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Abstract 
Using the Landau and symmetric gauges for the vector potential of a constant 
magnetic field and the quantum problem of a charged particle moving on a 
flat surface, we show the classical electromagnetic gauge transformation does 
not correspond to a one-dimensional unitary group transformation U(1) of 
the wave function for the quantum case. In addition, with the re-examination 
of the relation between the magnetic field B  and its vector potential A , we 
found that, in order to have a consistent formulation of the dynamics of the 
charged particle with both expressions, we must have that = ∇×B A  if and 
only if ≠B 0 . 
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1. Introduction 

Gauge Theory is a mathematical tool which has been used in Physics to study 
the interaction between matter and fields [1] through a Lagrangian which is in-
variant under local transformations (symmetry), defined by a Lie Group [2]. The 
elements of the associated Lie Algebra of the group are called gauge fields, and 
these gauge fields, in turn, are called gauge bosons when they are quantized. For 
example, Quantum Electrodynamics is considered an Abelian gauge theory with 
the symmetric group U (1) and having the photons as the gauge bosons [3] [4]. 
The Standard Model of elementary particles is considered a non-Abelian gauge 
theory with the symmetric group ( ) ( ) ( )1 2 3U SU SU× ×  where the photon 
( γ ), three weak bosons ( , ,W W Z+ − ), and eight gluons ( ig , 1, ,8i = � ) are their 
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gauge bosons. In addition, there are other examples of applications as Yang-Mills 
theory [5], gravity [6], condense matter [3] [7], and nuclear physics [8].  

One could say that the source of all gauge theories is the relation between the 
gauge transformation in Classical Electrodynamics [9] and the associated non- 
relativistic quantum gauge transformation of the wave function [10], which could 
be stated (locally) in the following way [11] [12] [13] [14] [15].  

Proposition: Let ( ),tχ x  be the phase associated with a local gauge trans-
formation, symmetry group U(1), of the wave function ( ),tΨ x , that is,  

( )
( )

( )
,

, e , ,
iq t
ct t
χ

′Ψ = Ψ
x

x x�                     (1) 

of the non-relativistic Quantum Mechanics. If the Schrödinger equation is of the 
form  

21 ˆ ,
2

qi qV
t m c

∂Ψ  = − Ψ + Ψ ∂  
p A�                 (2) 

where ( ),t=A A x  is a vector field, ( ),V V t= x  is a scalar field, q is the par-
ticle charge, �  is the Plank’s constant, m is the particle mass and c is the speed 
of light. Then, this equation remains invariant under this transformation if 

2
2

2 2
1 0,
c t

χχ ∂
∇ − =

∂
                      (3) 

( ) ( ), , ,t t χ′ = +∇A x A x                     (4) 

and 

( ) ( ) 1, , .V t V t
c t

χ∂′ = −
∂

x x                    (5) 

Thus, the Schrödinger equation for ′Ψ  would be  
21 ˆ .

2
qi qV

t m c
′∂Ψ  ′ ′ ′ ′= − Ψ + Ψ ∂  

p A�               (6) 

The expressions (4) and (5) are just the usual gauge transformation of the 
electromagnetic field where the electric and magnetic fields are given by 

1 .V B
c t
∂

= −∇ − = ∇×
∂
AE A               (7) 

For the case when one is dealing with time-independent fields and zero scalar 
potential, one would say that a local gauge transformation 

( )
( )

( ), e ,
iq
ct t
χ

′Ψ = Ψ
x

x x�                   (8) 

will leave the Schrödinger equation  
21 ˆ

2
qi

t m c
∂Ψ  = − Ψ ∂  

p A�                  (9) 

invariant, if the vector potential A  is transformed according to  

( ) ( ) 2with 0.χ χ′ = +∇ ∇ =A x A x                (10) 
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For this particular case, in this paper we want to see whether or not the in-
verse proposition is satisfied, that is, if one has a vector field ( )=A A x  satisfy-
ing the relations (10), and the Schrödinger equation is of the form (9), would the 
solution of the equation  

21 ˆ
2

qi
t m c
′∂Ψ  ′ ′= − Ψ ∂  

p A�                   (11) 

be of the form (8)? Because of the time independence problem, there is a separa-
tion of variables, and one can propose ( ) ( ), e iEtt −Ψ = Φx x�  to reduce the 
problem and to an eigenvalue problem  

21 ˆ ,
2

q E
m c
 ′ ′ ′− Φ = Φ 
 

p A                   (12) 

where the eigenvalues will be Landau’s leves ( )1 2n cE nω= +�  which are gauge 
invariant, being c qB mcω =  the cyclotron frequency, and one wants to see 
whether or not the solution is of the form  

( )
( )

( )e ,
iq
c
χ

′Φ = Φ
x

x x�                    (13) 

where ( )Φ x  is the solution of the eigenvalue problem  
21 ˆ .

2
q E

m c
 − Φ = Φ 
 

p A                   (14) 

2. Analysis 

For a charged particle moving on a flat surface ( , ,0x y ) in a constant transversal 
magnetic field ( )0,0, B=B , one can select Landau’s gauges ( ),0,0B y= −A  
and ( )0, ,0B x′ =A  or the symmetric gauge ( ), ,0 2B y x′′ = −A  since they 
bring about the same magnetic field ′ ′′= ∇× = ∇× = ∇×B A A A , and one has 
that 

( ) ( ) ( ) ( )and ,χ χ′ ′′= +∇ = +∇A x A x A x A x �         (15) 

where χ  and χ�  are given by 

( ) ( )and 2.Bxy Bxyχ χ= =x x�               (16) 

One needs to point out here that Landau’ solution for this problem is separa-
ble on the variables x and y, which comes from the used property that the oper-
ator ˆ xp  commutes with the Hamiltonian. However, this does not mean that the 
solution must be separable on the variables x and y since the associated equation 
is not of separable variables, as clearly can be seen on reference [16] equation 
(10), and in this same reference also a non-separable solution was given for this 
problem. It is not difficult to see that the non-separable solution of the eigenva-
lue problem  

21 ˆ
2

q E
m c
 − Φ = Φ 
 

p A                    (17) 
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was given in [16] as  

( ) ( ) 1~ e , ,
2

i xy
n n n cx E nβ ψ β ω−  Φ = + 

 
x �           (18) 

as it was mentioned before, where one has omitted the normalization constant 
since it is no relevant for the analysis, the constants β  is defined as cmβ ω= � , 
and c qB mcω =  is the cyclotron frequency. The energies nE  are called Lan-
dau’s levels, which are gauge invariant, and the function nψ  is the solution of 1-D 
eigenfunctions of the harmonic oscillator. In this case, one does not have a conti-
nuous degeneration for each Landau’s level (which is due to separation of the va-
riables x and y) but one obtains an infinity discrete degeneration [17], and it is 
enough to see our statement for a single eigenvalue, without to lose any generaliza-
tion. On the other hand, the solution of the eigenvalue problem  

21 ˆ
2

q E
m c
 ′ ′ ′− Φ = Φ 
 

p A                   (19) 

is just obtained through a rotation where the variables are changed as follow 
x y→  and y x→−   

( ) ( ) 1~ e , ,
2

i xy
n n n cy E nβ ψ β ω  ′Φ = + 

 
x �           (20) 

having the constants the same meaning as above. As one can see from (18) and 
(20), there is not way to mach both solutions through an U(1) local transforma-
tion, that is,  

( )
( )

( )e .
iq
c

n n

χ
′Φ ≠ Φ

x
x x�                     (21) 

Now, the solution of the eigenvalue problem  
21 ˆ

2
q E

m c
 ′′ ′′ ′′− Φ = Φ 
 

p A                   (22) 

is given by [18] (ones again, this represents a non-separable solution of the 
problem) as  

( ) ( ) ( ) ( )
2 2 1~ e 2 and ,

2
x y x iy n

n n cx iy E n
α λ

α λ ω
− + − +  ′′Φ − + = +      

x �   (23) 

where 4cmα ω= �  and λ  being a complex constant. Once a gain appears the 
obvious situation  

( )
( )

( )e .
iq
c

n n

χ
′′Φ ≠ Φ

x
x x�                     (24) 

3. Dynamics with B and A 

Given the electric field ( ),t=E E x  and the magnetic field ( ),t=B B x  it is 
well known that the dynamics of a charged particle under these field is given 
(CGS units) by the equation [19]  

d ,
d

qq
t c
= + ×

p E v B                     (25) 

https://doi.org/10.4236/jmp.2024.154022


G. V. López, J. A. Lizarraga 
 

 

DOI: 10.4236/jmp.2024.154022 478 Journal of Modern Physics 
 

where c is the speed of light, q is the charge (we adopted a different sign as pre-
vious section), v  is its velocity, and p  can be mv  (non relativistic motion) 
or mγ v  (relativistic motion), with ( )2 2 1 2

1 v cγ
−

= − , m the mass of the 
charge, and v = v  its speed. The known relations between these field and the 
vector potential ( ),t=A A x  and the scalar potential ( ),V V t= x  are  

1and .V
c t
∂

= ∇× = −∇ −
∂
AB A E              (26) 

Now, using these relations in (25), the dynamics of the charged particle is 
given by  

( )d
,

d
q c qqV
t c

+  = −∇ − ⋅ 
 

p A
v A               (27) 

from which the Lagrangian and Hamiltonian are obtained. Note that in order to 
get this expression, it is necessary that t∂ ∂ ≠A 0 . From equation (25) one can 
see that if =B 0  and =E 0 , one gets a free motion for the charged particle 
and the linear momentum p  is a constant of motion. However, let us not from 
equation (27) that if V constant=  and ( )∇ ⋅ =v A 0  the resulting constant of 
motion would be  

.q c= +P p A                     (28) 

One might think that given the gauge (4) the function χ  can be chosen such 
that =A 0  and then =P p , but this is fact why A  must be zero if the mag-
netic field is also zero. Let us note that there is not even a chance that the vector 
potential A  could be of the form χ= ∇A , being the scalar function χ  solution 
of the wave equation (3). If the electrostatic field is zero, it is no possible classically 
to have p  and q c= +P p A  as constants of motion simultaneously. Therefore, 
in order for (25) and (27) to keep the same classical dynamics, one must have that 

= ∇×B A  is an acceptable expression if and only if ≠B 0 .  

4. Conclusion 

We have shown that the inverse statement given by the above proposition (1)-(5) is 
not satisfied for the solutions of a charged particle moving in a flat surface with 
transversal constant magnetic field, and this suggests that the use of the gauge inva-
riance on quantum field theories must be carefully used. In addition, we have 
shown that the expression = ∇×B A  also must be used only for ≠B 0  in order 
to have invariant the classical dynamics of a charged particle, suggesting that expe-
riments where =B 0  and still considering the vector potential should be carefully 
analyzed within classical or quantum theory [20] [21]. 
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