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Abstract 
Electric Vehicle (EV) adoption is rapidly increasing, necessitating efficient 
and precise methods for predicting EV charging requirements. The early and 
precise prediction of the battery discharging status is helpful to avoid the 
complete discharging of the battery. The complete discharge of the battery 
degrades its lifetime and requires a longer charging duration. In the present 
work, a novel approach leverages the Edge Impulse platform for live predic-
tion of the battery status and early alert signal to avoid complete discharging. 
The proposed method predicts the actual remaining useful life of batteries. A 
powerful edge computing platform utilizes Tensor Flow-based machine 
learning models to predict EV charging needs accurately. The proposed 
method improves the overall lifetime of the battery by the efficient utilization 
and precise prediction of the battery status. The EON-Tuner and DSP pro-
cessing blocks are used for efficient results. The performance of the proposed 
method is analyzed in terms of accuracy, mean square error and other per-
formance parameters. 
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1. Introduction 

The prediction of the remaining useful life (RUL) of electric vehicle (EV) batter-
ies is a critical aspect of battery management systems to ensure the safety, relia-
bility, and optimal performance of the batteries throughout their life cycle [1] 
[2]. Accurate RUL prediction is essential for evaluating battery reliability, re-

How to cite this paper: Hawsawi, T. and 
Zohdy, M. (2024) Edge Impulse Based 
ML-Tensor Flow Method for Precise Pre-
diction of Remaining Useful Life (RUL) of 
EV Batteries. Journal of Power and Energy 
Engineering, 12, 1-15. 
https://doi.org/10.4236/jpee.2024.126001 
 
Received: April 9, 2024 
Accepted: June 23, 2024 
Published: June 26, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jpee
https://doi.org/10.4236/jpee.2024.126001
https://www.scirp.org/
https://doi.org/10.4236/jpee.2024.126001
http://creativecommons.org/licenses/by/4.0/


T. Hawsawi, M. Zohdy 
 

 

DOI: 10.4236/jpee.2024.126001 2 Journal of Power and Energy Engineering 
 

ducing the risk of battery usage, and providing a rationale for battery mainte-
nance [2]. It can also reduce the risk of battery failure by predicting the end of 
life, thus improving the reliability and safety of battery-powered systems [3] [4]. 
Furthermore, precise RUL prediction is crucial for managing the health, esti-
mating the state of a battery, and ensuring the optimal operation of battery sys-
tems [5] [6]. Several studies have focused on developing predictive models for 
RUL estimation of lithium-ion batteries, employing various techniques such as 
deep learning algorithms, neural networks, and statistical methods [7]-[11]. 
These models leverage multi-channel charging profiles, temporal pattern atten-
tion, and multi-scale prediction to accurately estimate the RUL of batteries [7] 
[8] [10] [12]. Additionally, the use of LSTM networks, transformer networks, 
and extreme learning machines has been explored for RUL prediction, indicat-
ing the diverse range of methodologies employed in this area [7] [8] [13]. 

Moreover, the importance of considering various factors, such as relaxation 
effects, degradation factors, and multi-source data in RUL prediction has been 
highlighted in the literature [4] [14] [15]. These factors are crucial in accurately 
estimating lithium-ion batteries’ RUL and state of health (SOH), which are es-
sential for effective battery management and performance optimization [4] [15]. 
Predicting the remaining useful life of EV batteries is a multifaceted and critical 
research area encompassing various methodologies and considerations. Accurate 
RUL prediction is fundamental for ensuring lithium-ion batteries’ safety, relia-
bility, and optimal performance in electric vehicles. 

With the increasing demand for sustainable energy solutions, accurate predic-
tion of RUL is essential for optimizing battery usage and minimizing environ-
mental impact [16]. Various methods have been proposed for RUL prediction, 
including deep learning networks, particle filter algorithms, and hybrid optimi-
zation methods. However, these methods often face challenges such as predic-
tion accuracy, stability, and generalization on diverse datasets [17]-[19]. 

Therefore, there is a need for a method that can address these challenges and 
provide precise RUL prediction for EV batteries. The proposed Edge Impulse 
Based ML-Tensor Flow method offers several advantages over existing methods. 
It leverages Tiny Machine Learning (Tiny-ML) hardware, enabling on-device 
processing and real-time prediction, which is crucial for EV applications [20]. 
Additionally, the method integrates the Adam method, L2 regularization meth-
od, and incremental learning, enhancing the prediction accuracy and stability of 
the model [21]. Furthermore, the method utilizes a fusion model of Convolu-
tional Neural Network (CNN), Gated Recurrent Unit (GRU), and Deep Neural 
Network (DNN), demonstrating superior RUL prediction accuracy compared to 
other hybrid methods and machine learning algorithms [22]. Moreover, the 
proposed method addresses the challenge of diverse datasets by utilizing a ma-
chine learning-assisted pipeline for multi-objective optimization, ensuring ro-
bustness and reliability in RUL prediction [23]. The Edge Impulse-based ML- 
Tensor Flow method presents a promising approach for precisely predicting 
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RUL for EV batteries. By leveraging Tiny-ML hardware, integrating advanced 
machine learning techniques, and addressing the challenges of diverse datasets, 
this method offers a comprehensive solution for optimizing the performance 
and longevity of EV batteries, thereby contributing to the advancement of sus-
tainable energy technologies. The contribution of the proposed work is ex-
plained below: 
• This work introduces the utilization of Edge Impulse in the context of EV 

battery RUL prediction. The proposed method enables efficient deployment 
of machine learning models directly onto EVs, facilitating real-time moni-
toring and adaptive maintenance strategies. 

• TensorFlow, a robust machine learning framework known for its scalability 
and efficiency, is incorporated, enhancing the predictive capabilities of the 
proposed method. The proposed approach can reveal intricate patterns in EV 
battery data, leading to more precise RUL predictions. 

• The integration of edge computing of this method enables the deployment of 
machine learning models directly on EVs, eliminating the need for central-
ized processing and enabling real-time performance. 

• By performing inference tasks at the edge, the proposed method ensures 
timely decision-making and proactive maintenance actions, enhancing the 
reliability and efficiency of EV battery management systems. 

• The proposed method offers improved accuracy and scalability compared to 
existing EV battery RUL prediction methods. By effectively handling 
high-dimensional data and leveraging advanced machine learning tech-
niques, the proposed method can provide precise RUL estimates, enabling 
optimized battery performance and prolonging battery lifespan in electric 
vehicles. 

2. Related Works 

The remaining useful life of electric vehicle batteries is a critical factor in deter-
mining their performance and lifespan. By utilizing the Edge Impulse Based 
ML-Tensor Flow method, we can accurately predict the RUL of EV batteries. 
This method considers factors such as battery degradation, inconsistency, and 
intermittent discharge patterns to provide precise estimations [3]. Using this 
method, users can efficiently and cost-effectively monitor and evaluate the usage 
of many batteries at various installation points. The related works are discussed 
in this section. 

Cai et al. [24] contributed to the EV power battery RUL prediction field by 
proposing an adaptive method based on the whale swarm algorithm–long 
short-term memory (WSA-LSTM) algorithm. The work focuses on improving 
the prediction accuracy of RUL under DC fast charging conditions by integrat-
ing dynamic data acquisition, health indicator analysis, and algorithm optimiza-
tion. The method involves constructing a complete set of power battery health 
indicators to predict RUL from multiple dimensions, enhancing the algorithm’s 
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generalization performance by using. The study acknowledges that the battery 
data obtained from the DC charging condition is not representative of the entire 
life cycle data of power batteries, limiting the ability to predict the state of health 
based solely on the usage habits of EV users. 

In [25], the authors have proposed an integrated method combining Varia-
tional Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and 
Gaussian Process Regression (GPR) algorithms to enhance the accuracy of RUL 
prediction for lithium-ion batteries. This novel approach addresses the chal-
lenges of capacity recovery phenomena and random noise fluctuations in battery 
degradation sequences. By decomposing the battery capacity degradation se-
quence into residual and capacity recovery components, the algorithm can cap-
ture the global degradation trend and fluctuations in capacity, leading to more 
accurate RUL predictions. The experimental results demonstrate the effective-
ness of the proposed algorithm in predicting the RUL of lithium-ion batteries. 
The Absolute Error (AE) values for each battery group do not exceed 1, with the 
AE for the B0005 battery reaching 0 at both prediction starting points, indicating 
high prediction accuracy even with limited training samples. While the proposed 
algorithm shows promising results in RUL prediction for lithium-ion batteries, 
there are some limitations to consider. One potential limitation is the generali-
zability of the algorithm across different battery types and operating conditions. 
The study’s focus on lithium-ion batteries may restrict the algorithm’s applicability 
to other battery chemistries or systems. Additionally, the quality and quantity of 
training data available may influence the algorithm’s performance, as indicated by 
the need for sufficient training samples to achieve accurate predictions. 

3. Mathematical Model of the Proposed Method 

The proposed work introduces a novel approach for the live prediction of the 
Remaining Useful Life (RUL) of Electric Vehicle (EV) batteries. This method 
deploys a TensorFlow model for RUL prediction using the Tiny-ML framework 
on a Cortex-M4 target board provided by Edge Impulse. This deployment ena-
bles real-time prediction of RUL directly on the edge device, enhancing the effi-
ciency and effectiveness of battery management systems in EVs. 

The TensorFlow model developed for RUL prediction leverages the capabili-
ties of deep learning algorithms to capture complex patterns in battery behavior 
and accurately estimate RUL. The model can be efficiently deployed on edge de-
vices with limited computational resources by utilizing the Tiny-ML framework, 
which is optimized for low-power microcontroller units (MCUs) like the Cor-
tex-M4. This deployment ensures that RUL prediction can be performed con-
tinuously and autonomously within the EV, enabling proactive maintenance and 
optimization of battery usage. The derivation of Tensorflow-based neural net-
work equations is derived in this section. 

Let us consider a neural network with layers. The forward pass equations for 
the l-th layer (excluding the input layer) are given by: 
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where [ ]lW  is the weight matrix, [ ]lb  is the bias vector, [ ]1la −  is the activation 
from the previous layer, and ReLU is the Rectified Linear Unit activation function. 

The backward pass equations for gradient descent involve computing gradi-
ents of the loss function with respect to the parameters. Let L be the loss func-
tion. For the output layer: 
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is the derivative of the activation function. The Neural Network Architecture is 
shown in Figure 1. 

The performance of the proposed model is compared with the Support Vector 
Machine (SVM). The objective function for SVM is given by: 
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,
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These formulations aim to find the maximum margin hyperplane that sepa-
rates the classes, where w is the weight vector, b is the bias term, ( )ix  are the 
input vectors, and ( )iy  are the corresponding class labels. 

The performance of the proposed model is also compared with decision tree 
regression method. The splitting criterion for decision tree regression is based 
on minimizing the variance of the target variable within each split. Let ( ),J s t  
be the splitting criterion for feature s at threshold: 

 ( ) ( ) ( )rightleft
left right, Var Var

mm
J s t y y

m m
= +  (10) 

where leftm  and rightm  are the number of samples in the left and right splits, 

lefty  and righty  are the target variable values in the left and right splits, and Var 
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is the variance. 
 

 
Figure 1. Architecture of the Proposed Model (Edge Impulse). 

 
These extended derivations provide a deeper understanding of the mathemat-

ical principles underlying each model, including TensorFlow-based neural net-
works, SVM, and Decision Tree regression, for precise prediction of EV battery 
RUL. 

For the analysis of the proposed work, the Hawaii Natural Energy Institute 
database is used, which offers a comprehensive insight into the behavior of 14 
NMC-LCO 18650 batteries subjected to extensive cycling at 25˚C. The features 
are precisely extracted from voltage and current profiles over 1000 cycles. This 
dataset presents a rich source of information for studying battery performance 
and predicting remaining useful life (RUL). Key variables such as discharge time, 
voltage thresholds, time constants, and charging characteristics have been me-
ticulously recorded, providing a holistic view of battery behavior. The dataset is 
openly accessible on GitHub [26]. 

In the proposed work, the dataset is used to develop predictive models to es-
timate the remaining useful life of batteries, a crucial factor in optimizing their 
usage and maintenance. The dataset’s extensive cycling regime and detailed fea-
ture engineering lay a robust foundation for machine learning algorithms to 
uncover patterns and relationships within the data. The tensor flow-based edge 
impulse model is used to predict RUL accurately. These models can inform deci-
sion-making processes regarding battery replacement, thus enhancing the relia-
bility and efficiency of energy storage systems. The critical parameters of the da-
taset and model details are shown in Figure 2. 
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Figure 2. Parameter details and features of proposed model. 

4. Result Analysis & Discussion 

The 4 hours and 27 minutes dataset is collected for the training and testing. For 
the analysis, average value, mean value, maximum value, minimum value, RMS, 
and standard deviation are analyzed for each feature parameter. A total of 1128 
classes are formed by the feature extraction method of Edge Impulse. The train-
ing window size is 12,048. The feature parameters are given in Figure 3. 

 

 
Figure 3. Method and details of training parameters. 

 
For the performance analysis, the real-time processing delay and RAM usage 

are also analyzed for the proposed work, as shown in Figure 4. 
The training settings configurations are essential for effectively training a 

machine learning model, as shown in Figure 5. With a designated number of 
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training cycles set at 100, the model undergoes multiple iterations through the 
dataset to learn the underlying patterns and relationships. Utilizing a learned 
optimizer ensures that the model adjusts its parameters efficiently based on the 
observed data, optimizing its performance over time. A crucial hyperparameter, 
the learning rate (0.005), dictates the magnitude of parameter updates during 
training, influencing the convergence and stability of the model. 

 

 
Figure 4. Peak time and peak RAM usage. 

 

 

Figure 5. Training parameters settings. 
 

Several key configurations in advanced training settings further tailor the 
training process. The validation set size determines the proportion of data re-
served for evaluating the model’s performance during training, which is crucial 
for preventing overfitting (in the proposed model, it is 20%). The option to split 
the train/validation set based on metadata enhances the flexibility of dataset 
management. Additionally, parameters like batch size and auto-weighting of 
classes play pivotal roles in optimizing training efficiency, particularly in han-
dling imbalanced datasets (32 in the proposed model). 

The results are analyzed for the various parameters, as shown in Figure 6. The 
voltage discharge, decrement, and discharge time are analyzed and represented 
in Figure 6. The results indicated that the predicted values are aligned on a ver-
tical axis. 
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Figure 6. Training pattern of various parameters. 

 

 
Figure 7. True value and predicted value of data samples. 

 
In Figure 7, the true value and predicted values are analysed for 20% of the 

data samples. The peak RAM usage and flash usage are also analysed for the 
process analysis. The incorrect values are represented by read colour and correct 
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prediction is represented by green colour. For the accuracy analysis and the per-
formance analysis of the proposed method, the mean square error is calculated 
for the real time dataset. The results show that the proposed tensor flow model 
predicts the RUL with 93% accuracy as shown in Figure 8. Different features are 
optimized for the precise prediction of proposed method. 

Figure 9 displays a sample of the test data results. The real-time model and  
 

 
Figure 8. Accuracy analysis and mean square error. 

 

 

Figure 9. The sample results of test data. 
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code are designed for the Cortex M4 Microcontroller board and the real-time 
data, respectively. 

The RAM and memory usage parameters are shown in Figure 10 for both 
quantized and unoptimized values. The EON tuner is also enabled for precise 
analysis and prediction. 

The performance is also compared with the non-real-time models. The deci-
sion tree method is used to analyze the actual value and predicted values. 

The decision results are analyzed in terms of mean square error and accuracy. 
The accuracy of the decision tree is 98%, but for the real model, as shown in 
Figure 11 and compared in Table 1. In addition, the method is also checked for 
the real-time dataset and the real-time decision tree, which have higher mean 
square error and poor accuracy. 

 

 
Figure 10. EON compiler based accuracy analysis. 

 

 
Figure 11. Decision tree predicted and true value. 
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Table 1. Comparisons of decision results. 

 Mean Square Error Accuracy 

Decision Tree 1457.26 
98% (Non Real-time data) 

68% for Real-time Data 

Tensor Flow NN 1568 92% for Real-time data 

Support Vector Machine 10842 
89% (Non Real-time data) 

56% for Real-time Data) 

 

 
Figure 12. Support vector machine predicted and true value. 

 
In Figure 12, the performance is also compared with the support vector re-

gression method for non-real-time datasets. The results show that the MSE is 
very high, and the accuracy is 89% for the support vector as shown in Table 1. 

5. Conclusions 

This study thoroughly investigates the development and performance evaluation 
of a machine learning model designed explicitly for real-time prediction of Re-
maining Useful Life (RUL). Leveraging TensorFlow NN, the model demon-
strates commendable accuracy, achieving 93% in predicting RUL. Through me-
ticulous feature optimization and parameter tuning, including a dataset com-
prising 1128 classes and comprehensive feature parameters, the model showcas-
es its capability to effectively learn underlying patterns and relationships, which 
is essential for accurate predictions. Moreover, the analysis extends beyond mere 
accuracy metrics, delving into resource utilization aspects such as RAM and 
memory consumption, which are crucial for practical deployment on re-
source-constrained platforms. The incorporation of the EON compiler aids in 
assessing trade-offs between model performance and resource efficiency, offer-
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ing valuable insights for informed decision-making during deployment and ul-
timately highlighting the model’s potential for real-world applications in predic-
tive maintenance and similar domains. 

Comparative analyses with alternative methods, including decision tree and 
support vector machine, shed light on the TensorFlow NN model’s robustness, 
particularly in real-time scenarios. While the decision tree method exhibits high 
accuracy (98%) for non-real-time data, its performance significantly deteriorates 
for real-time applications, underscoring the challenges associated with processing 
speed and resource constraints. In contrast, the TensorFlow NN model main-
tains stable performance, with a slightly lower accuracy of 92% for real-time da-
ta, indicating its reliability and suitability for practical deployment. Future re-
search directions involve further refining the model architecture and exploring 
alternative algorithms to address these challenges, ultimately advancing the ap-
plicability of machine learning in real-time prediction tasks and facilitating pre-
dictive maintenance efforts in various industrial contexts. 
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