
Journal of Modern Physics, 2023, 14, 1537-1561 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2023.1411089  Oct. 31, 2023 1537 Journal of Modern Physics 
 

 
 
 

Elements of Time 

Viktor Ariel 

Independent Researcher, Modiin, Israel 

 
 
 

Abstract 
A clear mathematical theory of time remains one of the most difficult chal-
lenges of science, which seems highly intriguing. In this work, we assume that 
time is the main independent attribute of nature and therefore may serve as 
the foundation of a comprehensive field theory. Furthermore, we assume that 
division algebras with the Euclidean norm are essential mathematical tools of 
time and the physical world in general. We use a four-dimensional normed 
division algebra of quaternions to describe time mathematically, as originally 
envisioned by Hamilton. We systematically define basic quaternion concepts 
related to time, such as the quaternion time interval, scalar measured time, 
the arrow of time, vector velocity, and quaternion frequency. We apply qua-
ternion time concepts to the optical Doppler effect and demonstrate that our 
approach predicts known experimental results. Furthermore, we show that 
the quaternion solution of the Doppler effect enhances the relativity theory by 
resolving the notorious twin paradox. We identify quaternion frequency with 
the traditional concept of energy. We assume that quaternion energy, which 
is generally dependent on time and external interactions, can be used to de-
scribe dynamic properties of matter. In conclusion, we suggest that a state of 
matter can be represented by the eight-dimensional octonion configuration 
space, consisting of a quaternion time interval and a time dependent quater-
nion frequency. Therefore, it appears that the application of normed division 
algebras for the study of time and nature is highly logical, credible, and com-
pelling. 
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1. Introduction 

Recently, there has been significant interest in the physical, mathematical, and 
philosophical nature of time [1] [2] [3] [4], and [5]. However, a comprehensive 
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mathematical theory of time seems elusive, even though the concepts of time 
and motion were investigated in the early days of science. For example, initial 
ideas on time and motion appear in Euclid’s famous book on Optics [6]. 

Newton [7] formally defined space and time as separate entities, including the 
concepts of absolute and relative time, and applied them to the study of gravita-
tion. Clearly, gravitational force between celestial bodies is acting from a great 
distance; therefore, Newton introduced the concept of action at a distance, which 
he assumed to be instantaneous. 

Maxwell considered light as an electromagnetic wave traveling with the max-
imum speed, c, of any interaction. Consequently, this introduced a finite delay 
for any action at a distance due to the maximum speed of propagation. 

For example, consider a transmitter of an electromagnetic wave located a vec-
tor distance, r , from the origin of the coordinate system, where we place the 
receiver of the interaction, as in Figure 1. Intuitively, we expect that the signal 
emitted by the transmitter will arrive at the receiver with a time delay caused by 
the finite speed of signal propagation, which we may express as, ( )t rδ 

. Note 
that the time delay appears as a function of the three-dimensional vector space. 

Doppler [8] suggested a key breakthrough in the study of time and motion 
during his observations of optical frequency shift of binary stars. Crucially, the 
Doppler effect shows that a measured frequency shift depends on a relative ve-
locity between the transmitter and receiver as well as on the direction of their 
relative motion. 

Let us now depict the main result of the Doppler effect, namely the depen-
dence of the Doppler frequency shift, fδ , on both the speed and direction of 
relative motion, ( )f vδ 

, as shown in Figure 2. Let us assume that the stationary 
receiver is located at the origin while a remote transmitter moves with a constant 
three-dimensional vector velocity, v . 

 

 
Figure 1. Time delay of an electromagnetic signal propagation from a distant transmitter 
to a receiver at the origin, as a function of the three-dimensional distance, r . 
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Figure 2. The Doppler frequency shift due to relative motion between a moving trans-
mitter and a stationary receiver as a function of the relative velocity, v . 

 
Therefore, we need to account for two experimental effects related to time 

measurement at a distance. First, we need to describe a time delay of any inte-
raction as a function of the three-dimensional vector distance. Second, we need 
to account for the frequency shift of electromagnetic waves, due to the relative 
motion between the transmitter and receiver, as a function of the three-dimensional 
vector velocity, 

( )
( )

,

.

t t r

f f v

δ δ

δ δ

=


=





                         (1) 

The first comprehensive mathematical treatment of the optical Doppler effect 
was proposed by Woldemar Voigt [9] [10], who used a four-dimensional trans-
formation of time and space coordinates to derive it. This major development 
was later re-introduced and further developed by Lorentz [11] [12], who was 
apparently a close acquaintance of Voigt [10]. Later, the spacetime transforma-
tion became known as the Lorentz coordinate transformation [13]. We can de-
fine the measured time at a stationery receiver, which is located at the origin as, 

øt , while time at a remote transmitter was defined by Lorentz [11] [12] as the 
location dependent local time:  

 ø .rt t
c

≡ −


                           (2) 

Conceptually, t, is the time of the electromagnetic signal emission by the remote 
transmitter and, øt , is the time of the signal detection by the stationary receiver. 
As presented by Voigt and Lorentz, the signal transmitter is located at a real 
vector location, 3r ∈  , away from the receiver. Note that the negative sign in 
(2) implies that emission of light by the remote transmitter occurred before the 
signal detection by the stationary receiver. 

Using (2), one can possibly introduce the remote time interval,  

 ø ø ,r vt t t t
c c
δδ δ δ δ≡ − = −
 

                    (3) 
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assuming constant velocity of propagation, v . 
Then, somehow a pseudo-Euclidean quadratic norm of (3) was introduced,  

 
2 2

2 2 2 2
ø ø2 2 ,

r v
t t t t

c c
δ

δ δ δ δ≡ + = +
 

                 (4) 

leading to the time interval transformation known as the Lorentz time dilation,  

 ø
2

2

.

1

tt
v
c

δ
δ =

−


                        (5) 

Curiously, the four-dimensional real-valued representation of the local time (2) 
created some notable mathematical challenges. First of all, any measurement of 
time with a clock typically results in a one-dimensional real scalar quantity, 

1t∈ , as correctly appears on the left-hand-side of (2). This is clearly inconsis-
tent with the four-dimensional real time value on the right-hand-side of (2), 
where, 4

øt r c− ∈
  . 

In addition, it seems mathematically impossible to justify the quadratic norm 
(4) of the time interval (3) as there seems to be no consistent mathematical pro-
cedure for calculating the norm of a four-dimensional real quantity. 

In order to resolve the issue of the quadratic norm (4), Poincare [13], who was 
a friend of Lorentz, proposed an ad hoc but revolutionary and long-reaching 
mathematical solution. Poincare inserted an imaginary unity element, 1i = − , 
in front of the time variable, leading to an imaginary time value and non-Euclidean, 
curved spacetime,  

 ( ) ( )ø , , , , .ic t ic t x y z ic t rδ δ δ δ δ δ δ= =


                (6) 

At first glance, this ingenious mathematical trick allowed derivation of a qua-
si-Euclidean quadratic norm (4) by squaring elements of (6). However, this ap-
proach did not resolve the mathematical conflict between the one-dimensional 
measured scalar time and the four-dimensional local time in (2). Despite these 
mathematical reservations, Einstein [14] [15] and his professor Minkowski [16], 
used a similar four-dimensional spacetime (6) and the resulting Lorentz time di-
lation (5) in the theory of relativity. The spacetime (6) became the Minkowski 
spacetime, and eventually transformed into the mathematical foundation of the 
modern science. 

Given the above mathematical uncertainty associated with the four-dimensional 
local time (2), it seems reasonable to consider some alternative approaches to 
(6). 

Another mathematical concept of the four-dimensional time was proposed by 
Hamilton [17], who also used algebraic methods of complex numbers in his in-
vestigation of an “algebra as the science of pure time”. This led to his develop-
ment of the Euclidean four-dimensional normed division algebra of quaternions 
[18]. It seems that Hamilton always expressed a firm belief [19] that a quater-
nion time element is composed of a one-dimensional real scalar time, 1t∈ , 
and three-dimensional imaginary space, 3r ∈  ,  
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 ( ) ( )4 1 3, , .t r ∈ ≡
                         (7) 

This quaternion approach is fundamentally different from the Poincare-Minkowski 
approach, where time is a one-dimensional imaginary component, 1it∈  , and 
space is a three-dimensional real vector 3r ∈  , of the four-dimensional space-
time (6). 

Previously, a mixed vector quaternion representation of time was proposed by 
Machicote [20]. An extensive study of the relativistic and quantum time con-
cepts using Minkowski approach was performed by Horwitz et al. [21] [22] [23], 
and [24]. 

Amazingly, Felix Klein, who established the world famous center for mathe-
matics research at the University of Gottingen, where he was a colleague of both 
Voigt and Minkowski, considered the possibility of “...brilliant applicability of 
quaternions to the theory of relativity.” [25]. 

In this work, we will attempt to demonstrate that the Hamilton’s quaternion 
formulation of four-dimensional time results in a simple, logical, and compelling 
mathematical theory of time. Furthermore using quaternion time, we will derive 
the correct formulation of the optical Doppler effect as experimentally demon-
strated by Ives and Stilwell [26] [27]. Additional examples of quaternion dy-
namics and quaternion Maxwell equations can be found in [28] [29], and [30]. 

2. Postulates of Time Algebra  

We begin our study with basic definitions and postulates of time using the ma-
thematical framework of normed division algebras. 

Postulate 1 (Time - Main Attribute). We assume that time is the main in-
dependent attribute of nature, where the time continuum is infinite, uniform, 
and absolute.  

Normed division algebras have the following useful properties: every non-zero 
element has a multiplicative inverse and a positive Euclidean norm. Conse-
quently, all usual mathematical operations of addition, subtraction, multiplica-
tion, and division are applicable and reversible. The most astonishing property 
of normed division algebras is that only four such algebras exist. It has been 
demonstrated By Frobenius [31] and Hurwitz [32] that normed division algebras 
exist only with dimensions of one, two, four, and eight.  

Theorem 1 (Frobenius Division Algebras). All normed division algebras are 
isomorphic only with the real numbers, 1 , the complex numbers, 2 , the 
quaternions, 4 , and the octonions, 8 .  

Importantly, elements of normed division algebras can be expressed in trigo-
nometric form using the complex exponential Euler relation. Therefore, applica-
tion of normed division algebras as mathematical tools of nature seems highly 
compelling.  

Postulate 2 (Normed Division Algebras). Normed division algebras consti-
tute essential mathematical tools of time specifically and nature in general.  

Let us introduce a concept of four-dimensional, quaternion time moment as a 
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natural mathematical representation of time, as originally suggested by Hamil-
ton. 

Postulate 3 (Quaternion Time Moment). The quaternion time moment is 
an infinitesimal point within the quaternion time continuum, composed of a 
one-dimensional real scalar time, 1

øt ∈ , and a three-dimensional imaginary 
vector time, 3t ∈



 ,  

 ( )ø , ,t t≡


τ                            (8) 

Here, øt , is similar to a traditional scalar time measured with a clock, while, 
t


, is responsible for the time delay and frequency shift due to action at a dis-
tance. Clearly, when time delay and Doppler frequency shift are not important, 
we can express time as a simple real scalar value. 

Please note that in this work we represent quaternions using boldface charac-
ters, real scalars as regular italic mathematical symbols, while imaginary vectors 
with an arrow above the character, similar to traditional real three-dimensional 
vectors. 

To express quaternion time numerically, we introduce a quaternion time coor-
dinate system. A coordinate representation is relative, depending on the choice 
of coordinate axes and the origin of the coordinate system. For example using an 
orthogonal Cartesian coordinate system leads to the following Cartesian repre-
sentation of a quaternion time moment,  

 ( )ø ø
ˆ ˆ ˆ ˆ, , , .x x y y z zi t i t i t i t=τ                         (9) 

Here, 1
ø , , ,t x y z∈ , are real numbers. The mathematical relations between the 

quaternion unit elements, 1
ø̂i ∈ , and, 3ˆ ˆ ˆ, ,x y zi i i ∈  , are essential for the present 

theory and were defined using quaternion multiplication by Hamilton [18]. We 
depict a simplified three-dimensional quaternion time coordinate point in Fig-
ure 3, where we neglect the z-axis for simplicity. 
 

 
Figure 3. A three-dimensional representation of a quaternion time coordinate point. 
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The coordinate quaternion time representation also depends on a choice of 
the origin of the quaternion time coordinate system,  

 ( )ø̂
ˆ ˆ ˆ0, 0, 0, 0 .x y zi i i i=0                        (10) 

In order to identify physical time at a distance, we use the concept of location 
dependent quaternion time or the local time, similar to the four-dimensional lo-
cal time concept introduced by Voigt and Lorentz. 

Postulate 4 (Quaternion Local Time). Given the quaterion coordinate sys-
tem and its origin, a quaternion local time point, τ , uniquely represents time 
information at a distant three-dimensional space location, r , away from the 
origin,  

 ( )ø ø ø ø
ˆ ˆ ˆ ˆ, , , , , .r x y z

r x y zt t t i t i i i
c c c c

   ≡ = =   
   





τ              (11) 

Note that this definition of, τ , resembles the time flow parameter of the Stu-
eckelberg-Horwitz-Piron (SHP) formalism in relativity [22] [23] [24], however, 
represented in the quaternion form unlike the Minkowski form in SHP. 

Postulate 5 (Maximum Speed). There exists a maximum speed of signal 
propagation, which we identify with the speed of light, c, and which acts as a 
coefficient of proportionality between space and time. As we will demonstrate 
later in this work, the existence of the maximum speed follows from the mathe-
matical definition of velocity and quaternion properties of time. Thus, the speed 
of light, c, represents the first natural constant of the present theory.  

A three-dimensional space point in the imaginary vector space can be represented 
using Cartesian time coordinates,  

 ( ) ( )ø̂
ˆ ˆ ˆ ˆ ˆ ˆ0, , , , , .r x y z x y zr ct i i x i y i z i x i y i z≡ = =





               (12) 

Also, we can express a quaternion time coordinate point using the following 
convenient form, similar to a two-dimensional complex number,  

 ( )ø ø ø ø
ˆ ˆ ˆ ˆ, , ,r r r

ri t i t i t i
c

 = =  
 

τ                       (13) 

where we define a unity three-dimensional imaginary vector,  

 
( )

2 2 2

ˆ ˆ ˆ, ,ˆ ,x y z
r

i x i y i zr ri
r r x y z

= = =
+ +

 



                    (14) 

where, 2ˆ 1ri = − . Here, the one-dimensional imaginary axis is chosen along the 
three-dimensional unity space vector, 3

r̂i ∈  , which allows a simpler two-dimen- 
sional representation of the four-dimensional quaternion time points. This choice 
of coordinates allows us to represent a quaternion time moment similar to a 
two-dimensional Agrand’s diagram of complex numbers, as shown in Figure 4. 

Note that for convenience, we chose a real scalar time vertical axis and an im-
aginary three-dimensional space horizontal axis, unlike the typical choice of im-
aginary vertical axis in a complex number representation.  

Let us introduce a source quaternion time point as ( )ø ,s s st r c=
τ . Similarly, 

we define a destination quaternion time point as ( )ø ,d d dt r c=
τ . 
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Figure 4. A quaternion time coordinate point using two-dimensional representation, 
where three-dimensional space is reduced to a single coordinate axis. 

 
Postulate 6 (Quaternion Time Interval). The quaternion time interval is a 

four-dimensional arrow signifying a transition in the quaternion time conti-
nuum from the source time point to the destination time point. Thus, a quater-
nion time interval, δτ , is the difference between the destination quaternion 
time point, dτ , and the source quaternion time point, sτ . 

ø ø ø, , , ,d s
d s d s

r r rt t t
c c c

δδ δ     ≡ − = − =     
    

  

τ τ τ              (15) 

where, øtδ , is the scalar time interval and, rt r cδ δ=


 , is the vector time inter-
val. 

The definition of a quaternion time interval is depicted in Figure 5. Note that 
the direction of the quaternion time interval is always from the source point to 
the destination point. Since a quaternion time interval is an algebraic difference 
between two quaternion values, it can be represented as a single quaternion 
coordinate point. We achieve this by moving the origin of the quaternion time 
coordinate system either to the source point or to the destination point. 

Therefore, for each quaternion time interval, there are two different represen-
tations as a single quaternion time coordinate point. One possible representation 
shows transition from the origin to the destination point, dτ , while the other 
represents a transition from the negative source point, sτ , to the origin, as 
shown in Figure 6. 

d

s

δ
δ

=
 = −

τ τ
τ τ

                          (16) 

This distinction of motion towards or away from the origin is crucial for the 
description of the Doppler shift experiment using quaternion time. 
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Figure 5. A quaternion time interval in three dimensions. 

 

 
Figure 6. Two representations of a quaternion time interval, including the source at the 
origin and the destination at the origin. 

 
Postulate 7 (Past, Present, and Future). We can identify the origin of the 

quaternion time coordinate system with the present time. Therefore, all time in-
tervals terminating at the origin started in the past and all time intervals starting 
at the origin have destinations in the future.  

Alternatively, we can consider the definition of quaternion time interval as a 
transformation of the quaternion time coordinate system, where the zero-point 
transitions from the source point to the destination point by a quaternion time 
interval, δτ . Even for stationary objects in three-dimensional space, the qua-
ternion time, δτ , is constantly progressing due to the relentless progression of 
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scalar time, øtδ . Consequently, the progression of quaternion time is due to the 
transition of the zero-point between past, present, and future embedded in the 
definition of the quaternion time interval. 

Because of the spatial symmetry of the three-dimensional space under reflec-
tion, we can repeat the experiment, reversing all the space directions. The con-
jugate quaternion quaternion time interval is defined as,  

 ø , .rt
c
δδ δ = − 

 



τ                       (17) 

Consequently, all quaternion time intervals and points switch their vector time 
directions, which results in the conjugate quaternion time representation, shown 
in Figure 7. 

Postulate 8 (Quaternion Time Symmetry). 1) The scalar quaternion time 
interval, øtδ , is continuously, uniformly, and relentlessly progressing from the 
past into the future, consequently, it is not symmetric under scalar axis reflection. 
2) The three-dimensional vector time, rt r c=



 , is stationary, uniform, and sym-
metric under operations of translation and rotation.  

Thus, we defined a basic four-dimensional quaternion time event, τ , which 
represents quaternion time at a destination-point located distance, r , away 
from the origin. The minimum vector time delay is represented by, r c , which 
accounts for action at a distance. 

Therefore, the four-dimensional quaternion time appears as promising ap-
proach for specifying time at a distance. However, we need to establish a corres-
pondence between the four-dimensional quaternion time moment and the real 
scalar measured time moment, which we see on a clock. 

Postulate 9 (Absolute Value of Time). Using properties of quaternion divi-
sion, which are similar to complex numbers, we define the multiplicative inverse 
of the quaternion time interval,  

 

 
Figure 7. A mirror reversal of the space direction results in the conjugate quaternion re-
presentation of the quaternion time intervals. 
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1
2 2 ,δ δδ

δτδ
− = =

τ ττ
τ

                      (18) 

where, δτ δ≡ τ , is the absolute value of the time interval equal to the Eucli-
dean norm of the interval. 

Using definitions of the quaternion time interval (15) and its conjugate (17) 
and applying the definition of the multiplicative inverse (18),  

 
2

22 2
ø 2 .rt

c
δδτ δ δ δ δ δ δ= = = = +τ τ τ τ τ             (19) 

Note that we thus proved a quaternion version of the Pythagorean theorem us-
ing the algebraic definition of quaternion multiplicative inverse.  

Postulate 10 (Measured Time). The everyday scalar time interval measured 
with a clock is equal to the absolute value of the quaternion time interval, which 
we always measure in the past.  

This is the key postulate of the present work allowing a link between the qua-
ternion algebra of time and everyday experimental measurements of time per-
formed with a clock. Note that we can perform time measurement only in the 
past, which is the key difference between past and future. 

Let us define a scalar measured time moment, tau, as the infinitesimal in-
stance of time that can be measured with a clock. 

We can calculate measured time, dτ , at the quaternion time destination point, 

dτ , as a sum of the measured time, sτ , at the source point, sτ , and the corres-
ponding absolute time interval,  

 ,d s s sτ τ δτ τ δ τ δτ= + = + = +τ                    (20) 

where the absolute time moment at the zero-point source is equal to zero. 
It appears that mathematically the process of time interval measurement is 

equivalent to a rotation of the quaternion time interval in the direction of the 
scalar invariant time axis, ø øι̂ t . A comparison between a quaternion time inter-
val, δτ , absolute time interval, δτ , and measured time interval is shown in 
Figure 8. 

Note that first we bring the quaternion time interval, δτ , whose absolute 
value, δτ δ= τ , we would like to measure into the stationary coordinate system 
of the detector. To achieve this, we move the current-time to the source-point 
and rotate the quaternion time interval to the scalar axis. Thus, the absolute time 
interval becomes equal to the scalar time interval, øtδ δτ δ= = τ . Next, we 
perform an experimental measurement of the absolute time interval with a clock, 
which transfers the measured time interval into the past. 

Thus, we succeeded in making a mathematical connection between quater-
nion time and scalar measured time. The relation is obtained from the quater-
nion Euclidean absolute value of the quaternion time interval. 

The quaternion time path, is a sequence of connected quaternion time inter-
vals from the source point and ending at the final destination point.  

The total quaternion time interval is a sum of individual quaternion time in-
tervals, nδτ , along the quaternion time path,  
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Figure 8. Measurement procedure of a quaternion time interval corresponding to a rota-
tion of the quaternion time interval towards the scalar axis. 

 

 
1

.
N

n
n

δ δ
=

= ∑τ τ                            (21) 

Thus, the total quaternion time interval is equal to the interval from the 
source point to the final destination point. We assume that the path of time can 
be broken into, N, discrete quaternion time intervals. Also in this model, we as-
sume that all changes in the quaternion time intervals are due to interactions 
that happen instantaneously at the quaternion time points, while quaternion 
time intervals represent inertial motion of carriers between the quaternion time 
points of interaction. 

The measured length of the quaternion time path, δτ , is equal to the sum of 
the individual measured quaternion time intervals, n nδτ δ≡ τ , along the time 
path from the source-point to the destination-point.  

 
1 1

.
N N

n n
n n

δτ δτ δ
= =

= =∑ ∑ τ                       (22) 

However, multiple different time paths leading to the same quaternion time 
point, τ , will result in different measured times. Multiple time paths and si-
multaneous events are shown in Figure 9. 

Therefore, quaternion time moments may have different measured time in-
tervals depending on their respective time paths. 

Postulate 11 (Arrow of Time). Using properties of quaternions, we can al-
ways express a quaternion time interval as its absolute value multiplied by a uni-
ty quaternion, which we call the arrow of time, τ̂ι .  

 ˆ ˆ ,δ δ δτ= =τ ττ ι τ ι                         (23) 

where,  

 
2ˆ 1.=τι                             (24) 

https://doi.org/10.4236/jmp.2023.1411089


V. Ariel 
 

 

DOI: 10.4236/jmp.2023.1411089 1549 Journal of Modern Physics 
 

 
Figure 9. Multiple paths arriving at the same quaternion time point may result in differ-
ent measured times depending on the time path. 
 
Consequently, the quaternion time interval is equal to the measured scalar time 
interval multiplied by the quaternion arrow of time. The arrow of time can be 
expressed using the definition of the quaternion time interval (15) as, 

ø 1ˆ , .t r
c

δ δ
δτ δτ

 =  
 



τι                        (25) 

The arrow of time and the quaternion time interval are shown in two-dimen- 
sional representation in Figure 10.  

By our convention, action at a distance has a positive direction from the start 
to the destination, therefore, we choose the positive direction of the arrow of 
time as the direction of transition from the source point, sτ , to the destination 
point, dτ . 

Thus, the quaternion time interval, δτ , corresponds to a transition of carri-
ers from the start to the destination. We define a vector velocity, v , of a carrier 
making a transition in space, rδ  , during the scalar time interval, δτ ,  

 ˆˆ ,r
r

r rv r v vδ δ διι δ
δτ δτ δτ ⊥≡ = + = +





                  (26) 

where we define radial velocity, v


 , and rotational velocity, v⊥


. Also, note that 
we can define angular velocity, r̂δι δτΩ ≡



.  
As usual, we can introduce the unity velocity as a purely imaginary unity 

three-dimensional vector,  

 
2 2

ˆ ,v
v vv

v v v
ι ⊥

⊥

+
= =

+




 





 

                    (27) 

which determines the direction of the velocity vector, v , and consequently 
represents the direction of motion in three-dimensional space generally consist-
ing of radial and rotational motion. 
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Figure 10. A quaternion time interval and its arrow of time. 

 
Note that while defining the vector velocity, we relied on the four-dimensional 

nature of quaternion time by using the quaternion norm for the time interval, 
δτ δ= τ . 

Using the definition of the vector velocity, we can write the arrow of time as,  

 øˆ , .t v
c

δ
δτ

 =  
 



τι                         (28) 

Note that motion in the opposite direction is given by the conjugate arrow of 
time,  

 øˆ , .t v
c

δ
δτ

 = − 
 



τι                         (29) 

The arrow of time and its conjugate define an infinite straight line in the four- 
dimensional quaternion time continuum. 

The length of the arrow of time is unity, consequently,  

 
2 2

2 øˆ1 .t v
c

δ
δτ

   = = +      
τι                      (30) 

Thus, we obtained a relation between the scalar time interval, øtδ , of a sta-
tionary source and the scalar length of the remote time interval, δτ , during 
motion,  

 ø
2

2

,
1

t
v
c

δ
δτ =

−

                         (31) 

which is similar to the Lorentz time dilation. 
Note that mathematically the result is a simple consequence of the quaternion 

Euclidean metric of the quaternion time as expressed by the length of time, δτ . 
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Using (30) and (31), we can express the arrow of time in terms of velocity on-
ly,  

 
2

2ˆ 1 , .v v
c c

 
= − 
 
 



τι                       (32) 

Thus, the arrow of time represents a direction and trajectory of motion with ve-
locity, v , generally representing radial and rotational motion. 

One of the key useful properties of quaternion algebra is the availability of 
Euler’s formula, which we use to express the arrow of time as,  

 ( ) ( )ˆ ˆ ˆcos , sin exp ,v v v v vα ι α ι α= =τι                (33) 

where we define the angle between the quaternion time interval and the scalar 
time axis, vα , as the phase of time or Aeon, which is determined by the velocity 
using, 

2

2cos 1 ,

sin .

v

v

v
c

v
c

α

α


= −


 =

                      (34) 

As anticipated, this leads to,  

 .v c≤                            (35) 

Thus, the maximum speed of any inertial motion is equal to, c, which is a con-
sequence of mathematical properties of quaternion time and the definition of the 
vector velocity. 

We can now express the quaternion time interval as a function of its absolute 
value and vector velocity,  

 
2 2

2 2 ˆ1 , 1 , .v
v v v v
c c c c

δ δτ δτ ι
   

= − = −   
   
   



τ             (36) 

Therefore, the absolute value of the time interval, δτ , determines the meas-
ured time interval, while the arrow of time determines all the dynamic properties 
including the speed and direction of motion. The quaternion time interval pro-
vides a complete description of time, space, and motion during inertial transi-
tion from the source quaternion time point to the destination quaternion time 
point,  

 ( )ø
2

2

ˆ ˆexp .
1

v v
t

v
c

δ
δ δτ ι α= =

−
ττ ι                  (37) 

In Figure 11, is a three-dimensional representation of a quaternion time in-
terval, δτ , together with the phase of time. 

Postulate 12 (Arrow of Time and Causality). The arrow of time signifies the 
direction of the time flow in the four-dimensional quaternion time manifold and 
consequently determines the direction of causality.  
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Figure 11. A three-dimensional (z = 0) representation of a quaternion time interval in-
cluding arrow of time. 

 
Note that the notion of time flow and causality was discussed in [21] and ap-

pears in the SHP formalism of relativity [22] [23] [24]. 

3. Doppler Effect Using Time Algebra  

Let us consider an electromagnetic signal transmitter that produces a periodic 
electromagnetic wave with a period described by the time interval, øtδ , at the 
origin of the coordinate system, where we place the signal transmitter. As we 
demonstrated, the electromagnetic wave at the remote location can be described 
by a periodic signal with a period, δτ . Consider the quaternion time diagram in 
Figure 12, where we depict a stationary transmitter at the origin and a moving 
receiver at the remote location. 

Then, using the properties of quaternion division we define the quaternion 
frequency as a multiplicative inverse of the quaternion time interval. 

Postulate 13 (Quaternion Frequency). Let us assume that a velocity depen-
dent quaternion frequency at a remote location is a multiplicative inverse of the 
quaternion time interval,  

( ) ( )1
2

1 ˆ ˆexp exp .v v v vfδδ ι α ι α
δτ δτ

−= = = − = −f ττ         (38) 

Note that the quaternion frequency is proportional to the conjugate of the 
corresponding quaternion time interval, τδ . 

Presently, we will consider only the radial relative motion of the transmitter 
and receiver along their mutual axis, while the circular motion can be similarly 
obtained from the definition of the quaternion frequency (38). 

Postulate 14 (Measured Frequency). Let us assume that the measured fre-
quency at a remote location is the absolute value of the quaternion frequency 
there,  
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Figure 12. Quaternion time interval of a stationary transmitter and a receiver moving 
away from the transmitter. 

 

 
2 2

ø2 2
ø

1 1 1 1 ,v vf f
t c cδτ δ

= = = − = −f              (39) 

where, ø ø1f δτ≡  is the measured frequency at the origin.  
Let us consider physical interpretation of the Doppler effect using definitions 

of the quaternion time interval and quaternion frequency. First, we consider 
radial motion of a receiver moving away from a stationary transmitter, as in 
Figure 12. Here, the light signal is represented by the horizontal wavy line from 
the origin to the final location of the receiver. The motion of the receiver is 
represented by a solid line from the source at the origin to the final destination 
point. We can determine the relationship between time intervals at the trans-
mitter and the receiver. 

2
2 2 2

ø 2 .vt
c

δτ δ δτ= +                         (40) 

This leads to the traditional time dilation equation for the time intervals,  

 ø
2

2

.
1

t
v
c

δ
δτ =

−

                          (41) 

We assume that all observed time intervals transform according to (41) and 
thus we can apply the time interval dilation to the calculation of the light wave 
frequency at a remote location. Therefore, the measured light wave frequency 
ratio at the receiver, rf , and the transmitter, tf , is calculated as,  

 
2 2

ø
2 2

11 1 .
2

r

t

tf v v
f c c

δ
δτ

= = − −                    (42) 
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Next, let us consider a stationary receiver located at the origin and a transmit-
ter of the light signal approaching the receiver, as in Figure 13. Again, we represent 
the light signal as a horizontal line from the transmitter to the receiver. This al-
lows us to calculate the observed time interval dilation, which results in identical 
time dilation to the previous case (41). However, the relative locations of the 
transmitter and receiver are switched and we obtain an inverse relation for the 
Doppler frequency shift, using Figure 13,  

 
2

22
ø

2

1 11 .
2

1

r

t

f v
f t cv

c

δτ
δ

= = +

−

                  (43) 

These results are clearly in agreement with everyday experience of the Dopp-
ler effect and correspond to experimental measurements of the optical Doppler 
shift as demonstrated by Ives and Stilwell [26] [27]. Note that the traditional re-
lativistic Doppler results [14] and [15] are only similar to the proper quaternion 
Doppler expressions (42) and (43) in the case of the transverse Doppler effect. 
The present quaternion Doppler frequency transformation is derived from the 
general quaternion frequency expression (38), which is valid for any arbitrary 
motion. 

4. Application of Time Algebra to Relativity  

We demonstrated that the remote time interval can be represented by a quater-
nion time interval expression, while the measured time interval is given by the 
absolute value. Also, we interpreted a quaternion time interval as a physical 
transition between the source and destination with vector velocity, v . 
 

 
Figure 13. Quaternion time interval of a moving transmitter approaching a stationary 
receiver. 
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Using the definitions of the time interval (15) and the quaternion frequency 
(38), we can express quaternion time and frequency at the destination point, 

( )

( ) ( )

ø

ø

ˆ, exp ,

ˆ, exp .

d s s s v v

d s s s v v

rt
c

f f f

δδ δ δτ ι α

δ δ δ δ ι α

  = + = + = +   
 = + = + − = + −





f f f f f

τ τ τ τ τ
        (44) 

Here we define the frequency interval between the destination and start points 
as, d sδ ≡ −f f f . 

Therefore, the quaternion algebra of time delivers transformations at a dis-
tance of both the time interval and the frequency. Alternatively, we can view the 
time and frequency transformation (44) as the coordinate system transition from 
the start point to the destination point. 

Postulate 15 (Relativistic Coordinate Transformation). The quaternion time 
interval and frequency transformations (44) represent an eight-dimensional re-
lativistic coordinate system transformation, which is due to the measurement at 
a distance and the corresponding Doppler effect.  

Let us suggest a thought experiment of the optical Doppler effect that leads to 
a novel interpretation of the twin experiment of the special theory of relativity. 
Let us consider a transmitter of a periodic signal, such as a clock on a kitchen 
wall, which is also the origin of our stationary coordinate system. Let us also as-
sume the existence of a signal receiver, such as a cook, located close to the kitchen 
clock and capable of observing the time interval and the corresponding period of 
clock oscillations. Then, assuming a constant distance between the cook and the 
stationary kitchen clock, the observed time interval by the cook is equal to, øtδ , 
which is the same time interval appearing on the kitchen clock. 

Next, let us assume that the cook has a twin who is launched into space on a 
spaceship equipped with a spaceship clock. Assume that all the clocks are syn-
chronized prior to the spaceship launch and that the spaceship travels in a straight 
line away from the cook. After the launch, the twin on the moving spaceship ob-
serves the stationary clock on the kitchen wall using a telescope. The twin can 
see the remote time interval, øtδ  on the kitchen wall, while observing time in-
terval, δτ , on the spaceship clock, as shown in Figure 12. 

Since the kitchen clock is moving away from the spaceship, the time interval 
and the period of clock oscillations observed by the twin on the spaceship clock 
will appear longer relative to the stationary kitchen clock. This apparent remote 
time interval increase appears as a result of the remote measurement procedure 
and the optical Doppler effect, as shown in Figure 12 and expressed by (42). 

Next, let us assume that the spaceship turns around and starts moving in the 
direction of the kitchen clock. This time, the stationary cook is watching the 
clock on the moving spaceship with a telescope while comparing the measure-
ment to the stationary kitchen clock. The time interval of the stationary kitchen 
clock will appear relatively shorter than the interval of the moving spaceship 
clock, observed with the telescope by the cook. This is entirely due to the Dopp-
ler period decrease at the stationary receiver relative to the approaching trans-
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mitter, as shown on Figure 13 and expressed by (43). 
Consequently, the time interval change during the round trip will cancel out 

due to the bi-directional nature of the Doppler effect. This implies that upon reu-
nification, the cook and the twin will be exactly the same age and all the clocks 
will show exactly the same time. 

In conclusion, the clock period shift observed during motion of the transmit-
ter relative to the receiver is entirely due to the Doppler effect and the remote 
measurement at a distance. 

Postulate 16 (Relative Time and Frequency due to Doppler Effect). Meas-
ured time intervals and clock periods do not change if the relative distance be-
tween the transmitter and receiver remains constant. However, remotely meas-
ured time intervals and clock periods change depending on the speed and direc-
tion of relative motion due to the Doppler effect.  

Therefore, the relative change in the time interval and the frequency at the re-
ceiver location relative to the transmitter is entirely due to the remote time mea-
surement and Doppler effect, which can be calculated using the division algebra 
of quaternions. 

5. Quaternion Matter and Dynamic Properties 

So far, we only considered the frequency shift of a monochromatic wave, which 
allowed us to calculate the Doppler frequency shift, using the definition of the 
quaternion frequency interval, 

( )ø ø ø ˆ, , , .v
v vf f f f f f
c c

δ δ δ δ δ δ ι δ   = − = − = −   
   





f          (45) 

Postulate 17 (Quaternion Energy). Let us assume that the quaternion frequen-
cy function describes the energy of a monochromatic light wave,  

 ( ) ( )ø ø ˆ ˆ, , exp .v v v
vh
c

δ δε δε δε ι δε δε ι α ≡ = − = − = − 
 

fδε      (46) 

Here, h, is the Planck constant, which relates the energy to the frequency and 
becomes the second most important parameter of the present theory in addition to 
the speed of light, c. Also, øδε , is the scalar potential energy, while ( )v cδε δε=

 

, 
is the vector energy due to motion, which defines the kinetic energy.  

Generally, we expect a signal to be composed of a number of harmonics, cor-
responding to a range of quaternion frequencies with the resulting quaternion 
wave packet,  

 ( )
1

.
N

n
n

δ δ
=

= ∑f f τ                       (47) 

We assume here that the energy of the wave packet can be described similar to 
the energy of a monochromatic wave (46). 

Postulate 18 (Quaternion Mass). Next, we use (46) and introduce the qua-
ternion mass of the wave using Einstein’s energy-mass relation in quaternion 
form,  
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 ø ø2 2 , , ,h f v pm m m
c c c c
δ    ≡ = = − = −   

   

 

m ε δ              (48) 

where we define the vector momentum as,  

 .p mv≡
 

                           (49) 

Thus far, we obtained the quaternion description of inertial particle motion 
given by the inertial energy,  

 ( )2 2
ø , .c m c pcδ = = −m ε                     (50) 

Next, let us consider what happens when external interaction is present. We 
need to distinguish between the externally applied energy, which does not de-
pend on the particle and material properties, and the energy of a particle under 
the influence of the external energy. For example, an electron immersed inside a 
material such as a semiconductor. 

Postulate 19 (Quaternion External Interaction). Let us assume that the ex-
ternal interaction can be expressed by an external quaternion energy similar to 
the free particle energy,  

 ( )ø , .e e ehδ δ δε δε= = −


e fε                    (51) 

For example, in the case of an external electromagnetic interaction we express 
the external energy using a quaternion electromagnetic potential,  

 ( )ø , ,q qδ φ φ= = −e



ε φ                      (52) 

where, q, is the particle charge, which represents electromagnetic interactions, 
and becomes another important parameter of the theory. 

Then, we express the total quaternion particle energy, including the free par-
ticle motion together with external electromagnetic interaction,  

 ( )2 2
ø ø , .h c q m c q pc qδ δ δ δ φ φ= = + = + = + − −





ef mε ε ε φ       (53) 

Using the definition of the Euclidean norm, we can easily obtain the square of 
the absolute value of the total energy, 

( ) ( )222 2 2 2
ø ø ,h f m c q pc qδε δ φ φ= = + + +



             (54) 

which is similar to the relativistic Dirac and Klein-Gordon equations and thus 
describes the dynamic properties of charged particles in the presence of an ex-
ternal electromagnetic interaction. 

Postulate 20 (Measured Total Energy). Let us assume that the measured 
energy is equal to the Euclidean norm of the quaternion energy,  

 ( ) ( )222
ø ø .h f m c q pc qδε δ φ φ= = + + +



              (55) 

In the presence of external electromagnetic interaction, the total energy is gener-
ally not a constant function of time. Therefore, we assume that total quaternion 
energy is generally time dependent, such that,  

 ( ) ( ).hδ δ= fε τ τ                          (56) 
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Note that in this interpretation, the quaternion time, τ , plays the role of the 
system evolution parameter, similar to time interpretation in the SHP formalism 
[22] [23] [24], while the scalar measured time, τ , is the absolute value of the 
quaternion time. 

Finally, we introduce quaternion coordinate transformations in the presence 
of external interactions using (44),  

 
( ) ( )

( ) ( ) ( )( ) ( )
ø

ø

ˆ, exp ,

ˆ, exp .

v v

v v

t t

f f f

δ δ δ δτ ι α

δ δ δ δ ι α

 = =


= − = −





f

τ

τ τ τ
           (57) 

Here, the quaternion time interval is the independent variable while the quater-
nion frequency represents the energy in the presence of an external interaction 
and consequently, is a function of the quaternion time. Thus, we obtained trans-
formations of the time interval and the frequency in the presence of an external 
interaction. 

The measured values of time and frequency are given by the Euclidean norm 
of the quaternion time and the quaternion frequency, respectively, thus resulting 
in a complete model of time and matter dynamics. 

Note that we can define the matter density function by dividing the time de-
pendent quaternion frequency, energy, and mass by their absolute values,  

 ( ) ( )ˆexp .v vf m
δ δ ι α
δ δε

= = = = −
f mεψ τ                 (58) 

Postulate 21 (Matter Density Function). Using the quaternion Euler rela-
tion, we realize that the matter density function is generally a periodic function 
of ( )v̂ vι α τ ,  

 ( ) ( ) ( ) ( )ˆ ˆexp cos sin .v v v v vι α α ι α= − = −ψ τ              (59) 

Also, we note that  

 ( ) ( ) 1.ψ = =τ ψ τ                       (60) 

Note that the quaternion matter density function appears similar to the wave 
function of quantum mechanics.  

Finally, similar to the SHP formalism [23], we can introduce an eight-dimen- 
sional octonion time configuration space, 8∈O  , where the quaternion time, 
τ , is the main independent attribute and the quaternion frequency, ( )f τ , 
which is generally time dependent and is the main dynamic attribute describing 
energy and dynamics. 

Postulate 22 (Octonion Configuration Space). All dynamic properties can 
be obtained using the eight-dimensional octonion configuration space, consist-
ing of the independent quaternion time and the time dependent quaternion fre-
quency,  

 ( )( ), .=O fτ τ                           (61) 

Therefore using division algebras, we obtained a highly comprehensive, sim-
ple, and compelling mathematical framework of time and matter. Additional 
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examples of quaternion dynamics and quaternion Maxwell equations can be 
found in [28] [29], and [30], which we will explore further in a future work. 

6. Conclusion 

In conclusion, we used the concepts of four-dimensional local time and a normed 
division algebra of quaternions to define a comprehensive set of postulates for 
time algebra. We defined the basic quaternion time concepts, such as the qua-
ternion time interval, the measured time, the path of time, and the arrow of time. 
We used the Euclidean norm of the quaternion time interval as a connecting link 
between the quaternion time and the real scalar measured time. Also, we intro-
duced the concepts of quaternion frequency and the measured frequency at a 
distance. This allowed us to develop expressions for the optical Doppler shift 
that can be verified by experimental measurements. We used the Doppler effect 
to explain the twin paradox of the relativity theory thus enhancing the interpre-
tation of relativistic Doppler effect. Using quaternion frequency, we introduced 
quaternion energy and mass. We assumed that external interactions can be also 
represented as a quaternion quantity. This allowed us to represent matter dynamics 
with the help of quaternion matter density function, which is also known as the 
wave function in quantum mechanics. Finally, we demonstrated that an eight- 
dimensional octonion configuration space, consisting of quaternion time and 
the time dependent quaternion frequency, can be used for a description of dy-
namic properties of matter. Therefore, it appears that by using normed division 
algebras, we were able to construct a simple, logical, and compelling theory of 
time and matter. 
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