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Abstract 
A combined-cycle power plant (CCPP) is broadly utilized in many countries 
to cover energy demand due to its higher efficiency than other conventional 
power plants. The performance of a CCPP is highly sensitive to ambient air 
temperature (AAT) and the generated power varies widely during the year 
with temperature fluctuations. To have an accurate estimation of power gen-
eration, it is necessary to develop a model to predict the average monthly 
power of a CCPP considering ambient temperature changes. In the present 
work, the Monte Carlo (MC) method was used to obtain the average gener-
ated power of a CCPP. The case study was a combined-cycle power plant in 
Tehran, Iran. The region’s existing meteorological data shows significant 
fluctuations in the annual ambient temperature, which severely impact the 
performance of the mentioned plant, causing a stochastic behavior of the 
output power. To cope with this stochastic nature, the probability distribution 
of monthly outdoor temperature for 2020 was determined using the maximum 
likelihood estimation (MLE) method to specify the range of feasible inputs. 
Furthermore, the plant was accurately simulated in THERMOFLEX to capture 
the generated power at different temperatures. The MC method was used to 
couple the ambient temperature fluctuations to the output power of the plant, 
modeled by THERMOFLEX. Finally, the mean value of net power for each 
month and the average output power of the system were obtained. The results 
indicated that each unit of the system generates 436.3 MW in full load opera-
tion. The average deviation of the modeling results from the actual data pro-
vided by the power plant was an estimated 3.02%. Thus, it can be concluded 
that this method helps achieve an estimation of the monthly and annual 
power of a combined-cycle power plant, which are effective indexes in the 
economic analysis of the system. 
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1. Introduction 

The construction of a combined-cycle power plant (CCPP) is one of the most ef-
ficient methods of generating electrical energy using fossil fuels, with a broad 
worldwide implementation record to satisfy the global energy demand [1]. Many 
environmental and non-environmental parameters influence the operation of 
CCPPs. Environmental parameters are related to location conditions, such as 
ambient air temperature (AAT), atmospheric pressure, and relative humidity 
[2]-[7], while non-environmental parameters involve component failure, fuel 
quality, and design challenges, such as compressor pressure ratio and pinch 
point temperatures [8]. 

Many studies report the impact of different parameters on the performance of 
combined cycles. Khaliq and Kaushik [9] evaluated the effects of steam pressure 
and pinch point on the exergetic and energetic efficiency of CCPPs. They con-
cluded that the first and second-law efficiencies reduce by increasing the pinch 
point, while exergetic efficiency increases by increasing the steam pressure. San-
jay [10] studied the effect of fluctuations in the cycle process parameters on the 
efficiency of CCPP and reported that turbine inlet temperature (TIT) was the 
most effective parameter that directly depends on the gas turbine inlet tempera-
ture. Authors in [11] studied the influence of AAT, relative humidity, and site 
altitude on the output power of a dual pressure CCPP. The range of changes in 
AAT was between 24˚C - 35˚C, and the relative humidity fluctuated between 
60% - 80%. The results showed that the generated power and thermal efficiency 
reached the maximum value of 205.52 MW and 47.46% at 24˚C. They con-
cluded that by reducing the AAT at the optimum exhaust temperature and 
gas flow, the net power and efficiency of CCPP increase significantly. Matho 
and Pal [12] examined the different CCPP configurations, including sin-
gle-pressure, double-pressure, and triple-pressure heat recovery steam genera-
tors (HRSGs), and calculated each arrangement’s thermodynamic and economic 
factors. They showed that the SGTCC3PR (simple gas turbine combined-cycle 
using triple pressure HRSG with reheat) has the lowest operating cost per kWh 
of generated power. 

In a CCPP the output power is highly sensitive to outdoor temperature 
changes [13]. Air temperature fluctuates widely during the year, directly influen-
cing the power generation capacity of the system, thus leading to irreversible fi-
nancial losses for operators and consumers [14]. Thus, AAT is a random and the 
most effective environmental factor with substantial impacts on the performance 
of a CCPP [15]. Several credible studies focus on the effect of AAT on the per-

https://doi.org/10.4236/jpee.2022.105008


A. H. J. Yeganeh et al. 
 

 

DOI: 10.4236/jpee.2022.105008 118 Journal of Power and Energy Engineering 
 

formance of a CCPP. Igoma, Alava, and Sodiki [16] designed an experiment to 
investigate the influence of ambient temperature on the performance of a gas 
turbine (GT) plant with a nominal capacity of 25 MW. They reported that a 1˚C 
increase in AAT led to a 0.12% decrease in net power and a 1.17% reduction in 
efficiency. Arrieta and Lora [17] studied the impact of AAT on the output power 
of a triple-pressure CCPP with supplementary firing in Brazil. The results 
showed that reduced ambient temperature could increase the output power of 
the plant by up to 75 MW for the specified case study. Rai et al. [18] employed 
practical data collected from a CCPP in full load to analyze the effect of AAT 
and temperature control on the output power. They concluded that the generat-
ed power falls significantly by increasing the gas turbine’s inlet temperature. In 
[19], a 16.6 MW gas turbine was studied. The results indicated that as the tem-
perature decreased from 34.2 to 15, the average output of the power plant in-
creased by approximately 11.3%. Erdem and Sevilgen [20] investigated two sim-
ple gas turbine cycles with seven different climate conditions in Turkey to eva-
luate ambient temperature’s influence on power generation. They compared the 
loss of annual capacity and fuel consumption increase with the standard state 
(sea level, 15˚C, 60% relative humidity). In [21], an experimental study was 
conducted on a CCPP with a capacity of 240 MW in Turkey to discuss the effect 
of ambient air fluctuations on the system’s efficiency and net power. The output 
power for an ambient temperature range of 8˚C - 23˚C was registered. It was 
concluded that rising temperature could reduce the output power and efficiency 
of GT and steam turbine (ST). It has been recommended to install cooling sys-
tems in the inlet of GT to enhance the performance of the CCPP by reducing in-
let air temperature [22] [23]. Cooling the inlet air of the GT is one of the best 
methods to increase the output power of CCPPs. By decreasing the inlet air 
temperature, the gas density will increase. As a result, a higher mass flow rate 
enters the compressor, thus generating more power [22]. De Sa and Al Zubaidi 
[24] proposed an experimental relation between the AAT and power generation 
in a CCPP. They concluded that raising the AAT by 1˚C above ISO condition 
leads to a 1.47 MW loss in output power and 0.1% loss in thermal efficiency. 

Accurate modeling of a combined cycle and its components is the prerequisite 
for performing calculations. Almansoori and Dadach [25] simulated a natural 
gas combined-cycle (NGCC) with a capacity of 620 MW in ASPEN HYSYS. 
They used the Soave-Redlich-Kwong equation to obtain the plant’s exergy effi-
ciency. Estrada et al. [26] modeled a CCPP and calculated the output power us-
ing thermodynamic equations. Ersayin and Ozgener [27] conducted a parame-
tric analysis to calculate the efficiency of CCPPs using the first law of thermody-
namics and experimental data. The obtained energy efficiency was about 56%. 
Some articles present a methodology based on thermodynamic principles to ob-
tain the efficiency of different sub-systems in a CCPP [28] [29] [30] [31]. Rovira 
et al. [32] present a method to predict the CCPP’s behavior in different opera-
tion states (off-design and part loads). 
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The present study uses the Monte Carlo method to predict the stochastic be-
havior of the case study. It is one of the most useful probabilistic methods in in-
vestigating the effect of random input parameters on system behavior [33]. It has 
a wide application in renewable power plants, such as wind and solar plants. So-
lar and wind power plants do not have a constant output power and generate 
different power levels during the day due to solar radiation or wind velocity 
fluctuations [34] [35] [36]. Emami and Behbahaninia [37] determined the prob-
ability distribution of wind speed to obtain the average monthly and annually 
generated power to evaluate the potential of a wind power plant in Tehran, Iran. 
In [38], wind velocity in seventeen sites in Uzbekistan was recorded to analyze 
wind energy potential in this country. In [39], a combination of Monte Carlo 
and Marko methods was implemented on a waste-to-energy (WTE) power plant 
to obtain the plant’s power factor considering fuel analysis variations. 

Although the reviewed literature studied the effect of inlet air temperature on 
the performance of the CCPP either experimentally or numerically, and some of 
them have presented a relation between the ambient temperature and output 
power or efficiency, none of them can give us an accurate estimation of average 
generated power in a combined-cycle power plant considering the ambient 
temperature fluctuations. This study’s novelty lies in that it is the first and only 
work implementing the Monte Carlo method on a simulated CCPP considering 
AAT as a random input to obtain average output power in full operation. 

2. Power Plant Description 

Figure 1 is a schematic of the studied power plant. A combined cycle consists of 
topping and bottoming cycles. Most of the heat is supplied to the topping cycle  

 

 
Figure 1. Flow diagram of the dual pressure combined cycle. 
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[15]. The waste heat it produces is then utilized in a second process operating at 
a lower temperature level and is, therefore, a “bottoming cycle” [15]. In this case 
study, the topping cycle is a Brayton cycle, and the bottoming cycle is a Rankine 
cycle. The Brayton cycle consists of four processes: First, air enters the compres-
sor after passing through the filters. Meanwhile, the temperature and air pres-
sure increase. The pressurized air enters the combustion chamber, where the 
combustion occurs at constant pressure after injecting liquid or gaseous fuel; 
thus, the temperature and, consequently, the gas’s enthalpy increases signifi-
cantly. After leaving the combustion chamber, the hot products of combustion 
enter the turbine, and passing through the blades, they expand and cause the ro-
tation of the turbine shaft, thus causing the generator’s shaft to rotate and gen-
erate power. The exhaust gases from the gas turbine enter the HRSG to exchange 
energy with water in the Rankine cycle. In this cycle, water passes through the 
evaporators, economizers, and superheaters. Therefore, superheated steam is 
produced in two pressure stages: low-pressure and high-pressure (LP and HP). 
Next, the HP and LP steam passes through the ST blades and causes the tur-
bine’s shaft and generator’s shaft to rotate. Then, the expanded steam enters the 
condenser, condenses during an isobar process, and then is pre-heated by pass-
ing through the CPH (condensate pre-heater) and deaerator. Finally, the 
pre-heated water is divided into two low-pressure (LP) and high-pressure (HP) 
and is pumped by feed-water pumps (FWP) into the HRSG; thus, the cycle re-
peats continuously. 

This CCPP consists of six units. Each unit includes two gas turbines (Ansaldo 
AE94.2) with a nominal capacity of 166.2 MW, coupled with a steam turbine 
with a capacity of 114 MW (Figure 2). All units of this power plant have similar 
properties and arrangements. Therefore, just one unit is simulated in this study,  

 

 
Figure 2. The sub-systems of a unit of the CCPP. 
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but the results can be extended to all six units. The CCPP is simulated in 
THERMOFLEX based on the power plant’s piping and instrumentation diagram 
(P&ID). Figure 3 shows the schematic of this simulation. 

To verify and check the consistency of the model results with actual data, the 
actual values of monthly power (found in the power plant’s annual reports) were 
compared with power calculated by the computer model. The comparison crite-
rion was the error percentage between two values obtained by Equation (1). 

( )
actual power calculated power

Error % 100
actual power

−
= ×           (1) 

 

 
Figure 3. The combined cycle simulated in THERMOFLEX. 

https://doi.org/10.4236/jpee.2022.105008


A. H. J. Yeganeh et al. 
 

 

DOI: 10.4236/jpee.2022.105008 122 Journal of Power and Energy Engineering 
 

( ) ( )Summation of errors for each month %
Average error %

12
=       (2) 

3. Methodology 

The Monte Carlo method is a standard and efficient computational algorithm 
widely used in different fields, especially economics and system engineering 
[33]. Monte Carlo is an appropriate method for analyzing the behavior of sys-
tems with a determined uncertainty in input [33]. The Monte Carlo method is 
based on the concept of randomness and random sampling [40]. Applying this 
method requires seven main steps [41]: 

1) Determining the main system and a parameter as uncertain input of the 
system. 

2) Modeling the main system in computer software. 
3) Determining the probability distribution of uncertain input parameter. 
4) Generating random inputs from the specified distribution 
5) Running the computer model with the generated random input. 
6) Recording system results and behavior. 
7) Making a probability distribution for output results. 
Figure 4 is a flow chart of the mentioned steps (the Monte Carlo algorithm) 

implemented on the case study [39]. 
When studying and analyzing the behavior of a system with random inputs, 

the system should be modeled first to obtain the results of different inputs. Due 
to the randomness of input values, we should have a probability distribution of 
the input data to use the Monte Carlo method to know how likely each value will 
occur [33]. After obtaining the probability distributions, we have to select a 
random sample with a certain amount of data according to the required accura-
cy in the next step. Random selection from the data is the most important part of 
the Monte Carlo simulation because it is based on random selection [40]. After 
selecting a random sample, it is incorporated into the system so that the simu-
lated model gives us one or more output values as a result. 

Obviously, the greater the number of randomly selected samples, the closer 
the results will be to the system’s actual behavior, thus more accurate calcula-
tions [40]. The number of randomly selected samples is a function of system 
complexity and the accuracy required in simulation [33]. 

In this research, the inlet air temperature of the plant, the same as the inlet air 
temperature of the compressor, was considered as input. After running the sys-
tem with input values, the net power of the plant was considered as output. 

3.1. Finding Probability Distribution 

To obtain the probability distribution of ambient temperature, considering that 
the site construction is in Tehran, Iran, the air temperature of this city was rec-
orded every thirty minutes from January 2020 to the end of December 2020 
based on the meteorological organization reports [42]. Since the climate condition  
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Figure 4. Monte Carlo algorithm flow chart. 

 
of Tehran has been relatively stable in recent years [42], the use of temperature 
data for one year provides a good approximation of temperature. Furthermore, 
the results can be extended to the coming years. 

Distributions were fitted to data using the maximum likelihood estimation 
(MLE) method. In statistics, MLE is a method for fitting typical statistical dis-
tributions to resulted data from modeling or observations [43]. In this method, 
to find the most appropriate statistical distribution for the available data, at first, 
all statistical distributions are fitted to the data, and a function called “likelihood 
function” is defined [43]. The value of this function is different for each fitted 
distribution. After calculating the values of this function, the distribution with 
the highest value of the likelihood function is considered the most appropriate 
statistical probability distribution for the data [43].  In this study, the MLE me-
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thod was implemented on the input data (AAT) using the R language, and by 
comparing the values of the likelihood function for each month, the most suita-
ble probability distribution for the temperatures was obtained. 

3.2. Random Selection 

After determining the probability distribution, a completely random sample of 
this distribution was selected by randomly generating 2000 temperature data for 
each month (a total of 24,000 random data) by Matlab codes that aimed to gen-
erate random numbers from a given probability distribution. After generating a 
random sample, the generated data was entered into the model, and the system 
was run in full load operation mode to determine the output results. 

4. Results and Discussion 

A real dual pressure CCPP (PARAND CCPP) in Tehran was simulated with all 
its details based on the P&ID of the power plant. The following tables (see 
Tables 1-4) summarize the critical and basic input data used in simulation of 
this plant. Data in these tables (see Tables 1-4) are extracted from the datasheets 
and information provided by the power plant. 

 
Table 1. Plant’s primary data. 

Site Condition Gas Turbine Specifications 

Ambient temperature 25˚C Gas turbine type Ansaldo AE 94.2 

Altitude 1088 m Shafts 1 

Ambient pressure 0.8893 bar RPM 3000 

Ambient relative humidity 75% PR 11.7 

Ambient wet bulb temperature 21.55˚C TIT (˚C) 1141 

Line frequency 50 Hz TET (˚C) 544 

Makeup Water Condition Air flow (kg/s) 521 

Makeup water source pressure 3 bar Gen. power (MW) 166.2 

Makeup water source temperature 15˚C LHV HR (kJ/kWh) 10365 

Process condensate return pressure 3.447 bar LHV eff. (%) 34.7 

Process condensate return temperature 82.22˚C Price (MM$) 42.5 

Process condensate return percentage 98% Manufacturer Italy 

 
 
Table 2. HRSG data. 

Duct burner Fuel Natural gas 
Blowd’own 
percentage 

3.8% Pump types 
Multistage 
centrifugal 

Approach subcooling 5˚C Gas flow direction horizontal Number of pumps per HRSG 2 

LP and HP evaporator circulation natural LP and HP pinch 20˚C mechanical efficiency 97% 
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Table 3. Input data for steam turbine. 

Reference pressure ratio for steam 
turbine expansion step 

1.35 LPT last stage rotation speed 3000 RPM 

Condensation quality (Wilson line) 0.97 Exhaust loss correction factor 1 

Steam turbine mechanical loss 0.25% Moisture efficiency penalty 
(Baumann coefficient) 

0.72 

Steam turbine mechanical efficiency 99.75% Exhaust loss 9.303 kJ/kg 

 
Table 4. Generator specifications and transmission data. 

Generator specifications  Transmission system data 

Generator rated power/nominal output 1.05 Transmission 500 kV 

Single shaft GT/ST generator rated 
power/nominal output 

1.15 GT/ST generator 11.5 kV 

Generator power factor 0.9 ST generator 11.5 kV 

Generator mechanical loss as a percent of 
generator total loss 

12% Medium (station 
service) 

4160 kV 

 

 
Figure 5. Monthly probability distribution of outdoor temperature (˚C) in Tehran. 
 

After recording and categorizing outdoor temperature data, we arrive at a 
graph as shown in Figure 5, the probability distribution of ambient temperature 
in Tehran per month. 

Table 5 presents the type of the fitted distributions per month and their pa-
rameters (mean value and standard deviation). 

Finally, after running the model with input data in full load operation mode, 
the resulted values in different iterations are reported in Table 6. After converg-
ing these results to a fixed value, mean value and standard deviation (Std) of  
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Table 5. Type of monthly temperature probability distributions. 

Month Type of distribution Mean Std. 

JAN Gamma 8.926 0.118 

FEB Weibull 45.254 9.037 

MAR Weibull 55.389 7.538 

APR Weibull 59.218 9.183 

MAY Normal 75.705 10.463 

JUN Weibull 55.389 7.538 

JUL Normal 88.026 7.302 

AUG Normal 83.792 8.759 

SEP Normal 78.363 7.232 

OCT Lognormal 55.389 7.538 

NOV Lognormal 3.948 0.164 

DEC Gamma 3.826 0.102 

 
Table 6. Monte Carlo results in different iterations. 

Iterative number JAN FEB MAR APR MAY JUN 

500 445.5 445.9 437.8 430.7 418.2 416.3 

685 446.2 446.2 439.2 433.9 420.7 415.8 

1000 456.1 446.7 439.5 434.8 422.6 417.5 

1500 456.3 448.8 440.3 435.3 423.8 419.3 

2000 456.3 448.8 440.3 435.3 423.9 419.4 

Iterative number JUL AUG SEP OCT NOV DEC 

500 415.3 427.4 428.4 435.2 450.4 441.3 

685 416.9 425.7 428.1 437.6 449.6 439.5 

1000 414.3 424.9 426.9 439.2 451.8 441.1 

1500 415.8 423.1 427.8 438.6 450.3 440.6 

2000 415.9 423.1 427.8 438.7 450.4 440.6 

 
output power are compared with the actual data in Table 7. 

Table 8 presents the deviation of the modeling results from the actual results 
for each month calculated using Equations (1) and (2). 

Figure 6 shows the actual monthly average power and the resulted values 
from the Monte Carlo method. As shown in Figure 6 the mean value of output 
power has a downward trend until July and then takes an upward trend. 
Changes in the outdoor temperature can explain this behavior. From January to 
July, the temperature increases, thus decreasing the generated power, while from 
July to December, this trend is reversed. 
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Table 7. Mean value and Std. of power for upstate mode. 

Month 
Mean Value resulted  

from Monte Carlo  
method (MW) 

Actual  
mean value  

(MW) 
Month 

Mean Value  
resulted from  
Monte Carlo 

method (MW) 

Actual mean 
value 
(MW) 

Jan. 456.303 443.666 Jul. 415.951 402.430 

Feb. 448.859 435.658 Aug. 423.111 412.912 

Mar. 440.385 428.224 Sep. 427.883 417.244 

Apr. 435.305 423.654 Oct. 438.737 423.859 

May. 423.968 410.345 Nov. 450.469 437.518 

Jun. 419.408 405.264 Dec. 455.108 440.655 

Average generated power from MC method  
= 436.3 MW 

Actual average generated power 
= 423.4 MW 

 
Table 8. The monthly actual mean value of power. 

Month Error (%) Month Error (%) 

Jan. 2.78 Jul. 3.36 

Feb. 3.03 Aug. 2.47 

Mar. 2.84 Sep. 2.55 

Apr. 2.75 Oct. 3.51 

May. 3.32 Nov. 2.96 

Jun. 3.49 Dec. 3.28 

Average error = 3.02% 

 

 
Figure 6. Actual and calculated average monthly power. 

 
Some factors and parameters leading to differences among actual values and 

the modeling results are as follows: 
• In modeling, equipment efficiency is assumed constant and equal to nominal 
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efficiency, while some components operate with a certain percentage of no-
minal capacity depending on the situation. 

• In the simulation, energy losses and pressure drop in the pipelines are as-
sumed based on the design parameters, while over time, these losses increase. 

5. Conclusion 

A probabilistic method was implemented on a detailed model of a combined-cycle 
power plant to obtain the average generated power. Ambient temperature fluc-
tuations during the year were introduced as the random factor influencing the 
power generation capacity. The average power was estimated at 436.3 MW, and 
the deviation in the simulation results from actual data was 3.02%. It can be 
concluded that this value can be a criterion for assessing the simulation’s accu-
racy. This methodology can be implemented on different types of CCPPs or be 
combined with transient availability analysis methods to estimate a plant’s pow-
er factor in the design process. The results can also be used in economic analysis. 
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