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Abstract 
Energy sustains the world, yet fossil fuels, a finite resource, are dwindling. This 
necessitates a shift towards more sustainable energy sources, such as electric-
ity. Accurate load forecasting is crucial in today’s global energy landscape, as 
it helps predict various aspects such as production, revenue, consumption, 
economic conditions, weather impacts, power system utilization, customer 
demand, and economic growth. For instance, an increase in electricity de-
mand within a country often signifies a boost in industry and production, 
leading to economic progress and reduced unemployment. This project aims 
to enhance prediction accuracy through meticulous input filtering, taking into 
account factors like population growth, planned loads, inflation, and compet-
itive pricing pressures from producers. Despite inherent prediction errors, ef-
forts are made to minimize these discrepancies. This paper introduces a novel 
combined method for mid-term energy forecasting. To demonstrate its effi-
cacy, real data from the past ten months, collected from subscribers of the 
Kerman distribution company, was used to forecast energy consumption over 
the next ten days. The innovative method, which integrates multiple forecast-
ing techniques and robust filters, significantly improves forecasting precision. 
The following error metrics were recorded for the proposed method: MSE: 
0.009, MAE: 0.083, MAPE: 0.776, RMSE: 0.095, AE: 0.013. 
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1. Introduction 

Load forecasting is an invaluable tool for manufacturers aiming to minimize fore-
casting errors and reduce cost penalties. Electrical loads vary over time due to 
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fluctuating factors such as population growth and economic conditions. This re-
search introduces a combined method that utilizes a sophisticated algorithm and 
efficient filtering for improved load prediction, which is crucial for cost savings in 
production and strategic planning in power plant and electrical network develop-
ment. Various methods for future energy prediction are discussed in references 
[1]-[9]. [1] highlights the effectiveness of input filters, enhancing the strength of 
our input collection, yet lacks precise techniques like robust algorithms, which our 
proposed method addresses. Reference [2] introduces a new feature selection tech-
nique for load and price forecasting; however, it falls short due to insufficient fil-
tering of initial inputs, rendering it incomplete. Short-term load forecasting meth-
ods, discussed in references [3]-[5], also share this incompleteness. In reference [6], 
a method combining wavelet transform and partial least squares regression is pro-
posed; though it has a robust core, it neglects suitable input and output filters, lead-
ing to significant errors. Artificial Neural Networks (ANNs) are renowned for pat-
tern recognition in load prediction, as detailed in references [7]-[8]. ANNs are 
adept at modeling complex tasks but are not sufficiently robust on their own. Ref-
erence [9] discusses a kernel-based modeling approach using Support Vector Ma-
chines (SVM) for Short-Term Load Forecasting (STLF), yet it too lacks output fil-
tering, leading to larger errors. Additionally, a variety of algorithms have been uti-
lized for load forecasting [10]-[14], including fuzzy logic inference [15]-[17], time 
series [18]-[20], and mathematical regressions [21] [22]. Despite extensive research 
in the field of load forecasting, the need for more precise methods continues to 
grow, especially with rapid population increases that exacerbate errors in existing 
methods. For example, an error of 1% in a population of 8 billion represents a sig-
nificantly larger absolute error than the same percentage in a population of 2 bil-
lion. To address this, we propose a refined method using suitable filters, a potent 
Genetic Algorithm (GA) to enhance the ANN, and a feature selection technique 
MRMRMS. This research focuses on Mid-Term Load Forecasting (MTLF), employ-
ing a combination of ANN, GA, and curve fitting with appropriate filters. We also 
consider scheduled loads, incorporating detailed programs from municipalities and 
ministries to further enhance accuracy and significantly improve predictive values. 
The main steps and contributions of this research are outlined in Figure 1. 
 

 

Figure 1. General Schematic of the proposed method. 

2. Duration of Energy Forecasting 

The time duration for energy forecasting can be categorized into four distinct 
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classes, as detailed in references [23] [24]: 
1) Long-term energy forecasting: This type is utilized for planning several years 

to several decades into the future. 2) Mid-term energy forecasting: Employed for 
making predictions spanning several days to a few months. 3) Short-term energy 
forecasting: Used for forecasting from the next few hours up to the next few days. 
4) Very short-term energy forecasting: Applicable for predictions ranging from 
the next few minutes to one hour. This paper primarily focuses on the mid-term 
type of energy forecasting. 

3. Area Classification 

In energy, predicting the whole region is not studied together; we should divide 
the area into some smaller zones. There are two main types of area classifications: 
regular and irregular. 

3.1. Regular Classification 

In the regular format, we divided the area into smaller regions of equal size, as 
illustrated in Figure 2. 
 

 

Figure 2. Samples of regular classification for electrical load consumption. 

3.2. Irregular Classification 

In irregular classification Figure 3, the area is divided into zones based on load 
consumption. This means that areas with similar load consumption are grouped, 
enhancing the accuracy of the calculation process. 

 

 

Figure 3. Example of irregular classification for 
electrical load consumption. 

 
We used irregular classification in this paper, which it divided Kerman city to 

11 zones like Figure 4: 
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Figure 4. Irregular classification for electrical load consumption uses in this paper. 

4. Proposed Method 

This paper introduces a combined method for mid-term load forecasting (MTLF) 
that integrates Artificial Neural Networks (ANN), Genetic Algorithms (GA), and 
curve fitting. This method employs scheduled loads and detailed programs from 
municipalities and ministries as inputs, enhancing accuracy compared to solely 
relying on historical data. Demand varies with the time of day, typically increasing 
on weekends [25]. Additionally, load fluctuations are influenced by monthly tem-
perature variations [26]. Temperature is a critical weather parameter affecting 
load consumption, with a direct relationship between temperature changes and 
demand levels. 

As shown in Figure 5, the load increases as temperatures drop. Similarly, dur-
ing summer, the load also rises as temperatures become warmer. The multiple 
linear regression models for load are described as follows:  

Equation (1) is 
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where: 
P(t): daily load, Kis: constants, T(t): dry bulb temperature at time t (This is the 

average temperature for the forecast load), T(t − i): the daily temperature of time 
t-i., WPi: i-the weather parameter, besides the temperature. 

4.1. Filtration 

The filtration stage of inputs involves two primary steps. 

4.1.1. Curve Fitting with Appropriate Regression 
Various regression models are employed, including logistic, nearest neighbor, 
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linear, and among others [1]. An example of the logistic regression method can 
be described by the general form shown below: 

1 bx

yy
єa
∞
−=

+
                           (2) 

 

 

Figure 5. Weather-sensitive load model for 13 different days in summer temperature and winter temperature for Kerman city. 

4.1.2. MRMRMS 
MRMRMS is a filtering approach that selects a minimal subset of the most in-
formative inputs for the forecasting process by maximizing relevancy, minimizing 
redundancy, and maximizing the synergy of the candidate features. This method, 
referred to as MRMRMS, is discussed next, with relevancy, redundancy, and in-
teraction measures based on information-theoretic criteria [2]. 

4.2. Artificial Neural Network Description 

Artificial Neural Networks (ANN) are computational models inspired by the hu-
man brain, designed to analyze and process data. ANNs are particularly adept at 
modeling the relationships between inputs and outputs, making them highly suit-
able for nonlinear tasks such as load forecasting. An ANN is composed of three 
main parts: Input Layer, Hidden Layer, and Output Layer as shown in Figure 6.  

ANNs can effectively model the relationship between inputs and outputs, espe-
cially for nonlinear tasks such as load forecasting. Training an ANN is highly sen-
sitive to data quality, necessitating the elimination of unsuitable data through 
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effective filtering methods. Additionally, we employ a genetic algorithm (GA) to 
calculate optimal weights due to its strong accuracy. Numerous methods and al-
gorithms are available for load forecasting, including GA, Ant Colony Optimiza-
tion (ACO), and Artificial Bee Colony (ABC), among others [27]-[46]. The re-
maining aspect of the MRMRMS algorithm involves the fine-tuning of its adjust-
able parameters, including α, β, and the threshold TH. α is an adjustable parame-
ter within the MRMRMS algorithm that requires fine-tuning specific to the prob-
lem, while β and TH are similar adjustable parameters needing precise calibration 
[1] [2]  

 

 

Figure 6. Artificial neural network structure including input, hidden layer, output layer, 
and output. 

4.3. Numerical Results 

In this section, we demonstrate the accuracy of the proposed method using real 
load consumption data from the Iranian electricity market in Kerman city. Ini-
tially, we collected data from June 22, 2023, to July 4, 2023, spanning 13 days. We 
then utilized data from June 22, 2023, to June 28, 2023 (7 days) to forecast load 
consumption from June 29, 2023, to July 4, 2023 (6 days) using various methods 
including land consumption curve fitting, ANN + GA, ANN + GA + MRMRMS, 
and the proposed method. Subsequently, we compared the forecasting results with 
the actual data and calculated errors to demonstrate the effectiveness of the pro-
posed method. The actual data for our 13-day period is presented in Table 1, while 
the errors calculated using a 5-system metric are shown in Table 1 and Figures 7-
12.  

Also, the results for the last day (13) are 100.621, 100.731. 101.031, 101.989, 
102.280 respectively. 

To demonstrate the accuracy of our methods, we calculate errors using five dif-
ferent metrics: Mean Square Error (MSE), Mean Average Error (MAE), Mean Ab-
solute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean 
Square Error (RMSE). 
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Table 1. Comparison of the proposed with the common methods for load forecasting with 
real data. 

Method 
Energy Consumption (MWh) 

Day1 Day2 Day3 Day4 Day5 Day6 

Land consumption + 
Curve fitting 

102.357 102.732 103.424 102.476 101.974 101.457 

ANN + GA 102.357 102.732 103.424 102.476 101.974 101.457 

ANN + GA + MRMRMS 102.357 102.732 103.424 102.476 101.974 101.457 

Proposed method 102.357 102.732 103.424 102.476 101.974 101.457 

Actual data 102.357 102.732 103.424 102.476 101.974 101.457 

Method Day7 Day8 Day9 Day10 Day11 Day12 
Land consumption + 

Curve fitting 
100.987 100.021 100.745 99.023 101.247 101.953 

ANN + GA 100.987 100.447 100.925 100.221 101.557 102.024 

ANN + GA + MRMRMS 100.987 100.835 101.124 100.783 103.907 102.983 

Proposed method 100.987 101.203 102.252 101.795 103.423 104.782 

Actual data 100.987 101.458 102.451 101.740 103.770 104.750 
 

 

Figure 7. Actual data for 13 days of load forecasting. 
 

 

Figure 8. Load forecasting with ANN + GA. 
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Figure 9. Load forecasting with ANN + GA + MRMRMS. 
 

 

Figure 10. Load forecasting with land consumption+ curve fitting. 
 

 

Figure 11. Load forecasting with proposed method. 
 

The formulas used to calculate the errors are presented in Table 2. For a clearer 
comparison of results, refer to Table 3 and Figure 13.  

As shown in Table 3 and Figure 13, the land consumption plus curve fitting 
method resulted in the highest values of MSE, MAE, MAPE, RMSE, and AE. In 
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contrast, the proposed method exhibited the lowest values for these error metrics. 
Further comparison between the ANN + GA + MRMRMS and ANN + GA meth-
ods in Table 3 reveals that the ANN + GA + MRMRMS method has lower values 
of MSE, MAE, MAPE, RMSE, and AE, demonstrating the effectiveness of the 
MRMRMS enhancement. Moreover, when comparing the results for the ANN + 
GA + MRMRMS method with the proposed method, we observe higher error met-
rics for the former. This suggests that the filtering techniques employed in the 
proposed method significantly enhance its accuracy. Additionally, to better un-
derstand the impact of the proposed method on forecasting accuracy, we con-
ducted the same analysis in Zone 1.  

 

 

Figure 12. Comparison of the load forecasting with different methods. 
 

Table 2. Performance metric rules. 

Metric Equation 

Mean square error MSE = ( )2

1

1 N
i ii

A F
N =

−∑  

Mean absolute error MAE = 
1

1 N
i ii

F A
N =

−∑  

Mean absolute percentage error MAPE = 
1

1 100%N i i
i

i

A F
N A=

−
×∑  

Root mean square error RMSE = ( )2

1

1 N
i ii

F A
N =
× −∑  

Mean average error AE = ( )1

1 N
i ii

A F
N =

−∑  

 
Also, results for the last day (13) are, 9.27, 9.34, 10.02, 10.47, 10.39 respectively. 
As shown in Table 4, the values closest to the actual data are ranked from the 

most accurate to least as follows: the proposed method, ANN + GA + MRMRMS, 
ANN + GA, and land consumption plus curve fitting. For a clearer visualization, 
refer to Figures 12-18. 
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Table 3. The comparison results of MTLF provided models considering various error cri-
teria. 

Metric Land consumption + curve fitting ANN + GA 

MSE 4.882 3.397 

MAE 2.139 1.757 

MAPE 2.078 1.704 

RMSE 2.209 1.843 

AE 2.139 1.757 

Metric ANN + GA + MRMRMS Proposed method 

MSE 1.294 0.052 

MAE 1.009 0.196 

MAPE 0.981 0.191 

RMSE 1.137 0.228 

AE 0.964 0.167 
 

 

Figure 13. The comparison results of MTLF provided models considering various error 
criteria (RMSE, MAE, MAPE, AE and MSE). 

 
Table 4. Comparison of the proposed with the common methods for load forecasting with 
real data in zone1 (MWh). 

Method 
Energy Consumption (MWh) 

Day1 Day2 Day3 Day4 Day5 Day6 

Land consumption + Curve fitting 10.22 10.81 11.24 10.53 9.82 9.41 

ANN + GA 10.22 10.81 11.24 10.53 9.82 9.41 

ANN + GA + MRMRMS 10.22 10.81 11.24 10.53 9.82 9.41 

Proposed method 10.22 10.81 11.24 10.53 9.82 9.41 

Actual data 10.22 10.81 11.24 10.53 9.82 9.41 

Method Day7 Day8 Day9 Day10 Day11 Day12 

Land consumption + Curve fitting 8.87 8.91 9.43 9.14 9.91 10.45 

ANN + GA 8.87 9.03 9.64 9.17 10.13 10.75 

ANN + GA + MRMRMS 8.87 9.61 9.92 9.37 11.11 12.34 

Proposed method 8.87 9.47 10.3 9.79 11.52 12.77 

Actual data 8.87 9.53 10.47 9.77 11.41 12.83 
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Figure 14. Actual data for 13 days of load forecasting in 
zone1. 

 

 

Figure 15. Load forecasting with land consumption + 
curve fitting in zone1. 

 

 

Figure 16. Load forecasting with ANN + GA + MRM-
RMS in zone1. 

 

 

Figure 17. Load forecasting with proposed method in 
zone1. 

 

 

Figure 18. Load forecasting with ann + ga in zone1. 
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In Figure 19, a comparison of different methods illustrates that the proposed 
method demonstrates greater accuracy than the others. Additionally, a detailed 
comparison of error rates and accuracy is presented in Figure 20 and Table 5. 

 

 
Figure 19. Comparison of the load forecasting with different methods in zone1. 

 

 
Figure 20. The comparison results of MTLF provided models considering var-
ious error criteria in zone1 (RMSE, MAE, MAPE, AE and MSE). 

 
Table 5. The comparison results of MTLF provided models considering various error cri-
teria in zone1. 

Metric Land consumption + curve fitting ANN + GA 
MSE 1.83 1.43 
MAE 1.21 1.05 

MAPE 10.87 9.47 
RMSE 0.55 0.48 

AE 1.21 1.05 
Metric ANN + GA + MRMRMS Proposed method 
MSE 0.161 0.009 
MAE 0.37 0.083 

MAPE 3.4 0.776 
RMSE 0.4 0.095 

AE 0.35 0.013 
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5. Conclusions 

In this study, we introduced a novel mid-term load forecasting technique for elec-
trical networks, utilizing robust filters. The effectiveness of this method was vali-
dated by comparing it against four alternative approaches using real-world data. 
The proposed method demonstrated superior performance, consistently exhibit-
ing lower error rates across all metrics: 
• Proposed Method: MSE: 0.009, MAE: 0.083, MAPE: 0.776, RMSE: 0.095, AE: 

0.013. 
• Land Consumption + Curve Fitting: MSE: 1.83, MAE: 1.21, MAPE: 10.87, 

RMSE: 0.55, AE: 1.21. 
• ANN + GA: MSE: 1.43, MAE: 1.05, MAPE: 9.47, RMSE: 0.48, AE: 1.05. 
• ANN + GA + MRMRMS: MSE: 0.161, MAE: 0.37, MAPE: 3.4, RMSE: 0.4, AE: 

0.35. 
Future research should focus on exploring additional algorithms and filters to 

further enhance the accuracy and applicability of load forecasting techniques. In-
vestigating the integration of renewable energy sources and advanced machine 
learning techniques, such as deep learning and reinforcement learning, could pro-
vide significant improvements. Additionally, real-time data processing, integra-
tion of geographical information systems (GIS), and the development of hybrid 
models that incorporate economic, weather and social data are promising areas 
for further study. The impact of consumer behavior on energy usage and adaptive 
algorithms that respond to data changes also merit exploration. Establishing 
benchmarks and standards for load forecasting methods could facilitate industry-
wide improvements, enhancing the reliability and efficiency of energy manage-
ment systems. Collectively, these avenues offer significant potential for advancing 
the field of load forecasting. 
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