= , ( )1 1, ,mod
k k kx fn x I W− −=  and use 

the chain rule for total differentials: 







1

1 1

1 1
0

1

1
0

d d d
d d d

d d d
d d d

k

mod
k k k k k k

mod
k k

A

mod
k k k k k k

mod
k k

x x x x x I
W W x W WI

y y y x y I
W W x W WI

−

− −

− −

−

−

∂ ∂ ∂
= + +
∂ ∂ ∂

∂ ∂ ∂
= + +
∂ ∂ ∂

               (14) 

In the second line, 

( )

[ ]
( )

( )

8
,1 ,3 ,42

,1 9 ,1 9

8
10 11 12 2

,1 9

8
10 11 122

,1 9

10 0 0 0 0 1

10 0 0 0

10

modk
k k k k

k k

k

k k

k

y wI x x x
W x w x w

y ww w w
x x w

ww w w
x w

 ∂ − =
∂  + + 

 ∂ − = +
∂  + 

 
 = −
 + 

(15) 

and d dkx W  is computed in the first line. In the first line: 
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1,1 1,2

1,3 1,4

1,4 1,3

1 2
1

4 51

5 4

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 0 0
0 0

0 0
0 0

k kk

k k

k k

k
k

k

x xx
x xW
x x

w wx A
w wx
w w

− −

− −

− −

−
−

 
 

∂  =
 ∂
 

−  
 
 ∂  = =
 ∂
 

− 

   (16) 

and 1d dkx W−  is a previously computed and stored version of d dkx W . All 
terms are accounted for, and the algorithm is complete. 

3.3. Radial Basis Function Model 

Adding linear filter states into the model enhances its predictive capability for 
cell behavior. However, as LiPB cells inherently exhibit nonlinear characteristics, 
further improvement can be achieved by employing a fully nonlinear dynamic 
cell model. To accomplish this, we will utilize radial-basis-function (RBF) net-
works in conjunction with a black-box system identification procedure. An RBF 
network provides a localized approximation of the function it represents. It cal-
culates its output by taking a weighted sum of (hyper) Gaussian shapes. More 
precisely, it computes the function as follows: 

2
121

1exp ,k j k j Nj
N

j

y w u t w
σ +=

 
= − − +  

 
∑                (17) 

where N is the number of bases, wj is the weight connecting the jth basis func-
tion to the output, σj is the “standard deviation” or width parameter of the jth 
basis function, xk is the vector input to the network, and tj is the center of the jth 
basis function. Here, uk includes the states of the system: e.g. [ ]T1,SOCk k kx y −=  
as well as the cell current ik. Figure 1 depicts a cartoon illustrating the approxi-
mation of a smooth function using RBFs. The red line represents the function  
 

 
Figure 1. Cartoon illustrating how the function drawn as a red line may be approximated 
by the sum of two Gaussian shapes drawn as blue lines. 
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being approximated. By combining two blue Gaussian shapes with distinct cen-
ters, widths, and heights, a close approximation to the red line is achieved. This 
concept extends to higher dimensions as well. During the training of an RBF, the 
objective is to identify the appropriate set of centers, widths, and output scales 
that effectively approximate the target function. 

The parameters of an RBF network can be determined from data using a Kal-
man filter, following the same approach outlined in Section 3.2. However, the 
specific details of this process will not be elaborated upon here. 

4. Cell Testing and Model Fitting Results 

To assess the performance of the proposed cell models in capturing the dynam-
ics of LiPB cells, we conducted tests using prototype cells. The tests were carried 
out in a Tenny thermal chamber set at a temperature of 25˚C, with an Arbin cell 
cycler. Prior to the tests, the cells were fully charged.  

In Figure 2, the cell voltage tracking is achieved through the utilization of the 
single-state model. The red line represents the actual cell voltage, while the blue 
line represents the voltage predicted by the cell model. To conduct the tests, the 
cell was subjected to pulsed currents at rates of ±1C, ±2C, and ±4C, interspersed  
 

 

Figure 2. Combined model: (a) Pulsed current at ±1C rates; (b) Pulsed current at ±2C rates; (c) Pulsed current at ±4C rates. 
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with rest periods. The test cycles consisted of pulsed discharge phases followed 
by rest intervals, and then pulsed charge phases with additional rest periods. 
Measurements, including voltage, current, and Ah discharged/charged, were 
recorded at one-second intervals. The collected data was utilized to identify the 
parameters of the three cell models. Subsequently, these models were employed 
to predict the terminal voltage for the conducted tests. Figures 2-4 present a 
comparison between the model’s predicted terminal voltage and the actual 
measured terminal voltage for three representative tests involving pulsed ±1C 
rates, pulsed ±2C rates, and pulsed ±4C rates. In each plot, the true cell voltage is 
depicted by the red line, while the model’s prediction is illustrated by the blue 
line.  

Figure 2 specifically focuses on the “combined model”, highlighting a com-
parison between the measured data and the model’s output. It should be noted 
that since this model lacks filter states, the prediction may lack relaxation effects. 
Figure 3 shows results from the “filter state” model. It does a much better job of 
capturing the relaxation dynamics but is still noticeably flawed due to its nearly 
linear nature. To track cell voltage, the filter-state model is employed. The true 
cell voltage is depicted by the red line, while the voltage predicted by the cell 
model is represented by the blue line. The cell tests consisted of pulsed currents 
at rates of ±1C, ±2C, and ±4C, interspersed with rest periods. 

 

 

Figure 3. First state model: (a) Pulsed current at ±1C rates; (b) Pulsed current at ±2C rates; (c) Pulsed current at ±4C rates. 
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Figure 4. Radial-basis-function model: (a) Pulsed current at ±1C rates; (b) Pulsed current at ±2C rates; (c) Pulsed current at ±4C 
rates. 
 

The cell voltage tracking is accomplished using the radial-basis-function net-
work model. The red line corresponds to the actual cell voltage, while the blue 
line represents the voltage predicted by the cell model. The cell tests involved 
pulsed currents at rates of ±1C, ±2C, and ±4C, with intermittent rest periods. 
Figure 4 displays the outcomes obtained from the “radial-basis-function model”. 
It is evident that the model’s output closely aligns with the actual cell output. 
This indicates that the model has effectively captured the cell’s dynamics. In this 
particular case, a 100-RBF network was employed, resulting in an RMS estima-
tion error of approximately 2 mV. Notably, this error is lower than the expected 
quantization noise floor in our BMS implementation. To further analyze the 
performance, Figure 5 showcases a plot illustrating the RMS estimation error of 
the model as a function of the number of RBF kernels utilized. The plot demon-
strates that this approach allows for achieving arbitrary precision by increasing 
the number of RBFs until the desired level of accuracy is attained. 

Finally, Figure 6 shows the results of a much more difficult modeling problem. 
Rather than simple pulsed charge/discharge cycles, it shows cell test results fol-
lowing a UDDS drive cycle, repeated a number of times over the SOC range of 0 
to 1. An RBF network of the same size was used to identify this signal. Note  
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Figure 5. RMS prediction/modeling error using RBF networks with different numbers of 
basic functions (kernels). 
 

 

Figure 6. Tracking cell voltage in a very dynamic AEV test using the RBF model with 100 
basis kernels. 
 
that space does not permit lengthy discussion of model temperature dependence. 
Preliminary work indicates that temperature may be included as another input 
to the RBF input vector for accurate modeling over the required temperature 
range. 

5. Conclusion 

In conclusion, this paper has introduced three mathematical state-space struc-
tures to model the dynamics of LiPB AEV cells, aiming to enable state-of-charge 

https://doi.org/10.4236/jpee.2023.118001


Q. Ajao, L. Sadeeq 
 

 

DOI: 10.4236/jpee.2023.118001 14 Journal of Power and Energy Engineering 
 

(SOC) estimation through Kalman filtering. Among the proposed models, the 
single-state model is the simplest but exhibits the lowest performance. On the 
other hand, incorporating filter states enhances performance at the expense of in-
creased complexity. The final structure, utilizing radial-basis-function networks, 
offers a scalable complexity to effectively capture the dynamics, yielding the best 
performance among all models tested. Additionally, the SOC estimation results 
confirm the notion that “the better the model, the better the SOC estimation” [1] 
[2]. Based on these findings, the RBF model emerges as the most favorable choice 
among the evaluated options. 
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