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Abstract 
Originally, Maxwell attempted to express his electromagnetic theory using 
four-dimensional mathematics of quaternions. Maxwell’s equations were later 
re-written in a three-dimensional real vector form, which is how the theory is 
presented today. Thus, an interesting question remains whether we can derive 
electromagnetic equations analytically from the basic mathematical principles 
of quaternion algebra and calculus, resulting in general and analytic matter 
equations. This question seems highly intriguing. Previously, we developed a 
mathematical theory of time using a normed division algebra of real quater-
nions [1]. In this study, we extend the theory of time by presenting a new 
analytical derivation of electromagnetic matter equations using the calculus 
of real quaternions, as originally intended by Maxwell. Therefore, we propose 
a novel mathematical definition of the quaternion path derivative using the 
properties of quaternion division. We then apply the quaternion derivative to 
an external electromagnetic potential and assume that the first quaternion 
derivative represents the quaternion electromagnetic force. Next, we assume 
that the second derivative, or quaternion Laplacian operator, applied to an 
external electromagnetic potential leads to the quaternion electromagnetic 
current density. The new analytical expressions are similar to the original 
empirical Maxwell equations, except for an additional scalar electric field, 
which allows for a novel formulation of Ohm’s conductivity law. We demon-
strate that the resulting analytical equations can be written equivalently using 
either electromagnetic potentials or fields. Finally, we summarize the key 
postulates and equations of the new electromagnetic matter theory, which 
were based on normed division algebra and the calculus of quaternions. The 
resulting theory appears to be a useful analytical enhancement of the original 
Maxwell equations, and therefore, seems highly comprehensive, logical, and 
compelling. 
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1. Introduction 

Recently, we proposed the quaternion time theory [1], which seems to show 
promise in describing spacetime in arbitrary frames of reference. In addition, the 
quaternion theory of time addresses the optical Doppler effect [2], as initially 
analyzed mathematically by Voigt [3] and experimentally demonstrated by Ives 
and Stilwell [4] [5]. 

Similar to the theory of time, the present work adopts the Euclidean division 
algebra postulate, stating that division algebras with Euclidean norm, consisting 
of real numbers, complex numbers, real quaternions, and octonions, are essen-
tial mathematical tools of nature. Note that higher order normed division alge-
bras are not possible based on the theorems of Frobenius and Hurwitz [6] [7]. 

It seems remarkable that from the beginning, Maxwell attempted to summar-
ize electromagnetic equations in a four-dimensional form using real quaternions 
[8] and [9], which were originally introduced by Hamilton [10] and [11]. Clear-
ly, this effort had only limited success primarily because of the lack of a com-
prehensive quaternion spacetime theory and the absence of a suitable quaternion 
calculus during Maxwell’s lifetime. 

Eventually, the original Maxwell equations were significantly modified, par-
ticularly by Heaviside [12], who changed the four-dimensional mathematical 
formalism of Maxwell to favor a three-dimensional real vector representation. 
While this effort made Maxwell’s equations significantly more accessible ma-
thematically, some of the key results of Maxwell’s theory became significantly 
modified, particularly those related to the electromotive force and electromag-
netic current expressions [13] [14]. 

Historically, various forms of quaternion analysis have been applied to derive 
Maxwell’s equations in quaternion form. However, most studies used complex 
bi-quaternions, where each of the four quaternion parameters is represented by 
a complex number. This was initially proposed by Conway [15] [16], and Sil-
berstein [17] [18], who demonstrated that the bi-quaternion form of relativity 
and Maxwell equations can be reconciled with the Minkowski spacetime [19]. 
More recently, the bi-quaternion approach inspired several representations of 
Maxwell’s equations by Waser [20], and Arbab [21] [22]. Also, a bi-quaternion 
form of quantum mechanics was proposed by Adler [23], and was further ex-
tended by Horwitz [24] [25]. Recently, several publications on quaternion 
quantum electrodynamics and the unification of Maxwell equations with Dirac 
were presented by Chanyal [26] [27] [28]. 

The bi-quaternion approach introduces additional degrees of freedom and 
additional numerical parameters in comparison with the original real quaternion 
division algebra, where each of the four quaternion parameters is a real quantity. 
However, the complex bi-quaternion extension of the real quaternion algebra is 
no longer a normed division algebra, and consequently will not be used in the 
present work. 

In the present study we only use normed division algebras, as defined by Fro-
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benius and Hurwitz; consequently, we limit our development to real quaternions 
only. We do not seek compatibility with the Minkowski spacetime, because we 
developed an alternative fully functional formulation of the spacetime using the 
real quaternion time [1]. 

Note that a real quaternion differentiation procedure was empirically pro-
posed and discussed by Deavours [29], Jack [30], and Dunning-Davies [31], 
which resulted in a close resemblance of the quaternion expressions to the mod-
ified version of Maxwell’s equations. 

In this study, we embark on the development of a suitable quaternion diffe-
rentiation procedure that can be applied to any physical system. We propose a 
quaternion path derivative and gradient operator and apply them to the quater-
nion electromagnetic potential. We postulate that the first derivative results in 
an electromagnetic force field, similar to the traditional Lorentz force. We then 
assume that the second derivative, represented by the quaternion Laplacian, is 
equal to the quaternion current density. We show that the new equations can be 
written equivalently in terms of the quaternion electromagnetic potential as well 
as the quaternion electromagnetic fields, thus reconciling the differences be-
tween the potential and field representations of electromagnetism pointed out by 
Aharonov and Bohm [32]. The new equations represent action at a distance due 
to the quaternion time formulation and consequently automatically account for 
the retarded potentials. 

We show that the new scalar electric field, which is missing in the original 
version of Maxwell’s equations, leads to a conduction current, which we identify 
as a new form of Ohm’s law. In addition, we show that the sign of the electrical 
displacement current in the modified version of Maxwell’s equations does not 
agree with our analytical version of the electromagnetic equations. However, we 
demonstrate that the resulting analytical electromagnetic equations are in good 
agreement with the original version of Maxwell’s equations. 

Because, real quaternions can be written in the normal or complex conjugate 
form, we suggest that this dual representation corresponds to the expression of 
the electromagnetic laws in the reference frames of a signal transmitter and re-
ceiver. 

2. Transmitter and Receiver Coordinate Systems  

We begin our study by analyzing a physical experiment in which a transmitter of 
electromagnetic interaction sends a signal to a receiver, which may be located 
some distance from the transmitter. 

When both the transmitter and receiver are located at the same location, 
which we consider as the origin of the coordinate system, the time of signal 
emission by the transmitter, øtt , is a real scalar quantity equal to the time of 
signal detection by the receiver, ørt . Next, we consider the time delay, which is 
equal to the difference between the times of signal detection and emission, for 
the receiver and transmitter separated by a vector distance, rδ  . Naturally, this 
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delay is due to the maximum speed of any electromagnetic signal propagation, 
which is assumed to be equal to the speed of light, c. Therefore, we can introduce 
the concept of time at a distance to account for the time delay between the 
transmitter and receiver of electromagnetic interaction. Remarkably, Lorentz in-
troduced the concept of four-dimensional local time to address the issue of time 
delay [33] [34]. Later, Einstein abandoned the concept of local time in favor of 
the four-dimensional non-Euclidean spacetime [19]. However, the concepts of 
action at a distance and time at a distance, continued to be of interest and were 
expressed as retarded potentials by Lienard [35], Wiechert [36], and Jefimenko 
[37]. In the retarded potentials approach, time at a distance is represented by a 
real scalar value, which neglects the three-dimensional nature of space. 

Recently, we suggested [1] that Euclidean normed division algebras are essen-
tial for the representation of physical reality. Consequently, we used a Euclidean 
quaternion representation of time intervals, as an alternative to non-Euclidean 
spacetime. 

To demonstrate the quaternion time, we again consider a stationary transmit-
ter of the electromagnetic signal at the origin, while the receiver is located at a 
vector distance, rδ  , away from the origin. Again, we assume that the real scalar 
time, øtt , is the time of the signal emission by the transmitter at the origin. In 
addition, we assume that the time-of-flight of the electromagnetic interaction in 
three-dimensional space can be expressed as a three-dimensional vector,  

ft r cδ δ=


 . Then, we suggest that the following quaternion time expression 
represents the time of electromagnetic signal arrival at a distance,  

( )ø ø, , .r t f t
rt t t

c
δδ  = =  

 





τ                      (1) 

A three-dimensional space representation of the transmitter reference frame is 
shown in Figure 1. 
 

 
Figure 1. Time delay of an electromagnetic signal propaga-
tion from a transmitter at the origin to a receiver at a dis-
tance, rδ  , in the transmitter reference frame. 
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Alternatively, we can move the origin of the coordinate system to the location 
of the signal receiver. Now, the signal transmitter is located at a distance of, 

rδ−  . Then, we can define the remote time at the transmitter location as,  

( )ø ø, , ,t r f t r
rt t t

c
δδ  = − = − = 

 





τ τ                   (2) 

assuming that we performed a clock synchronization procedure [1], such that, 

ø øt rt t= . We show a three-dimensional representation of the quaternion time in 
the receiver reference frame in Figure 2. 

Therefore, we can summarize the time at a distance expressions in the trans-
mitter and receiver coordinate systems respectively,  

ø

ø

, ,

, .

rt
c

rt
c

δ

δ

  =    


  = −   





τ

τ
                         (3) 

Using postulates of time algebra [1], we define the measured time-of-flight 
interval as the absolute value of the quaternion time interval. Then, from (1) and 
(2),  

.f f
rt t

c
δδ δ= =



                          (4) 

Note that the absolute value of the time interval at a distance is symmetric and 
independent of the choice of the coordinate system. Thus, the measured value of 
the time delay between the electromagnetic signal emission and signal detection 
is described by a scalar interval equal to the length of the quaternion time- 
of-flight. However, we always assume that the measured time-of-flight is positive 
in the direction from the transmitter to the receiver. 

To clarify the experimental procedure, let us consider a clock on the kitchen 
wall and an imaging camera with a built-in clock that can time-stamp the images.  
 

 
Figure 2. Time delay of an electromagnetic signal propagation 
from a distant transmitter to a receiver at the origin, as a func-
tion of the three-dimensional distance, rδ  , in the laboratory 
reference frame. 
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First, we bring the camera to the location of the kitchen clock, where we syn-
chronize the two clocks. Next, we bring the camera some distance away, for ex-
ample about three meters from the kitchen clock, 3 mrδ 

, and take a picture 
of the kitchen clock from that distance. We can describe the same experiment in 
either the transmitter reference system of the kitchen clock or the receiver ref-
erence frame of the imaging camera resulting in the quaternion time expressions 
of (3). Thus, based on (4), we will observe a real scalar difference of about, 

10 nsft r cδ δ= 
 between the time-stamp of the picture and the time shown 

on the clock in the image. Importantly, the time in the image, which corres-
ponds to the emission time, is earlier than the time of the time-stamp, which 
corresponds to the time of signal detection. Consequently, the measured time 
interval is always positive from the transmitter to the receiver, as expected from 
(3) and (4). 

In the presence of relative motion between the transmitter and receiver, we 
can define the quaternion time interval and its conjugate using the vector veloc-
ity [1],  

( )

( )

ø ø ø

ø ø ø

ˆ ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ ˆ, , , , .

x x y y z z

x x y y z z

vt i t i t i t i t
c

vt i t i t i t i t
c

δ δ δτ δ δ δ δ

δ δ δτ δ δ δ δ

  = =   


  = − = − − −   





τ

τ
        (5) 

Here we defined the relative vector velocity as,  

.rv δ
δτ

=




                             (6) 

Then, the measured time of flight interval becomes velocity and time depen-
dent,  

.f
r vt

c c
δδ δτ= =                           (7) 

Now, we can calculate the measured the time interval at a distance, δτ , rela-
tive to the time interval at the origin, øtδ ,  

2
2 2 2

ø 2 .vt
c

δτ δ δ δ δτ= = +τ τ                      (8) 

This leads to a scalar relation for the time interval at a distance in the presence 
of motion,  

ø
2

2

,
1

t

v
c

δ
δτ =

−

                          (9) 

which we recognize as the Lorentz time dilation formula. It has been shown [1] 
that (9) leads to the optical Doppler effect analysis initiated by [3] and experi-
mentally verified by Ives and Stilwell [4] [5]. 

3. Quaternion Frequency and Energy  

Let us assume that the electromagnetic interaction can be represented by a mo-
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nochromatic wave with angular frequency, ω , where the period of oscillations 
is equal to the quaternion time interval, δτ . 

Subsequently, for electromagnetic waves, we can define the quaternion fre-
quency [1] and its conjugate as, 

1
ø2

1
ø2

22 , ,

22 , .

v
c

v
c

δδ ω ω
δτ
δδ ω ω

δτ

−

−

  = = = 
π

π   


  = = = −  

π
π







τω τ

τω τ
                (10) 

Note that owing to the properties of quaternion division, we observe a sign 
change in the vector part of the quaternion frequency. The normal quaternion 
corresponds to the frequency in the receiver coordinate system, whereas the 
conjugate representation corresponds to the frequency in the transmitter coor-
dinate system. 

By using wave and particle duality, we introduce the quaternion energy of a 
free wave and express it using correspondence as the quaternion mass, m , of a 
free particle,  

( )
( )

2 2
ø

2 2
ø

, ,

, ,

f

f

c m c pc

c m c pc

 = = =


= = = −

m

m













ω

ω
               (11) 

where, 


, is Planck’s constant and, p mv≡
  , is a vector momentum. 

Thus, we obtained a quaternion description of the inertial particle motion in 
the transmitter and receiver coordinate systems. 

The measured inertial energy is again given by the absolute value of the qua-
ternion energy [1] resulting in the well known expression,  

2 2 4 2 2
ø .f f f m c p c= = +                       (12) 

Note that the measured energy is symmetric with respect to the quaternion 
and its conjugate and consequently does not depend on the choice of the coor-
dinate system. 

Next, let us assume that the external electromagnetic interaction can be ex-
pressed using a quaternion electromagnetic potential,  , similar to the four- 
potential of the traditional electromagnetic theory. Then, we express the total 
quaternion energy, including the energy of the free particle motion together with 
the external electromagnetic interaction, in the receiver and transmitter coordi-
nate systems as,  

( )
( )

2 2
ø ø

2 2
ø ø

, ,

, .

f e

f e

c q m c q pc q

c q m c q pc q

 = + = − = − −


= + = − = − − +

m

m









 

 

   

   
         (13) 

where, q, is the elementary particle charge representing a scale parameter of the 
electromagnetic interactions and consequently becoming a key physical para-
meter of electromagnetic theory. Note that we preserved the sign convention in 
(13), whereas the normal quaternion expression corresponds to the potential in 
the receiver coordinate system while the conjugate expression corresponds to the 
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potential in the transmitter coordinate system. 
Again, we can easily obtain the measured value of the total particle energy as 

the square of the Euclidean norm of the total energy [1], 

( )( ) ( ) ( )222 2
ø ø ,f e f e m c q pc q= + − = − + −





               (14) 

In the presence of external electromagnetic interactions, the applied energy is 
generally a function of the quaternion time whereas the free particle energy is a 
constant. Therefore, we assume that the total quaternion energy is generally time 
dependent via the external energy. 

To account for both energy and time, we introduced [1] an eight-dimensional 
octonion configuration manifold, which we call the Olam (Hebrew for the World), 

8∈O  , where the quaternion time, τ , is the main independent attribute and the 
quaternion energy, ( )τ , is the main time dependent dynamic attribute, which 
is orthogonal to the quaternion time. We can express the Olam configuration 
manifold in the receiver and transmitter coordinate systems using the Cay-
ley-Dikson construction,  

( )
( ) ( ) ( )( )
( ) ( ) ( )( )

ø ø

ø ø

, , , , ,
,

, , , , .

t t

t t

 = −= 
= −

O









 

 

τ
τ

τ





                (15) 

Therefore, we were able to express the total energy, including the free particle 
energy and energy of the external electromagnetic interaction, as an octonion 
configuration manifold in the receiver and transmitter coordinate systems. 

Let us assume that all the dynamic properties of a physical system are deter-
mined using variations in the quaternion energy with quaternion time. 

Therefore, we need to introduce a viable quaternion calculus using the prop-
erties of quaternion division algebra to account for variations of the quaternion 
energy with quaternion time. 

4. Quaternion Time Path Derivative  

A frequently used quaternion derivative was introduced by Fueter [38] [39] us-
ing a quaternion version of the Cauchy-Riemann condition. Similarly, a quater-
nion gradient, its conjugate, and Laplace operators were proposed by Devours 
[29], who attempted to derive Maxwell’s equations using the quaternion ap-
proach. 

By contrast, we propose defining a quaternion gradient operator along the 
quaternion path interval, whereas the components of the derivative’s nominator 
and denominator are interrelated by the path interval rather than by the 
Cauchy-Riemann condition. This allows for a simpler and more intuitive defini-
tion of the derivative. 

Let us consider the quaternion function of the quaternion time,  
( ) ( )ø ,f f≡f



τ , along a quaternion time path in the quaternion time manifold. 
Let us assume that the quaternion time path [1], is a sequence of connected 

quaternion time intervals from the source point, 0τ , to the final destination 
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time point, Fτ .  

0
1

.
N

n F
n

δ δ
=

= = −∑τ τ τ τ                       (16) 

Here, we assume that the time path can be broken into, N, discrete quaternion 
time intervals, as shown in Figure 3. Note that the total sum is not dependent on 
the actual time intervals but is a function of only the initial and final quaternion 
time points. 

The measured length of the quaternion time path, δτ , is equal to the sum of 
the individual measured quaternion time intervals, n nδτ δ≡ τ , along the time 
path from the source-point to the destination-point.  

1 1
.

N N

n n
n n
δτ δ

= =

=∑ ∑ τ                        (17) 

Therefore, the total measured time path depends on the path [1]. 
Assume that the quaternion function, ( )f τ , can be broken into correspond-

ing intervals, nδ f , along the time path, 

1
.

N

n
n
δ

=

=∑f f                          (18) 

Next we define an infinitesimal quaternion time interval,  

0
lim ,d
δτ

δ
→

≡τ τ                          (19) 

where, the time interval has an infinitesimal length,  

0.δτ δ= →τ                         (20) 

We define the differential interval of a quaternion function, δ f , which cor-
responds to the differential time interval, dτ , as,  

( )
0

lim .d
δτ

δ δτ
→

≡f f                       (21) 

Next, we use quaternion division to define a proper quaternion path derivative,  
 

 
Figure 3. Multiple paths arriving at the same quaternion 
time point may result in different measured times. 
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noting that because of the non-commutative nature of quaternion division, we 
need to define both the right and left derivatives. Therefore, we define the right 
derivative as,  

( ) 1 1
20 0

lim lim .R d d
δτ δτ

δ δδ δ
δτ

− −

→ →
∇ = ≡ =

ff f f ττ τ             (22) 

Similarly, the left quaternion path derivative is defined as,  

( ) 1 1
20 0

lim lim .L d d
δτ δτ

δ δδ δ
δτ

− −

→ →
∇ = ≡ =

ff f f ττ τ              (23) 

Consequently, the quaternion path derivative can be defined for any quater-
nion function of a quaternion time interval, as long as the operation of division 
is valid and the absolute value of the time interval is not equal to zero, 0δτ ≠ . 

We define a quaternion path gradient operator using the definition of the qu-
aternion multiplicative inverse, 

ø1 1
2 2 2 2 20 0 0

ø

ˆ ˆ ˆ
lim lim lim x x y z z z

x y z

t i t i t i t
d

t t t tδτ δτ δτ

δ δ δ δδδ
δτ δ δ δ δ

− −

→ → →

− − −
≡ = =

+ + +
ττ τ        (24) 

Next, we use the condition of partial differentiation to simplify Equation (24). 
For example, we calculate the scalar part as, øt∂ ∂ , assuming that, ø 0tδ ≠ , 
while, 0xtδ = , 0ytδ = , 0ztδ = . This leads from (24) to,  

ø ø
2 20 0 0

ø øø

1lim lim lim .
t t

t ttδτ δτ δτ

δ δ
δδτ δ→ → →

∂
= = =

∂
                 (25) 

Using a similar calculation for all partial derivatives, we obtain a quaternion 
version of the total time gradient operator along the path in terms of partial de-
rivatives,  

( )1
ø

ø

ˆ ˆ ˆ, , , , .x y z
x y z

d i i i
t t t t

−
 ∂ ∂ ∂ ∂

= − − − = ∇ −∇ ≡  ∂ ∂ ∂ ∂ 



τ ∇          (26) 

Therefore, using quaternion division, we defined a mathematically consistent 
version of the path gradient which is a quaternion conjugate of the traditional 
gradient [38] [39] because of the properties of quaternion division. The conju-
gate quaternion representation of the normal quaternion gradient operator is 
critical to our theory. 

Similarly, we can define a conjugate quaternion gradient operator over the 
path,  

( )1
ø

ø

ˆ ˆ ˆ, , , , .x y z
x y z

d i i i
t t t t

−
 ∂ ∂ ∂ ∂

= = ∇ ∇ ≡  ∂ ∂ ∂ ∂ 



τ ∇             (27) 

Using the definitions of the right and left derivatives (22) and (23), we express 
the quaternion path derivative of a quaternion function as a function multiplied 
by a conjugate gradient operator as follows,  

( )
( )( )
( )( )

ø ø

ø ø

, , ,

, , .

f f

f f

 = ∇ −∇≡ 
= ∇ −∇

f
f

f







∇
∇

∇
                 (28) 
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The conjugate path derivative of a quaternion function is then given by the 
conjugate function multiplied by a normal quaternion gradient expression,  

( )
( )( )
( )( )

ø ø

ø ø

, , ,

, , .

f f

f f

 = = ∇ ∇ −≡ 
= = − ∇ ∇

f f
f

f f







∇ ∇
∇

∇ ∇
             (29) 

We use a quaternion multiplication formula, which can be expressed in terms 
of vector and scalar quantities using the Heaviside-Gibbs vector notation for any 
two quaternions, a  and b ,  

( )
( )

ø ø ø ø

ø ø ø ø

, ,

, .

a b a b a b b a a b

a b a b a b b a a b

 = − ⋅ + + ×


= − ⋅ + − ×

ab

ba

  

  

  

  

              (30) 

Using (28) and (30), we derive a complete quaternion derivative represented 
in the vector notation, 

( )
( )
( )

ø ø ø ø

ø ø ø ø

, ,

, .

f f f f f

f f f f f

 = ∇ +∇ ⋅ ∇ −∇ +∇×= 
= ∇ +∇ ⋅ ∇ −∇ −∇×

f
f

f

  
  

  
  

∇
∇

∇
         (31) 

Similarly using (29) and (30), we derive the quaternion conjugate derivative,  

( )
( )
( )

ø ø ø ø

ø ø ø ø

, ,

, .

f f f f f

f f f f f

 = ∇ +∇ ⋅ −∇ +∇ −∇×≡ 
= ∇ +∇ ⋅ −∇ +∇ +∇×

f
f

f

  
  

  
  

∇
∇

∇
         (32) 

Next, we define the quaternion Laplacian operator multiplying the quaternion 
derivative by its conjugate [29], 

.≡ = =f f f f∆ ∇∇ ∇∇ ∆                     (33) 

Note that the quaternion Laplacian operator can be considered a scalar oper-
ator and consequently commutes with the quaternion function. We express the 
quaternion Laplacian operator in terms of partial derivatives as, 

( )
2 2 2 2

2 2
ø 2 2 2 2

ø

.
x y zt t t t

 ∂ ∂ ∂ ∂
≡ ∇ +∇ = + + +  ∂ ∂ ∂ ∂ 

∆              (34) 

Thus, the Laplacian operator has the same form for the left and right deriva-
tives as well as for the regular and conjugate quaternion functions. 

Note that we can use a similar procedure to define derivatives of a complex 
function, ( ) ( )ø

ˆ,f if=f τ , which depends on a complex variable ( )ø
ˆ,t i t=τ , as 

complex numbers also belong to a set of normed division algebras. Because 
complex numbers are commutative, we have only one of each normal and con-
jugate derivatives,  

( )

( )

1 ø ø

ø ø

1 ø ø

ø ø

ˆ, ,

ˆ, .

f ff fd d i
t t t t

f ff fd d i
t t t t

−

−

   ∂ ∂∂ ∂
≡ = + −    ∂ ∂ ∂ ∂   


  ∂ ∂∂ ∂ ≡ = + − +    ∂ ∂ ∂ ∂  

f f

f f

τ

τ

∇

∇

           (35) 
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Note that the complex path derivative is different from the traditional com-
plex derivative and should be valid for any complex function and complex time 
interval where the absolute value of the time interval is not equal to zero, 

0tδ ≠ . Therefore, the Cauchy-Riemann condition is not required for either the 
complex or quaternion path derivatives. 

Similar to the quaternion Laplacian operator, we can define a complex Lapla-
cian,  

2 2

2 2
ø

.
t t

 ∂ ∂
≡ + 

∂ ∂ 
∆                         (36) 

Thus, we defined a complete set of normal and conjugate derivatives for both 
the complex and quaternion functions. 

5. Application of Quaternion Differentiation to  
Electromagnetic Potentials  

Assume that the total energy of the particle changes along the time path under 
the influence of an external interaction, as given by (13). 

Using the quaternion time-path derivative, we develop a quaternion electro-
magnetic equations using a modified version of the quaternion electromagnetic 
potential function, ( )ø , cφ φ= ≡f



 . Then, we express the externally applied 
electromagnetic energy in the transmitter and receiver coordinate systems re-
spectively,  

( )
( )

ø

ø

, ,

, .

e

e

q qc qc

q qc qc

φ φ

φ φ

 = − = − = −


= − = − = − −





φ

φ

 

 
                 (37) 

This allows us to develop electromagnetic equations using quaternion time 
differentiation rather than traditional space differentiation. We use the defini-
tions of the conjugate and normal quaternion gradient operators, which corres-
pond to the time path gradients in the transmitter and receiver coordinate sys-
tems, respectively,  

( )

( )

ø
ø

ø
ø

ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ, , , , .

x y z
x y z

x y z
x y z

i i i
t t t t

i i i
t t t t

  ∂ ∂ ∂ ∂
≡ ∇ −∇ = − − −   ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ ∂

≡ ∇ ∇ =    ∂ ∂ ∂ ∂ 





∇

∇

           (38) 

According to Newton’s Second Law, the force is defined as, d dp t=




 . Note 
that based on the definition (37) of the potential function, qφ , has units of the 
momentum. Therefore, we define the quaternion electromagnetic force in terms 
of the derivatives of the quaternion potential, which in the receiver reference 
frame becomes,  

( ) ( )
( )( )
( )( )

ø ø

ø ø

, , ,1

, , .
e

q q
q

c q q

φ φ

φ φ

− = − ∇ ∇≡ = − = 
− = − ∇ ∇



 

φ
φ

φ
 

∇
∇ ∇

∇
        (39) 
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which we identify as the quaternion form of the Lorentz electromagnetic force 
equations expressed in terms of the applied potentials. Similarly, we can define 
the electromagnetic force in the transmitter reference frame as, 

( ) ( )
( )( )
( )( )

ø ø

ø ø

, , ,1

, ,
e

q q
q

c q q

φ φ

φ φ

− = − ∇ −∇ −≡ = − = 
− = − − ∇ −∇



 

 
∇

∇ ∇
∇

φ
φ

φ
        (40) 

The Laplacian operator has the same form for the left and right derivatives as 
well as for the regular and conjugate potential functions. This property seems 
extremely suggestive, as we can now define the quaternion current density in 
terms of the quaternion applied potential, by correspondence with the conven-
tional Poisson’s equation [16],  

( )ø , ,c jρ= ≡ −


 φ∆                         (41) 

where we define the scalar part of the quaternion current density as the scalar 
charge density multiplied by the saturation velocity, øcρ , while the vector part 
is the vector current density, j



. 
Therefore, the quaternion current density can be readily expressed in terms of 

the applied scalar and vector potentials, 

( )( ) ( )2 2 2 2 2 2
ø ø ø ø ø ø, , .φ φ φ φ φ φ= − ∇ +∇ = − ∇ +∇ ∇ +∇

  

           (42) 

We succeeded in expressing the scalar charge density and vector current den-
sity in terms of the scalar and vector applied potentials,  

( )
( )

2 2
ø ø ø ø

2 2
ø

1 ,

.
c

j

ρ φ φ

φ φ

 = − ∇ +∇

 = − ∇ +∇

 


                      (43) 

The resulting equations represent electromagnetic interactions and electro-
magnetic matter in terms of the applied quaternion potential. Because the re-
sulting equations are in Laplacian form, they automatically represent wave equa-
tions for the potentials and consequently lead to the electromagnetic potential 
waves. 

6. Application of Quaternion Differentiation to  
Electromagnetic Fields  

Next, we use quaternion electromagnetic potentials and forces to define the elec-
tromagnetic fields, which allows us to derive electromagnetic equations in a more 
familiar three dimensional field form of the conventional Maxwell equations. 

To do so, we apply the multiplication formula to the quaternion applied po-
tential and gradient operators in the receiver reference frame,  

( ) ( )

( )

ø ø

ø
ø

1, , ,

ˆ ˆ ˆ= , , , , ,x y z
x y z

A A
c c

i i i
t t t t

φ φ = = =

  ∂ ∂ ∂ ∂ ∇ ∇ =    ∂ ∂ ∂ ∂ 

 



φ 

∇
               (44) 
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resulting in the following form of the quaternion derivative in terms of vector 
relations,  

( )
( )
( )

ø ø ø ø

ø ø ø ø

, ,

, .

φ φ φ φ φ

φ φ φ φ φ

 = ∇ −∇ ⋅ ∇ +∇ +∇×= 
= ∇ −∇ ⋅ ∇ +∇ −∇×

    

    

φ
φ

φ

∇
∇

∇
           (45) 

Note that using quaternion multiplication, we conclude that the vector gra-
dient operator, ø øφ∇ , and the divergence operator, φ∇ ⋅



, are commutative. 
On the other hand, the vector curl operator, φ∇×



, is anti-commutative. 
Let us define the quaternion electric field, ( )ø ,=



  , and the quaternion 
magnetic field, ( )ø ,=



  , as the anti-commutator and commutator expres-
sions of the derivative [30],  

{ } ( ) ( )

[ ] ( ) ( )

ø ø ø ø
1 1, , ,
2 2
1 1, = 0, .
2 2

φ φ φ φ

φ

 = − = − + = ∇ ⋅ −∇ −∇ −∇

 = − = − − ∇×


  



φ φ φ

φ φ φ





∇ ∇ ∇

∇ ∇ ∇
      (46) 

Using the left and right differentiation of the external potential, we define the 
electromagnetic force in terms of the quaternion electric and magnetic fields as 
follows,  

( )
( ) ( ) ( )
( ) ( ) ( )

ø

ø

, ,

, ,

q q q
q

q q q

− ≡ − = −≡ − = 
− ≡ + = +

 

 

  

  

φ
φ

φ

 


 

∇
∇

∇
          (47) 

where we determine the scalar and vector components of the fields from (45) 
and (46), 

ø

ø ø ø

ø ø

0,

,

,

.

φ

φ φ

φ φ

=


= ∇×


= ∇ ⋅ −∇
 = −∇ −∇

 



 









                         (48) 

We note that the vector electric, 


 , and the vector magnetic, 


  fields, de-
fined here (48) are similar to the modern definitions [13] [14]. However, we note 
in (48) the existence of a scalar electric field, ø , which is absent in Maxwell’s 
equations. Jack [30] suggested that the scalar electric field describes thermal 
electricity. On the other hand, the quaternion magnetic field is represented by a 
pure vector quantity, =



 , similar to the traditional expression. 
Note that the resulting force expressions (47) have correct dimensions based 

on our definitions of the electric and magnetic fields (48), unlike the traditional 
empirical expression, which includes a vector velocity in front of the magnetic 
field [13]. The force equations (47) indicate the existence of two types of charges 
that behave differently in the magnetic field, while we did not use the carrier ve-
locity to define the two types of charges. It seems that the two Lorentz force field 
expressions (47), obtained analytically from basic mathematical principles, 
properly describe the forces on charged particles without the need to use the 
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empirical particle velocity. 
Next, we apply the conjugate quaternion gradient operator to obtain the qua-

ternion Laplacian in terms of electromagnetic fields. As mentioned previously, 
we used the quaternion current density definition (42) to derive the following 
two expressions for electromagnetic currents,  

( ) ( )( )
( ) ( )( )

ø ø

ø ø

, , ,

, , .

− = ∇ −∇ −= − = 
− = + ∇ −∇

 

  


φ

φ
φ

∇ ∇
∆

∇ ∇

  

  
              (49) 

Using quaternion multiplication in (49) we finally obtain,  

( ) ( ) ( )( )
( ) ( ) ( )( )

ø ø ø ø

ø ø ø ø

, ,

, .

 ∇ +∇ ⋅ − ∇ − −∇ −∇× −= 
∇ +∇ ⋅ + ∇ + −∇ +∇× +

       

       

       

       
        (50) 

Despite the apparent difference between the two Laplacian expressions in 
(50), they must yield the same result because of the commutative property of the 
quaternion Laplacian, which lead to the following result for the quaternion cur-
rent density,  

( ) ( )ø ø ø ø ø, , .c jρ= = ∇ +∇ ⋅ ∇ −∇ +∇×
    



                 (51) 

The above derivation uses the following vector relation for the electromagnet-
ic fields,  

ø 0,∇ +∇× =
 

                           (52) 

which we immediately recognize as Faraday’s law of Maxwell’s equations [13] 
[14], which we derive from purely mathematical properties of the quaternion 
calculus. In addition, we used the following vector identity in (50),  

( ) 0,φ∇ ⋅ = ∇ ⋅ ∇× =
   

                        (53) 

Therefore, we can express the scalar charge density and vector current density 
in terms of the electromagnetic fields as, 

( )ø ø ø

ø ø

1 ,

.
c

j

ρ = ∇ +∇ ⋅

 = ∇ −∇ +∇×



  


 

  
                      (54) 

In addition to the static traditional charge density given by the divergence of 
the vector electric field,  

( )ø
1 ,s c

ρ = ∇ ⋅


                          (55) 

we can identify a time-dependent component of charge density, which by 
comparison with the time dependent semiconductor charge density we recog-
nize as the generation-recombination charge,  

( )ø ø ø
1 .gr c

ρ = ∇                           (56) 

The vector current density in (54) can be expressed in terms of various com-
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ponents, similar to the original Maxwell equations,  

ø ø ,d c mj j j j= + + = ∇ −∇ +∇×
  

   

                   (57) 

where, 

ø ,dj ≡ ∇




                            (58) 

we identify as the time dependent displacement current. The magnetic current 
density we identify as,  

.mj ≡ ∇×




                           (59) 

Finally, we introduce the conduction current component,  

ø ,cj ≡ −∇




                           (60) 

which we identify as the new form of Ohm’s law for the conduction current. 
Note that our form of Ohm’s resembles Shockley’s version of the conduction 
current in semiconductors,  

( ) ,s fj µρ φ= ∇




                        (61) 

where, ρ , is the semiconductor charge density, µ , is the carrier mobility, and, 

fφ , is the quasi Fermi potential. 
We believe that our analytical definition of Ohm’s law is advantageous be-

cause it was derived purely analytically from the basic mathematical properties 
of quaternion mathematics. Note that the scalar electric field is responsible for 
both the generation-recombination charge density and the new form of Ohm’s 
law. 

Note that in the original Maxwell equations [9], Ohm’s law is defined empiri-
cally as,  

,coj σ=




                            (62) 

where, σ , is the empirical electrical conductivity. Surprisingly, Ohm’s law does 
not appear in Heaviside’s version of electromagnetic equations [12], where the 
total current is written without the conduction component,  

ø ,d mj j j′ = − + = −∇ +∇×
 

  

                   (63) 

Furthermore, the sign of the displacement current, ødj′ = −∇




 , is different in 
the modified equations, which seems to be a misrepresentation of the original 
form of Maxwell’s equations. The particular choice of displacement current is 
essential for Heaviside’s version, as it leads to electromagnetic wave equations in 
terms of the electric and magnetic fields [12]. Maxwell [9] expressed the mag-
netic and electric currents separately, corresponding to the presence of either the 
magnetic or electric field. When both electric and magnetic fields are present, 
the identification and separation of the current components in (57) becomes 
complicated by the interrelation between the vector and scalar fields in terms of 
the more fundamental potentials (48). 

Therefore, it seems that the new analytical formulation of the quaternion form 
of Maxwell’s equation helped us detect an error in the widely used modified ver-
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sion of the electromagnetic equations [13] [14], which is a modified version of 
the original Maxwell equations [9]. 

Therefore, we can summarize the new quaternion version of the electromag-
netic equations in the receiver reference frame in terms of both potentials and 
fields as follows,  

( ) ( )
( )

ø ø ø

ø ø

2 2
ø ø ø ø ø ø

2 2
ø ø ø

,

,

,
1 1 ,

.
c c

j

φ φ

φ φ

φ

ρ φ φ

φ φ

 = ∇ ⋅ −∇


= −∇ −∇

 = ∇×

 = ∇ +∇ ⋅ = − ∇ +∇


= ∇ −∇ +∇× = − ∇ +∇



 

 



    








 

  

            (64) 

The set of equations is completed by a supplementary vector relationship be-
tween the electric and magnetic fields, which is equivalent to Faraday’s law,  

ø 0,∇ +∇× =
 

                          (65) 

which together with the definition of the fields in terms of potentials (48) create 
a non-trivial relation between the electric and magnetic fields. This is not desira-
ble for any electromagnetic theory as it interferes with the clear identification of 
the electromagnetic currents and waves. Therefore, it seems advantageous to ex-
press the theory in terms of potentials only, where we can treat the scalar poten-
tial, øφ , and vector potential, φ



, as truly independent quantities. Consequently, 
it seems preferable to use the electromagnetic matter equations in terms of po-
tentials, as we obtained here using the quaternion gradient (40) and Laplacian 
(41) operators. This is consistent with results of Aharonov and Bohm [32]. 

7. Postulates and Equations of Time and Matter 

Thus, based on the previous work previous work [1] and the current study, we 
can formulate the main postulates and equations of electromagnetic matter. 
First, we express all the equation in the receiver frame of reference, where the 
time of signal emission is given by the quaternion time at a distance. 

Postulate 1 (Euclidean Division Algebras). Division algebras with Euclidean 
norm, consisting of real numbers, complex numbers, real quaternions, and oc-
tonions, are essential mathematical tools of nature. Any measurement by an ap-
paratus located at the origin of a coordinate system is given by a real scalar 
number. Furthermore, any measurement of a physical quantity at a distance 
from the origin is given by a real scalar absolute value, which is its Euclidean 
norm,  

.δτ δ δ δ≡ =τ τ τ                         (66) 

Postulate 2 (Quaternion Time at a Distance). There is a maximum speed of 
any signal propagation, which is identified in a vacuum with the speed of light, c. 
Because of the maximum speed, there is a positive propagation delay, which is 
represented by a vector time of flight, r cδ  . Then, the time of signal emission at 
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a distance from the origin in the receiver reference frame is given by the conju-
gate quaternion expression,  

ø , .rt
c
δ = − 

 



τ                           (67) 

Postulate 3 (Quaternion Total Energy). During arbitrary motion under the 
influence of an external interaction, including propagation and rotation, we 
must consider the three-dimensional nature of space and momentum. There-
fore, the energy of arbitrary motion is given by the quaternion energy including 
the quaternion potential of the external electromagnetic interaction, 

( )2 2
ø ø , .c qc m c qc pc qcφ φ= − = − −m f



                 (68) 

The quaternion time and time-dependent quaternion energy form an ortho-
gonal eight-dimensional octonion manifold that fully describes the natural 
world. The octonion configuration manifold can be represented as two ortho-
gonal quaternions using the Cayley-Dikson construct,  

( ),O τ                               (69) 

Postulate 4 (First Quaternion Derivatives—Force Fields). The dynamic prop-
erties of natural phenomena are given by variations in the quaternion energy 
with quaternion time. The quaternion path derivative is defined using the prop-
erties of quaternion division. The first quaternion derivative of the external qua-
ternion potential with respect to time is proportional to the force produced by 
external interactions. We can write the force in terms of quaternion derivatives 
as,  

( )
( )
( )

,

.

q q
q

q q

− = −≡ − = 
− = +

φ
φ

φ

 


 

∇
∇

∇
                  (70) 

The force fields include scalar and collinear electric fields, and rotational 
magnetic field components. 

Postulate 5 (Second Quaternion Derivative—Matter Current). The second 
derivative of the quaternion energy with respect to time, given by a quaternion 
Laplacian operator, is proportional to the electromagnetic matter current, which 
includes scalar matter density and three-dimensional vector current,  

.= − φ∆                              (71) 

This can be considered a generalized quaternion version of Maxwell’s current 
equations. 

Postulate 6 (Conjugate Quaternions—Transmitter and Receiver Frames). All 
the physical quantities in the transmitter reference frame assume a quaternion 
conjugate representation of the corresponding mathematical expressions in the 
receiver reference frame. The process of conjugation is a mathematical involu-
tion that does not carry new information for the absolute values of the measured 
physical quantities, which are the same in the receiver and transmitter reference 
frames. However, imaginary vector quantities, such as vector force fields and 
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currents, assume opposite directions owing to conjugation. 
It can be easily shown that the electromagnetic equations in the transmitter 

frame of reference become,  

( )

ø

2

, ,

,

,

.

rt
c

c qc

q

δ  =    
 = −
 ≡ −
 = −

m



τ

φ

φ

φ







∇

∆

                         (72) 

Note that the present electromagnetic equations include a formulation of time 
at a distance and consequently account for the retarded potentials of the action 
at a distance. 

8. Conclusions 

We demonstrated an analytic derivation of electromagnetic matter equations 
using the theory of quaternion time and applying it to electromagnetic interac-
tions. We assumed the existence of a time delay between the emission of the 
electromagnetic signal detection due to the final speed of signal propagation. We 
introduced the transmitter and receiver coordinate systems to describe the inte-
raction and showed that the resulting quaternion expressions are conjugates of 
each other. 

Then, we proposed a quaternion path derivative using the division properties 
of quaternions. We defined the gradient operator as the multiplicative inverse of 
the quaternion time. We applied the quaternion gradient and Laplacian opera-
tors to the quaternion electromagnetic potential to derive the quaternion form of 
Maxwell’s equations. 

This resulted in a new definition of electromagnetic force, which led to a sca-
lar electric field. We demonstrated that the scalar electric field is responsible for 
the additional effects appearing in the electromagnetic equations, which can be 
interpreted as the generation-recombination charge density and a new form of 
Ohm’s law for the conduction current density. Crucially, we demonstrated the 
electromagnetic equations using equivalent quaternion potential and field equa-
tions. It appears that the potential formulation is preferable because it lacks the 
complex interdependence of the electric and magnetic fields. 

We showed that the quaternion sets of the time and matter equations in the 
transmitter reference are quaternion conjugates of the same equations in the re-
ceiver reference frame. Therefore, the new theory of electromagnetic matter 
based on normed division algebras appears to be highly comprehensive, logical, 
and compelling. 
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