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Abstract 
Even after extensive research in Quantum Mechanics, we are still unable to 
visualize instant-to-instant motion of an electron in hydrogen atom. That is 
because in QM treatment, potential energy term has been mistakenly as-
sumed to be time-independent instead of depending on the instant-to-instant 
varying position of the orbiting electron [1]. This has led to wrong and weird 
solutions for the electron motion in hydrogen atom. Before the advent of wave 
mechanics, Sommerfeld model of elliptical electron orbits was able to explain 
most features of hydrogen spectra, except for the features associated with elec-
tron spin and magnetic moment interactions. However, the Sommerfeld ellip-
tical orbits were of kinematic origin and could not provide visualization of in-
stant-to-instant dynamic motion of the orbiting electron. Contrary to the QM 
perspective, we find that central core of the electron behaves as a classical par-
ticle while its electrostatic field behaves as a wave phenomenon. As such an 
electron under Coulomb force moves strictly in accordance with Newtonian 
laws of motion. In this paper, we develop dynamic electron orbits in hydrogen 
atom by using energy and angular momentum conservation principle in central 
force field. We have shown that during photon emission, angular momentum 
of the orbiting electron is changed by ħ due to recoil action. This may be the 
origin of various quantization rules. During emission of a photon, elliptical or-
bit transitions are also computed and plotted. Orbit transition time is of the 
order of 10−16 seconds. We have extended this methodology to compute elec-
tron orbits in hydrogen molecular bond and computed the H2 bond energy. 
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1. Introduction 
1.1. Bohr-Sommerfeld model of Electron Orbits 

The structure of hydrogen atom, with just one electron and one proton, is the 
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simplest of all atoms. Yet the detailed understanding of hydrogen atom has so 
far proved to be elusive [2]. Even after more than hundred years of persistent 
struggle, we are neither in a position to understand the physical mechanism of 
emission of photon from the orbiting electron, nor we can mentally visualize the 
instant-to-instant orbiting motion of the electron. Development of various mod-
els of hydrogen atom during early part of twentieth century, in conjunction with 
empirical spectroscopy data, has played a crucial role in the development of mod-
ern physics. It was largely the effort to explain the hydrogen spectrum that in-
spired the evolution of quantum mechanics [3]. Before the advent of wave me-
chanics, developed by Erwin Schrödinger in 1926, Bohr-Sommerfeld model of 
elliptical electron orbits in hydrogen atom was quite well developed. Calcula-
tions based on this model were able to explain most features of the hydrogen 
spectra [4], except for the features associated with electron spin and corres-
ponding magnetic moment interactions.  

Current picture of the hydrogen atom is based on atomic orbitals defined by 
the solutions of Schrödinger equation for hydrogen atom. Atomic orbitals are 
bounded regions which describe a specific volume of space where the electron is 
likely to be located. The solutions of Schrödinger equation for the wave function 
ψ are interpreted to obtain various significant parameters of the electron motion. 
The position probability density of an electron is given by |ψ|2 or square of the 
wavefunction. Thus, as per our current understanding from Schrödinger’s wave 
mechanics, the instantaneous position of an orbiting electron gets smeared over 
the whole volume of an atomic orbital instead of being a specific point on a 
well-defined trajectory of its motion [5]. However, this interpretation of distri-
buted position probability of orbiting electron is quite faulty and invalid since a 
distributed position of the electron will render the Newton’s laws of motion as 
well as the Coulomb’s law of electrostatics as inapplicable and redundant. 

1.2. Conceptual Mistake in Schrödinger’s Equation for Hydrogen  
Atom 

The Schrödinger equation is founded on a conceptual mistake in the representa-
tion of Potential Energy. The Coulomb potential energy of the proton electron 
pair in Hydrogen atom, which is inversely proportional to their instantaneous 
separation distance, has not been correctly modeled in the Schrödinger equation. 
The current solutions of Schrödinger’s equation for different energy states of 
electron in Hydrogen atom appear to describe only the time averaged charge 
density distributions around nucleus and not the trajectories of electrons. That is 
because the potential energy term V in the equation has been assumed as time 
invariant and not dependent on the instantaneous position coordinates of the 
electron. Since the position coordinates of the electron have been wrongly omit-
ted in the input to the equation, naturally the exact position of the electron is 
lost in the final solution. This has created all the weirdness in subsequent inter-
pretations of QM [1].  

However, fundamental problem giving rise to the conceptual mistake in 
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Schrödinger’s Equation is much deeper and intricate which has not been ad-
dressed for more than a century. That fundamental problem is the ambiguity in 
the notion of Fields in general and the electrostatic field in particular. As per the 
modern concept, a field is a fundamental physical quantity that could indepen-
dently exist at every point of the space occupied by the field. But Maxwell had 
supposed that the deformation of luminiferous aether, along with associated 
stresses and strains, represented various fields of physics including the electro-
magnetic field. 

1.2.1. Intrinsic Electric Field 
Consider one electron located at an isolated point P in space, far removed from 
all other charges. This isolated electron will produce an (intrinsic) electric field 
around point P that spreads everywhere in surrounding space. This intrinsic 
electric field or the electrostatic field of an electron is an integral part of the elec-
tron charge and does not depend upon the presence or absence of any other 
charge in its vicinity, not even any test charge. In Maxwell’s terminology of “de-
formations of aether” we might call it “strain field” or “strain wave field” around 
the electron and consider it as an integral part of the electron structure, whatever 
it be. However, a significant point to be considered here is that in the entire in-
trinsic electric field of an isolated electron, there is no potential energy existing 
anywhere.  

1.2.2. Coulomb Field 
However, for practical applications we quantify this electric field of the electron 
by measuring its interaction with a positive test charge positioned at a certain 
point Q at distance r from point P. The force on second charge or test charge is 
caused by the mutual interaction between the electric fields of the two charges 
and is governed by Coulomb’s Law of electrostatics. The intrinsic electric field of 
an electron when quantified with a test charge, using Coulomb’s law, may now 
be termed as Coulomb electric field of the electron. This Coulomb field of the 
electron will map the force acting on test charge located at Q as well as map the 
interaction energy released due to the mutual interaction of the superposed in-
trinsic electric fields of the electron at P and test charge located at Q.  

1.2.3. Ambiguity 
Mapping of the forces and energies for different locations Q of the test charge 
through the Coulomb field has introduced a major ambiguity in the notion of 
Electric Field of the electron. Ambiguity is in the lack of distinction between the 
intrinsic electric field of isolated electron and isolated test charge and the Cou-
lomb electric field of their interaction forces and energies. Moreover, this mapping 
of interaction forces and energies cannot represent a physical field since the 
forces and energies mapped at different field locations Q1, Q2, Q3 etc. do not 
physically exist when the test charge is physically located at Q. Unfortunately, in 
Modern Physics the Coulomb electric field is de-facto treated as the Intrinsic 
electric field of the electron.  
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1.3. Adopting Best Features from Sommerfeld Model and Wave  
Mechanics 

To fully comprehend and understand any physical phenomenon, we must de-
mand mental visualization of such phenomenon. Due to the conceptual mistake 
in the Schrödinger’s equation for Hydrogen Atom as discussed above, the in-
stantaneous position of the orbiting electron cannot be mentally visualized, but 
is said to be smeared across atomic orbitals as probability density. In fact, due to 
this conceptual mistake, the very picture of an electron gets transformed from a 
real particle with mass me and charge “e” to a wave packet whose position and 
momentum parameters get related through Heisenberg’s uncertainty principal. 
The real electron particle never gets transformed to any wave packet; it is only 
the intrinsic electric field of the electron which acquires wave-like properties 
during motion of the electron. Therefore, as in Bohr-Sommerfeld models, we 
must be able to mentally visualize the instant-to-instant orbiting motion of the 
electron in hydrogen atom. Hence, we need to adopt best features from both the 
Bohr-Sommerfeld model as well as the Wave Mechanics that do not contradict 
empirical spectroscopic data [6].  

In order to visualize the instant-to-instant motion of an electron orbiting a 
proton, we must understand as to how exactly the two charges interact to release 
potential energy. How released potential energy is transferred to the kinetic 
energy of interacting particles and how a photon is created. Hence, our basic 
approach in this paper will be to first make use of some of the most fundamental 
concepts about electron, nature of charge, field energy and field interaction [7]. 
With these fundamental concepts, we shall analyze the energy balance of an iso-
lated proton-electron pair and develop the electron trajectory by using energy 
and angular momentum conservation principle in central force field system. 
Based on this methodology we improve upon the Bohr-Sommerfeld model to 
develop dynamic elliptical electron orbits in hydrogen atom. 

By treating the physical space as an elastic continuum, the electron structure is 
found to be of a spherically symmetric standing strain wave core surrounded by 
a radial phase wave type electrostatic field. About 35% of the total mass energy 
of the electron (or positron) is distributed in its electrostatic wave field. The 
Coulomb interaction between two charge particles is effected through superposi-
tion of their wave fields. Positive interaction energy between two similar charges 
implies the transfer of a portion of their kinetic energies to their combined field 
energy. Negative interaction energy between two dissimilar charges implies the 
transfer of a portion of their combined field energy to their kinetic energies. Of 
course, the total energy and momentum of the system is conserved in both cases. 
Without going into the internal details of the electron structure [8], let us examine 
the effect of motion on the overall wave field of the electron. 

We shall derive a relation from purely classical considerations that by emitting 
a photon at angular frequency ω, the angular momentum of orbiting electron is 
changed by ħ due to mechanical recoil action. This fact will form the basis for 
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quantization of angular momentum and hence total energy in elliptical electron 
orbits in hydrogen atom. Further we shall retain the use of quantum numbers n 
and ℓ, as usual. However, on the considerations of restricting the change in an-
gular momentum to ħ, we shall associate quantum number ℓ with angular mo-
mentum of ( )1 2+ ⋅l h  or kħ instead of ( )1+ ⋅l l . This will lead to all ellip-
tical electron orbits. During the emission of a photon, the elliptical orbit transi-
tions at constant angular frequency will also be computed and plotted. 

1.4. Motion Induced Fields and Kinetic Energy of Orbiting  
Electron 

Let us consider uniform motion of an electron along +x axis, at velocity v. Due 
to the finite velocity c of the phase waves, the intrinsic wave field of the electron 
will get deformed. This motion induced field deformation may be considered 
through the concept of retarded time and retarded position vector. The kinetic 
energy of the moving particle will be stored in its deformed field. Let the original 
intrinsic field be deformed such that the change is defined by a motion induced 
field vector A, that will vanish when the particle velocity becomes zero. The mo-
tion induced electric and magnetic fields of the moving charged particle can now 
be derived from the time derivative and curl of this induced field as: 

 
0

1
ε

∂
= −

∂
E A

c t
                           (1) 

and [ ]0µ= ⋅ ∇×B c A                        (2) 

Under certain conditions of motion, like linear acceleration changes, some 
part of the induced fields could be dissociated from the moving particle, whereas 
the bound field can never be dissociated unless the particle gets annihilated. The 
induced fields are an integral part of the moving particle system and it is a mat-
ter of interpretation whether the particle motion controls the induced fields or 
the induced fields govern the particle motion. Even though the ψ wave function 
of Schrödinger’s wave mechanics is purely a mathematical entity, yet it appears 
quite possible that |ψ|2 may be representing the energy density of motion in-
duced electromagnetic fields accompanying the orbiting electron [9]. 

2. Motion of an Electron around a Proton 
2.1. Isolated Proton—Electron System 

Let us consider an isolated proton—electron system with the proton located at 
the center of chosen coordinate system. Neglecting the motion of proton as too 
small, we consider the constrained motion of the electron, with mass me, under 
conservation of total system energy and angular momentum. When the electron 
is far removed from the proton with zero kinetic energy T, we define its elec-
trostatic potential energy V as well as total energy E to be zero. Actually, total 
energy of the system does include mass energies of the two particles, which is 
omitted as a constant term by convention. We adopt a sign convention that the 
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symbols T, V and E representing energy will always be positive. When the elec-
tron is brought to a finite radial distance r from the proton, the conventional 
potential energy (−V) of the system gradually changes from zero to −e2/4πε0r. 
The kinetic energy T of the electron simultaneously increases from zero to 
e2/4πε0r. That is, the interaction energy released by the system, keeps getting 
converted to kinetic energy of the electron on an instant-to-instant basis. Hen-
ceforth, we shall replace the term negative potential energy (−V) with Coulomb 
field interaction energy (V) released by the system. If a small part (En) of this 
energy is either emitted out (Eemt) as a photon or get stored in other interacting 
fields (Eint) such that En = Eemt + Eint, then the system total energy will become 
−En and the remaining K.E. of the electron is given by, 

 = − nT V E .                            (3) 

Here the interaction energy Eint associated with other interacting fields, like 
intrinsic spin and orbital magnetic moments or external electric or magnetic fields, 
may be either positive or negative depending on the type of field interaction. 

2.2. Time Invariant Orbital Parameters 

Corresponding to the conventional total energy of −En, let dn be the radial dis-
tance OD at which the K.E. of the electron becomes zero (i.e. V = En), as shown 
in Figure 1. A sphere of radius dn may be referred as the bounding sphere for 
the electron. All possible electron orbits for angular momenta k.ħ, must be lo-
cated well within this sphere characterized by principal quantum number n. Let 
us therefore examine the shape and size of all possible orbits for given orbital 
quantum numbers n and ℓ.  
 

 
Figure 1. Coulomb interaction energy released (V) by the Electron—Proton system vs. 
their relative radial distance R. In the elliptical orbital motion of the electron, the relative 
radial distance oscillates between OC and OB with corresponding K.E. varying between 
C1C’ and B1B’. 
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2.2.1. Nominal Circular Orbit Parameters 
Let us consider an electron of mass me moving around a proton on a nominal 
circular orbit of radius ac, with uniform tangential velocity vc and kinetic energy 
Tc. On a circular orbit the Coulomb attractive force is completely balanced by 
the centrifugal force as, 

 
2 2

2 2
0

1
4

η
ε

= =
π

e c

c c c

m v e
a a a

 where 
2

04
η

ε
=

π
e               (4A) 

Equation (4A) directly leads to a relation between kinetic energy Tc and po-
tential energy −V for the circular orbit as. 

 
2 1

2 2 2
η

= = =e c
c

c

m vT V
a

                     (4B)  

From Equations (3) and (4B) we get a unique relation for the total energy (−En) 
in circular orbit as,  

 1
2

− = − = −n cE T V V                      (4C) 

Therefore, for a circular orbit of radius ac = dn/2, angular momentum Lc = n.ħ, 
kinetic energy Tc is always equal to En and is half of the Coulomb interaction 
energy (V) released by the system. 

Kinetic energy in circular orbit,  

η
= =c n

n

T E
d

                           (4) 

Using fine structure constant α as,  
2

0

1
4

ηα
ε

= ⋅ =
π  

e
c c

 

We get,  

2
α

=


n
c

cE
a

                           (5) 

Also,  
2 2 2

2
2 2

1 1
2 2 2

= = =
c

c e c
e c e c

L nT m v
m a m a

                  (6) 

From Equations (4)-(6),  
2 2 2

α η
= =

 

c
e e

n na
m c m

 and 
2 2

22
α

= e
n

m cE
n

               (7) 

In the ground state of hydrogen atom, Bohr radius is given by,  
2

0 52.92 pm
η
==



e

a
m

                     (7A) 

2.2.2. Elliptical Orbit Parameters 
However, with the same total energy, there could be many elliptical orbits with 
their angular momentum Le = k.ħ < Lc and differing from each other in steps of 
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ħ. Since Le = 0 will correspond to head on collision and annihilation of electron, 
it cannot correspond to any valid orbit. Therefore, as mentioned earlier, we shall 
take k = (ℓ + 1/2) instead of (ℓ(ℓ + 1))1/2. Let the two vertices of the ellipse be 
identified by subscripts 1 and 2, e.g. radius R1, R2 etc. Then, at the vertices: 

Angular momentum,  

= ⋅ = ⋅ ⋅e e i iL k m v R  (for i = 1, 2 and no summation on i)     (8) 

From Equations (3) and (4),  

1η  
= − = − 

 
n

i n n
i i

dT E E
R R

                       (9) 

which gives,  

2
= =

+ +
n n c n

i
i n i n

E d a ER
T E T E

                        (10) 

From Equations (8) and (10),  

( )

2 2
2 2

2

82= =
+

e c n i
e e i i

i n

m a E TL m T R
T E

                      (11) 

Using Equations (4) and (6), we can replace 22 e c nm a E  with 2
cL  in Equation 

(11) to get, 

 
( )

2
2

2

4
=

+
c n i

e
i n

L E TL
T E

                          (12) 

After substituting Le/Lc = k/n, Equation (12) simplifies to a quadratic in Ti as, 

 
2

2 22 2 1 0
  − − + =  
   

i n i n
nT E T E
k

                    (13)  

Solution of Equation (13) yields two values of Ti, that is T1 and T2 as given below 

 
2 2

1 2 1 2 1
      = − + ⋅ −           

n
n n nT E
k k k

                 (14) 

 
2 2

2 2 1 2 1n
n n nT E
k k k

      = − − ⋅ −           
                 (15) 

Using Equations (10), (14) and (15) radius parameters R1 and R2 can be com-
puted as, 

 1 21

2

1 1

= =
 +   + −    

c c

n

a aR T n n n
E k k k

                  (16) 

 2
22

2

1 1

c c

n

a a
R

T n n n
E k k k

= =
 +   − −    

                  (17) 

From Equations (7), (16) and (17) it can be easily seen that, 
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Major diameter of the ellipse,   
2

1 2
22
α

+ = = =


c n
e

nR R a d
m c

                   (18) 

From these values of R1, R2, T1, T2, we can compute maximum and minimum 
values of velocity (V1, V2) and angular velocity Ω1 = V1/R1, Ω2 = V2/R2. From 
Equations (16) and (17) it can also be shown that the eccentricity ek of the ellipse 
is given by, 

 ( )2 1= −k ne R R d  or, 
2

2 1

2 1

1−  = = −  +  
k

R R ke
R R n

         (19) 

3. Dynamic Orbit Parameters 

After determining the major diameter 2ac the eccentricity ek & R2, V2, Ω2 etc. for 
the given quantum numbers n, ℓ, we can now compute the instant-to-instant 
motion of the electron on this orbit. For this purpose, let us introduce Cartesian 
coordinate system X-Y with origin O at the center of proton as shown in Figure 
2. The radial position vector R will be measured from O, the principal focus of 
the ellipse (proton location). At time t = 0 let us start from the outer vertex C, 
where R = R2, θ = 0, Vt = V2, Vr = 0 and Ω = Ω2. An analytical orbit equation for 
a particle in central force field of Coulomb interaction between a proton and 
electron is given by, 

 ( )
( ) ( )

22
0

00 1 cos1 cos
θ

θ θα θ θ
= =

− − − − 



ke k

k akR
em c e

          (20) 

Orbital angle θ in Equation (20) is measured from outer vertex C (Figure 2), k 
is the angular momentum number given by Equation (8), ek is the eccentricity of  
 

 
Figure 2. Electron 4d Orbit drawn in the scale of Bohr radius a0. In the orbital motion of 
electron its radial distance R from the Proton O varies between OC to OB. 
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the orbit given by Equation (19) and a0 is the Bohr radius. Even though complete 
electron orbits can be drawn for given angular momentum and principal quan-
tum numbers, k and n by using Equation (20), yet for computing time depen-
dent orbit parameters like velocity, acceleration and kinetic energy we need to 
resort to numerical computations. 

For numerical computations with the aid of a digital computer, we may divide 
the complete orbit into N (say 10,000) small elements for computing dynamic 
orbit parameters like angular position θ, radial position R, time t, radial velocity 
Vr, tangential velocity Vt, total velocity Ve, electron kinetic energy T, angular ve-
locity Ω, radial acceleration Ar, tangential acceleration (∂Vt), and angular acce-
leration (∂Ω) at each element. For this purpose, we may take the orbital angle dθ 
for each element to be equal to 2π/N. To compute the orbit parameters for the 
next position (index i) from the old position (index i − 1), following relations 
could be used: 

Orbital angle ( ) ( )1θ θ θ= − +i i d  

Radial position ( )
( )( )

2
0

01 cos θ θ
=

− −k

k aR i
e i

 

Kinetic energy ( ) ( )
η

= − nT i E
R i

 

Tangential velocity ( ) ( )( )= ∗ ∗t eV i k m R i  
Angular velocity ( ) ( ) ( )Ω = ti V i R i  

Radial acceleration ( )
( )( )

( ) ( )2 Ωη
= − + ∗

∗
r t

e

A i V i i
m R i

 

Orbital time step ( ) ( )( )2 1θ= ∗ Ω − +Ωdt d i i  
Orbital time ( ) ( )1= − +t i t i dt  
Radial velocity ( ) ( ) ( ) ( )( )1 1 2= − + − + ∗r r r rV i V i A i A i dt              (21) 

Total velocity ( ) ( )( ) ( )( )2 2
= +e r tV i V i V i   

Tangential acceleration ( ) ( ) ( )( )1∂ = − −t t tV i V i V i dt  
Angular acceleration ( ) ( ) ( )( )1∂Ω = Ω −Ω −i i i dt   

Total acceleration ( ) ( )( ) ( )( )2 2
= + ∂cc r tA i A i V i   

X-coordinate ( ) ( ) ( )( )cos θ= ∗eX i R i i  
Y-coordinate ( ) ( ) ( )( )sin θ= ∗eY i R i i                              (22) 
Implementing these computational steps, through Scilab software, we have 

obtained instant to instant variation of all dynamic parameters like position, ve-
locity, acceleration etc. and have plotted them against time t or angular position 
θ. A few typical curves showing trajectories and various dynamic parameters for 
certain elliptical orbits corresponding to given quantum numbers [n, ℓ], are 
shown in succeeding figures.  

For given quantum numbers n and ℓ the instant-to-instant position variation 
of the orbiting electron describes an elliptical trajectory. The trajectory for 4d 
electron, with nominal quantum numbers n = 4 and ℓ = 2 is shown in Figure 2. 
On this elliptical trajectory, the radial separation of the electron from the central 
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proton, varies from about 28.5 times the Bohr radius a0 at the farthest point, to 
about 3.5 times a0 at the nearest point. The eccentricity of this elliptical orbit is 
about 0.78. The variation of tangential velocity Vt and radial velocity Vr with or-
bital angle θ, for 2p electron is shown in Figure 3. 

As expected, the radial velocity Vr is zero at both the nearest point (θ = 180˚) 
and farthest point (θ = 0˚) of the electron orbit. The tangential velocity Vt is 
maximum at the nearest point (θ = 180˚) and minimum at the farthest point (θ 
= 0˚) of the orbit. Maximum tangential velocity of the 2p electron is about 2400 
km/s. On the other hand, maximum value of radial velocity Vr is just about 1000 
km/s. The variation of same tangential and radial velocities with orbital time t in 
femtoseconds, for 2p electron is shown in Figure 4. On the consideration of the 
frequency of photon likely to be emitted during transition of a 2p electron to its 
lower orbit 1s, a most probable point for emission of photon is marked as Pem in 
both Figure 3 and Figure 4.  

The motion induced electric and magnetic fields accompanying the orbiting 
electron are expected to be proportional to the radial and tangential velocities Vr 
and Vt respectively. These motion-induced electric and magnetic fields are likely 
to get dissociated under appropriate acceleration conditions, within overall con-
straints of energy and momentum conservation. In this regard, angular accelera-
tion profile of the orbiting electron is quite significant in influencing the emis-
sion of induced electric and magnetic fields as a photon. 

The variation of orbital angular acceleration dΩ/dt for 2p electron, plotted 
against orbital time, is shown in Figure 5. The time in this figure is given in 
femto-seconds and is counted from the electron position at the farthest major  
 

 
Figure 3. Variation of tangential and radial velocities for 2p electron with orbital angle. 
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Figure 4. Variation of tangential and radial velocities for 2p electron with orbital time t. 

 

 
Figure 5. Variation of angular acceleration dΩ/dt for 2p electron with orbital time t. 

 
vertex. Maximum value of angular acceleration attained while the electron ap-
proaches the nearest vertex, is about 4.4 × 1032 rad/s2. The angular acceleration 
profile of an electron in 2p orbit shows steepest rise and fall in the vicinity of the 
nearest vertex. This region of steepest rise and fall in angular velocity is the 
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probable region for emission of photon, as depicted by point Pem in the figure. 
The kinetic energy profile of orbiting electron in 2p orbit is shown in Figure 6. 

Maximum value of kinetic energy of the orbiting electron in 2p orbit is about 
16.7 eV which occurs at the nearest vertex. Currently, as per QM interpretations 
of electron motion in hydrogen atom, only the total energy of about −3.4 eV is 
associated with the electron in 2p state and there is no mention of any kinetic 
energy possessed by the orbiting electron. However, total amount of about 3.4 
eV has already been emitted out of the system in 2p state, and is no longer 
available for another photon emission. The energy to be supplied for a new 
photon to be emitted during transition from 2p state to 1s state will have to be 
extracted from the electron kinetic energy existing in the motion-induced elec-
tric and magnetic fields accompanying the orbiting electron. 

The salient orbital parameters for orbiting electron in Hydrogen atom, are 
given at Table 1. One very important parameter to be noted from this table is 
the time period of the orbital motion, which is independent of ℓ. That is, for a 
given n the time period of all elliptical orbits is the same as that of a corres-
ponding circular orbit. If τ(n) is the orbit time period and S(n, ℓ) is the total area 
of the elliptical orbit then the orbital magnetic moment μL will be given by, 

 µ
τ
⋅

=L
e S                           (23) 

The orbital magnetic moment μL in the units of Bohr magneton μB is given in 
the last column of Table 1. It can be easily seen that the ratio of μL to μB comes 
out to be equal to total angular momentum number k. Further, maximum veloc-
ity and minimum vertex radii are of the same order of magnitude for all s states. 

 

 
Figure 6. Variation of kinetic energy and total energy for 2p electron with orbital time. 
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Table 1. Salient orbital parameters. 

Orbit 
No. 

Total 
energy 

Eccentricity 
Time 

Period 
Vertex-radii  
Min. Max. 

Kinetic 
Energy Max. 

Total  
Velocity 

Max 

Angular  
frequency 

Max. 

Angular  
acceleration 

Max. 

Orbital 
Magnetic 
Moment 

 ev  fs a0 ev m/s rad/s rad/s2 μB 

1s −13.61 0.866 0.152 0.13 1.87 189.50 8.16e+6 1.15e+18 5.63e+35 0.500 

2s −3.40 0.968 1.216 0.13 7.87 210.83 8.61e+6 1.28e+18 7.20e+35 0.500 

2p −3.40 0.661 1.216 1.35 6.65 16.69 2.42e+6 3.38e+16 4.44e+32 1.500 

3s −1.51 0.986 4.103 0.13 17.87 214.66 8.69e+6 1.30e+18 7.51e+35 0.500 

3p −1.51 0.866 4.103 1.21 16.79 21.05 2.72e+6 4.26e+16 7.72e+32 1.500 

3d −1.51 0.553 4.103 4.03 13.98 5.25 1.36e+6 6.38e+15 1.48e+31 2.500 

4s −0.85 0.992 9.727 0.13 31.88 215.98 8.71e+6 1.31e+18 7.61e+35 0.500 

4p −0.85 0.927 9.727 1.17 30.83 22.45 2.81e+6 4.55e+16 8.97e+32 1.500 

4d −0.85 0.781 9.727 3.51 28.49 6.90 1.56e+6 8.39e+15 2.89e+31 2.500 

4f −0.85 0.484 9.727 8.25 23.75 2.45 9.27e+5 2.12e+15 1.55e+30 3.500 

4. Photon Emission from Orbiting Electron 
4.1. General Conditions for Emission  

In accordance with the foregoing discussions, we may visualize the emission of a 
photon wave packet from the vicinity of an orbiting electron, under the follow-
ing general conditions: 

1) The angular frequency ω, will govern the spatial extension as well as the 
energy content (ħω) of the emitted photon wave packet. 

2) The photon will be emitted in the orbital plane of the electron and along 
tangential velocity vector of the orbiting electron. 

3) The strength of induced E and B fields in the region around relative posi-
tion vector r, will be governed by radial and tangential components of the elec-
tron velocity (vr, vt) respectively. The time rate of change of these fields will in-
fluence the photon emission process and may be governed by instantaneous 
time rate of change (dω/dt) of angular velocity ω of the orbiting electron. 

4) The direction of emission of the photon may get reversed if the relative 
phase of induced E field is opposite at the time of emission. That is, the photon 
will be emitted in the direction of vt if the electron is approaching the nucleus 
(−ve vr) and in a direction opposite to vt if the electron is receding (+ve vr) from 
the nucleus at the time of emission. 

5) During the photon emission process, the conservation of overall system 
energy and angular momentum will be ensured. 

4.2. Emission Constraints and Characteristics  

The electron shells, characterized with principal quantum number n, are de-
picted with smallest number n = 1 for the innermost shell and larger numbers n 
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= 2, 3, 4 … etc. for outer shells. When an electron transitions from an outer shell, 
with quantum number m, to an inner shell with quantum number n, this transi-
tion will be accompanied with the emission of a photon of angular frequency 
ωmn given by Equation (7) as, 

 
2 2

2 2
1 1

2
α

ω  = −  

e
mn

m c
n m

                     (24) 

A photon of angular frequency ωp will be emitted from the induced field of or-
biting electron when the instantaneous angular velocity Ω of the orbital motion 
is nearly equal to ωp. Computer simulations of the electron orbit transitions 
show that most probable zone of photon emissions (in forward direction) is 
where the orbital angle θ from the outer vertex, is in the range of π/2 to 3π/4. In 
this orbital range inward radial velocity (vr) of orbiting electron is maximum 
whereas tangential velocity (vt) is rapidly increasing and the corresponding tan-
gential acceleration is maximum. As such, orbit transitions from any circular or-
bit appear to be highly improbable. At the instant of photon emission when θ = 
θp, as the photon is emitted in the direction of tangential velocity vector vt, the 
tangential velocity as well as tangential acceleration both are required to be high. 
However, angular frequency of the emitted photon ωp must satisfy two condi-
tions, that is, ωp = angular velocity Ω and simultaneously ωp = ωmn of Equation 
(24).  

4.3. Photon Emission - Recoil 

Let us consider an electron A, with kinetic energy E, orbiting the central proton 
with tangential velocity vt perpendicular to the instantaneous radius r. In view of 
strong Coulomb bond, we may regard this electron orbiting the central proton 
as a coupled rotating body whose angular momentum and energy content are 
conserved. The angular momentum of this rotating body can only change if 
some torque is applied to this coupled rotating body system. During the emis-
sion of a photon B in the orbital plane, when a small fraction of kinetic energy 
δE is being transferred to the photon the orbiting electron will experience some 
recoil torque T. Let the electron A act on photon B for a small angle δθ to trans-
fer a small fraction of energy δE to photon B. We may assume that the action of 
recoil torque T, exerted by the photon B under emission, remains constant 
throughout this energy transfer interaction between A and B. Then the energy 
transferred from A to B will be given by δE = T·δθ. If this interaction process 
lasts for a very small interval of time δt, then an angular momentum impulse of 
IL = T·δt will be imparted to both A and B in opposite directions. This impulse 
will imply a small change in angular momentum δL such that, 

 ( ) ( )δ δ δ δθ δ δ δθ δ δ ω= = ⋅ = ⋅ = =LL I T t E t E t E        (25) 

The recoil impulse experienced by the electron while transferring a small frac-
tion δE of its K.E. to the photon is therefore given by Equation (25). Hence, the 
total change in angular momentum ΔL, when a photon of total energy content 
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ΔE = ω·ħ is emitted, will be, 

 ω ω ω∆ = ∆ = ⋅ = L E                    (26) 

This is an important result which forms the basis of angular momentum 
quantization and hence total energy quantization in sub-atomic phenomena. 
The photon emission recoil phenomenon is unique in two respects. Firstly, the 
actual recoil interaction between the electron and the photon is affected through 
the action of released photon fields Ep and Bp on the bound −ve electrostatic 
field of the moving electron. Secondly, the emission phenomenon is unique in 
the sense that depending on the relative phases of Ep and Bp fields, the photon 
may be emitted by the moving electron either in forward direction or in rear-
ward direction. The photon will be emitted in forward direction when at the 
time of emission, the electron is approaching the nucleus on its elliptical orbit 
and the total angular momentum of the orbiting electron will reduce by ħ. The 
photon will be emitted in rearward direction when the electron is receding from 
the nucleus and the total angular momentum of the orbiting electron will in-
crease by ħ. 

5. Orbit Transition Parameters 

Let us consider the electron transition from orbit A specified by (n1, ℓ1) to orbit 
B (n2, ℓ2), such that n1 > n2 and ℓ2 = ℓ1 − 1, then from Equations (7) and (18), 

2 2

1 2
12

α
= em cE

n
 and 

2
1

1
1

2 α
α

= =
 

e

n cd
m c E

 

 
2 2

2 2
22

α
= em cE

n
 and 

2
2

2
2

2 α
α

= =
 

e

n cd
m c E

              (27) 

The angular frequency of the photon to be emitted is ωp = (E2 − E1)/ħ. Angular 
momentum for orbit A is ( )1 11 2= + ⋅ =  aL k  and for orbit B is  

( )2 21 2= + ⋅ =  bL k . Therefore, change in angular momentum during the 
transition from higher orbit A to lower orbit B will be (k1 − k2) ħ = ħ. Corres-
ponding change in total energy during this transition will be ΔE = (E2 − E1). The 
emission will take place when the electron is approaching the nucleus. The com-
plete orbital parameters for A and B can be worked out as per procedure out-
lined in Section 3 above. While computing the dynamic parameters of orbit A, 
we may extract the values of salient parameters at the instant when index i = Ip 
where the angular speed Ω of orbiting electron just matches the angular fre-
quency ω of the photon under emission as, 

 ( ) ( )2 1ωΩ = = − pi E E                     (28) 

To compute the transition trajectory from A to B we may mark all orbital pa-
rameters given by Equations (20) and (21) with index i = Ip as the initial or 
starting point for the transition trajectory. Divide the transition trajectory path 
length into N (say 2000) equal steps. With δL = ħ/N or dk = 1/N and dE = (E2 − 
E1)/N, let index s represent one of the steps of the transition trajectory such that 
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s varies from 1 to N. Following relations may be used for step-by-step computa-
tion of transition trajectory. 

Primary parameters:  

( ) ( )Ω = Ω ps I ; ( ) 1= − ∗k s k s dk ; ( ) 1= + ∗nE s E s dE       (29) 

Associated parameters:  

Instantaneous radius ( ) ( )
( )
⋅

=
Ω⋅


e

k s
R s

m s
  

Tangential velocity ( ) ( ) ( )= ∗Ωtv s R s s  

Kinetic energy ( ) ( ) ( )α
= −



n n
cT s E s

R s
 

Total velocity ( ) ( )2
= n

e
e

T s
v s

m
  

Radial velocity ( ) ( )
( )( ) ( )( ) ( )( )2 21

1
−

= −
−

r
r e t

r

v s
v s v s v s

abs v s
 

Radial acceleration ( )
( )( )

( ) ( )2
α

= − + ∗Ω


r t

e

cA s v s s
m R s

 

Time increment 
( ) ( )( )

( ) ( )
2 1

1

 ∗ − −
=  

+ −  r r

R s R s
dt abs

v s v s
  

Angle θ increment ( )θ = Ω ∗d s dt   
Angle θ ( ) ( )1θ θ θ= − +s s d  
Orbital time ( ) ( )1= − +t s t s dt  
X-axis location ( ) ( ) ( )cosθ= ∗X s R s s  
Y-axis location ( ) ( ) ( )sinθ= ∗Y s R s s                             (30) 
After repeating these steps N times to compute all orbital parameters, the or-

bit transition trajectory will join the initial orbit A to the final orbit B. We can 
now plot the transition trajectory along with orbits A and B. However, special 
care is required to be taken while joining the transition trajectory to the orbit B. 
While initial angle θ0 of Equation (20) is assumed to be zero for orbit A to en-
sure that major axis of the ellipse is aligned with the X-axis, θ0 for orbit B is to be 
computed from θ1 = θ(s) for s = N. Let θ2 be the orbital angle of orbit B when the 
angular velocity Ω(B) = ωp then the initial angle for orbit B will be given by θ0 = 
θ1 − θ2. With this, major axis of orbit B will get inclined with major axis of orbit 
A by angle θ0. Further, on the considerations of velocity and acceleration con-
straints discussed above, it is observed that most probable transitions from orbit 
A specified by (n1, ℓ1) to orbit B (n2, ℓ2), are the ones where n2 = ℓ1 and ℓ2 = ℓ1 − 
1.  

A few plots of some typical orbit transitions are shown in Figures 7-12. Some 
of these plots show the variation of some salient orbit parameters during the or-
bit transition stage. The photon emission time for various transitions is found to 
be of the order of 10−16 seconds which appears to be too small for the actual spa-
tial extension of the photon. This is because the photon is not “created” from a  
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Figure 7. Electron orbit transition from 3d to 2p in which case photon is emitted in the 
direction of tangential velocity vector. 
 

 
Figure 8. Electron orbit transition from 2p to 1s in which case photon is emitted in the 
direction of tangential velocity vector. 
 
single point in space, but “released” from the spatially extended induced field of 
the electron and re-forms to its characteristic shape in accordance with the vec-
tor wave equation [8].  
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Figure 9. Variation of radial velocity Vr in Orbit Transition from 2p to 1s. 

 

 
Figure 10. Variation of angular velocity Ω in orbit transition from 3d to 2p. 

 
The transition of a 3d electron orbit to a 2p orbit is shown in Figure 7. Both 

old and new orbits are in the same plane with a common focus at the proton po-
sition, which is assumed to be fixed at the origin of the X-Y coordinate system.  
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Figure 11. Variation of kinetic and total energy in orbit transition from 3d to 2p. 

 

 
Figure 12. Electron orbit transition from 3s to 2p in which case photon is emitted in a 
direction opposite to the tangential velocity vector. 
 
Whereas the major axis of old 3d orbit is on the X-axis, the major axis of new 2p 
orbit gets tilted during transition as shown. Length of major axis also shrinks 
during transition from 18a0 of 3d orbit to 8a0 of 2p orbit. Further, in comparison 
with time period of 4.1 fs for 3d orbit, the time taken by this orbit transition is 
just about 0.14 fs. Overall, the orbiting electron comes nearer to the central pro-
ton after this transition, with minimum vertex radius of 4.03a0 in 3d orbit getting 
reduced to 1.35a0 in new 2p orbit. This 3d to 2p orbit transition is associated 
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with emission of a Balmer series first line of 656.1 nm wavelength.  
Similarly, the transition of a 2p electron orbit to a 1s orbit is shown in Figure 

8. Both orbits are in the same plane with a common focus at the proton position. 
Whereas the major axis of old 2p orbit is on the X-axis, the major axis of new 1s 
orbit gets tilted during transition as shown. Length of major axis also shrinks 
during transition from 8a0 of 2p orbit to 2a0 of 1s orbit. Further, in comparison 
with time period of 1.2 fs for 2p orbit, the time taken by photon emission 
process is just about 0.04 fs. Overall, the orbiting electron comes nearer to the 
central proton, with minimum vertex radius of 1.35a0 in 2p orbit getting reduced 
to 0.13a0 in new 1s orbit. This 2p to 1s orbit transition is associated with emis-
sion of a Lyman series first line of 121.5 nm wavelength.  

For the electron orbit transition from 2p to 1s orbits, variation of radial veloc-
ity Vr has been shown in Figure 9. X-axis of this plot depicts orbital angle θ in 
units of π radians. Whereas maximum radial velocity of the electron in 2p orbit 
varies between −106 to + 106 m/s, corresponding velocity in 1s orbit varies be-
tween −3.8 × 106 to + 3.8 × 106 m/s. Most probable point for emission of a pho-
ton from 2p orbit is marked with a vertical dotted line on the 2p Vr curve. At the 
transition from 2p to 1s orbit, magnitude of radial inward velocity starts shoot-
ing up from the transition point onwards as shown in the figure. Similarly, the 
variation of angular velocity Ω for the electron orbit transition from 3d to 2p or-
bits has been shown in Figure 10. Maximum value of angular velocity in 3d or-
bit is of the order of 6.5 × 1015 rad/s and corresponding maximum value in 2p 
orbit is of the order of 3.3 × 1016 rad/s. During the transition from 3d to 2p orbits, 
the angular velocity is assumed to remain constant for about 0.14 fs. Magnitude 
of the angular acceleration at the point of probable transition, increases the overall 
probability of such orbit transition. 

Variation of kinetic and total energies of the orbiting electron is shown in 
Figure 11 for an orbit transition from 3d to 2p. In accordance with our current 
understanding, electron transition from 3d to 2p states is only associated with 
change in total energy from −1.5 eV to −3.5 eV and there is no clarity regarding 
the instant-to-instant kinetic energy changes in the two states. As seen from 
Figure 11, maximum kinetic energy of the orbiting electron is limited to about 
5.3 eV in 3d orbit and it changes to about 16.7 eV in 2p orbit. During the orbit 
transition stage, after a slight dip in the electron kinetic energy, it suddenly 
shoots up immediately after entry in the 2p orbit. In contrast to a circular orbit, 
where the magnitude of total energy is always equal to the kinetic energy, the 
maximum kinetic energy of electron in an elliptical orbit is always much higher 
than the magnitude of corresponding total energy.  

Variation of electron kinetic energy on elliptical orbit is very significant for 
emission of a photon from the motion induced electric and magnetic fields ac-
companying the electron. That is because the variation in kinetic energy of the 
orbiting electron is associated with variation in magnitude of linear and angular 
velocities giving rise to the linear and angular acceleration of the electron. Ulti-
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mately it is the change in linear and angular acceleration linked with corres-
ponding change in kinetic energy of the orbiting electron that leads to the dis-
sociation of a part of induced electric and magnetic fields in the form of a pho-
ton emission. Thus, a photon cannot be emitted from a circular electron orbit. 
As discussed earlier in Section 4.3, any photon emission from a hydrogen atom 
will always be associated with a change in electron angular momentum by ħ 
during corresponding orbit transition. Therefore, all excited states in hydrogen 
atom must correspond to all elliptical electron orbits.  

Figure 12 shows an unusual type of electron orbit transition where a highly 
eccentric 3s orbit transitions to a less eccentric 2p orbit on emission of a per-
missible energy photon. All usual type of orbit transitions occur during accelera-
tion phase of the orbiting electron when the electron is approaching the central 
proton in hydrogen atom. In this unusual type of orbit transition permissible 
energy photon is emitted during deceleration phase when the electron is reced-
ing from the central proton. In this case, due to opposite sign of radial velocity at 
the instant of emission, the photon is emitted in a direction opposite to the tan-
gential velocity vector. As such, the angular momentum of orbiting electron in-
creases by ħ during emission of a permissible energy photon in backward direc-
tion. However, due to a relatively lower order of electron velocities and accelera-
tions at the instant of permissible energy photon emission, such unusual orbit 
transitions are considered quite less probable. 

6. Magnetic Moments and Magnetic Interaction Energy 

In the foregoing analysis and development of electron orbits in hydrogen atom, 
we have neglected some small effects for the sake of simplicity because their 
contribution does not make any significant change in the electron orbits or their 
dynamic parameters. In that, firstly we have neglected the use of reduced mass of 
the electron by not considering the electron motion in a Center of Mass coordi-
nate system. By taking into account the reduced mass of the electron we can 
make fine corrections in the frequency and wavelength of the emitted photons. 
Secondly, we have so far neglected the contributions of orbital magnetic moment 
and spin magnetic moments of electron as well as the proton and their asso-
ciated magnetic interactions. We shall discuss these magnetic interactions in this 
section and examine their contributions to the refinement of computed frequen-
cies and wavelengths of emitted photons.  

6.1. Atomic Magnetic Moments 

In a hydrogen atom there are two types of magnetic moments associated with 
the electron and proton. First one is the orbital magnetic moment μL which de-
velops due to the orbiting motion of the electron and is proportional to its an-
gular momentum L. It can be expressed in terms of Bohr Magneton μB which is 
defined by eħ/2me and equals in magnitude to 9.274 × 10−24 J/T or Am2. For any 
elliptical orbit with angular momentum quantum number k = ℓ + 1/2 the orbital 
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magnetic moment can be computed with Equation (23) and as given in the last 
column of Table 1, it comes out to be, 

 µ µ⋅= −L Bk                            (31) 

Second type of magnetic moment is the intrinsic magnetic moment of elec-
tron and proton that is associated with their intrinsic spin angular momentum. 
For the electron this intrinsic magnetic moment is given by μe = −9.284 × 10−24 
J/T or Am2. For the proton this magnetic moment is given by μp = 1.41 × 10−26 
Am2. In addition to these three types of magnetic moments there is a magnetic 
field B0 induced at the origin or the proton location due to the orbiting motion 
of the electron. Using Biot-Savart law we get B0 in terms of electron tangential 
velocity and angular momentum as, 

 0 0 0
0 2 3 34 4 2

µ µ µ
µ= − = − = −

π π
⋅ ⋅

⋅ ⋅ ⋅
π

t
B

e

e V ke LB
r m r r

              (32) 

6.2. Magnetic Interaction Energy in Electron Orbits 

For the sake of simplicity, we assume that the directions of all magnetic mo-
ments μe, μp, μL and the orbital magnetic field B0 are all either parallel or an-
ti-parallel in hydrogen atom [10]. Let us refer the orbiting motion of electron to 
an XYZ Cartesian coordinate system and select the XY plane as the orbital plane 
with origin at the proton location. Let us consider positive Z-axis as the positive 
direction for all spin vectors (S for electron and I for proton), angular momen-
tum vector (L), all magnetic moments (μe, μp, μL) and magnetic field (B0). When 
these vectors point in negative Z-axis direction, their values will be considered 
−ve. By assigning −ve value to the electron spin magnetic moment (μe) it is im-
plied that spin angular momentum vector S is +ve. This can be concisely de-
picted symbolically as (S↑, μe↓). Similarly for the electron orbit, when the angu-
lar momentum vector L is positive, the corresponding orbital magnetic moment 
will be negative which can be depicted as (L↑, μL↓). Therefore, the mutual mag-
netic interaction energies become either positive or negative depending on the 
relative orientation of the spin and angular momentum vectors. Assuming pa-
rallel orientation of all magnetic moments, with r as the instantaneous radial 
distance of the orbiting electron, kħ as the angular momentum of the elliptical 
orbit and proton spin vector aligned along +Z-axis, three magnetic interaction 
energies are given below [11]. 

Proton-electron Spin Interaction with (I↑, S↓) and (μp↑, μe↑) is, 

 ( )0
34

µ
µ µ= −

πpe p eE
r

 where μe is negative.              (33) 

Proton Spin-Orbit Interaction with (I↑, L↓) and (μp↑, μL↑) is, 

 ( )0
0 32

µ
µ µ µ= − =⋅

πpL p p B
kE B

r
                    (34) 

Electron Spin-Orbit Interaction with (S↓, L↓) and (μe↑, μL↑) is, 
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 ( ) ( )0 0
3 34 4

µ µ
µ µ µ µ= =⋅ ⋅−

π πeL e L e B
kE

r r
 where μe is negative.       (35) 

With the above notation, maximum positive magnetic interaction energy for 
any elliptical electron orbit will be given by (I↑, S↓, L↓) combination of spin and 
angular momentum vector directions. Corresponding orientation of magnetic 
moments will be (μp↑, μe↑, μL↑) and will lead to maximum magnetic interaction 
energy Em1 given by sum of Equations (33), (34) and (35) as,  

 1 = + +m pe pL eLE E E E                      (36) 

On the other hand, maximum negative magnetic interaction energy will be 
given by (I↑, S↓, L↑) combination of spin and angular momentum vector direc-
tions. Corresponding orientation of magnetic moments will be (μp↑, μe↑, μL↓) 
and will lead to minimum magnetic interaction energy Em2 given by, 

 2 = − −m pe pL eLE E E E                     (37) 

For any electron orbit [n, ℓ], it is well known that the conventional total ener-
gy −En only depends on the principal quantum number “n” and is independent 
of angular quantum number ℓ or its revised form k = ℓ + 1/2. As such, the ener-
gy of emitted photon, being the difference between the total energy levels of ini-
tial and final orbits, appeared to depend only on “n” in accordance with Bohr 
model. However, the magnetic interaction energy Emi as given by Equations (36) 
and (37), does depend on the orbital magnetic moment μL which is directly pro-
portional to the orbital angular momentum L and hence to the angular momen-
tum number “k”. The magnetic interaction energy Emi directly adds up to the 
conventional total energy −En of the orbiting electron and hence directly influ-
ences the energy of emitted photon, though by a very small fraction of an eV. 
This small contribution of magnetic interaction energy to the conventional total 
energy −En and hence to the energy of the emitted photon, accounts for the 
so-called fine structure splitting of hydrogen spectrum lines. 

In an ensemble of hydrogen atoms in excited states, the conventional total 
energy of some atoms with spin combination of (I↑, S↓, L↓), will get shifted up-
wards with the contribution of magnetic interaction energy Em1. On the other 
hand, conventional total energy of some other atoms with spin combination of 
(I↑, S↓, L↑), will get shifted downwards with the contribution of magnetic inte-
raction energy Em2. Overall effect of these shifts in energy levels of any electron 
orbit [n, ℓ] will produce the well-known fine structure of hydrogen spectrum. 
Since the magnetic interaction energies Em1 and Em2 are proportional to 1/r3, 
their magnitude will vary from instant to instant during orbiting motion of the 
electron. It appears quite likely that at the instant of orbit transition, the availa-
ble magnetic interaction energy will be carried along with the emitted photon. 
The variation of interaction energies Em1 and Em2 with orbital angle θ is shown in 
Figure 13 and Figure 14 for 3d and 2p orbits respectively. A probable point of 
photon emission, Pem, is marked with a vertical dotted line, indicating the mag-
nitude of interaction energies Em1 and Em2 at emission time, in both Figure 13 
and Figure 14.  
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Figure 13. Variation of magnetic interaction energy for 3d orbit with orbital angle θ. 

 

 
Figure 14. Variation of magnetic interaction energy for 2p orbit with orbital angle θ. 

7. Electron Orbits in Molecular Hydrogen Bond  

When two hydrogen atoms come close, the two protons will tend to repel each 
but their electron orbits will tend to get pulled towards opposite protons. In the 
process, the two electrons e1 and e2 which were earlier orbiting individual pro-
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tons P1 and P2, will now start orbiting the line joining P1P2, called bond axis. Fi-
nally, when all forces acting on P1, P2, e1 and e2 get dynamically balanced, the 
configuration of these particles as shown in Figure 15, will constitute the hy-
drogen molecular bond.  

For analysis of this bond configuration, let us start with the computation of 
forces acting on the constituent protons and electrons. If Fpp is the Coulomb re-
pulsion force acting on P1, P2; Fpe is the attraction force acting on any pro-
ton-electron pair and Fee is the repulsion force acting on e1, e2 then,  

 
( ) ( )

2

2 2
0

1
4 2 2

η
ε

= =
πpp
eF

a a
                     (38) 

 
( )2 2122
η η

= =eeF
ar

                        (39) 

 
( )22
η

= −peF
a

                          (40) 

With angle θ = π/3, since 2 cos 0θ+ =pp peF F , resultant of all forces acting on 
each of the two protons vanishes. Similarly, all axial forces acting on two elec-
trons get balanced due to symmetry of the configuration. Regarding the force 
balance in transverse or radial direction, the resultant of all Coulomb forces on 
each electron must get balanced with the centrifugal force acting on each orbit-
ing electron. If vt is the tangential velocity of each electron, then the requirement 
of force balance in radial direction gives, 

2

2 22 cos 0
612 4

η η π − ⋅ + = 
 

e tm v
ra a

 

which on simplification yields the kinetic energy Te of one electron as, 

 
( ) 29 3

24 2

η−
= =e t

e
m v T

a
                       (41) 

Next, we need to consider the Coulomb potential energy of two protons and  
 

 
Figure 15. Relative positions of two protons P1, P2 and two electrons e1, e2 in hydrogen 
molecular bond. 
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two electrons shown in the hydrogen bond configuration. The potential energy 
Vpp between protons P1, P2; the potential energy Vee between electrons e1, e2 and 
potential energy Vpe between one proton-electron pair (P1, e1) is given by, 

 
2
η

=ppV
a

; 
2 3
η

=eeV
a

; 
2
η

= −peV
a

                  (42) 

Hence, total potential energy of the system configuration VT is given by, 

 
( )3 3 1

4
2 3

η−
= + + = −T pp ee peV V V V

a
                 (43) 

For the orbiting electrons e1 and e2, on the analogy of hydrogen atom, the angu-
lar momentum for a circular orbit can be taken as ħ. Rewriting Equation (41) in 
the form of angular momentum and assuming L = ħ for a circular orbit, we get, 

 
( )2 2 2 2

2 2

9 3

242 6

η−
= =

e t

e e

m v r
am r m a

                    (44) 

From Equations (7A) and (44) we get the value of “a”, the half bond length as, 

 
( ) ( )

2
044 29.12 pm

9 3 9 3η
= = =

− −



e

aa
m

 where a0 is the Bohr radius   (45) 

The conventional total energy E of the hydrogen molecular bond configura-
tion can now be obtained as a sum of total potential energy VT and kinetic ener-
gy of two orbiting electrons by using Equations (41), (43) and (45) as, 

 
( ) ( )

0

3 3 1 9 3 1.10052 29.95 eV
122 3

η η η− −
= + = − + = − = −T eE V T

a aa
  (46) 

Whereas the binding energy of two isolated hydrogen atoms adds up to 27.2 
eV, total binding energy of hydrogen molecule is found to be 29.95 eV. This 
shows that the hydrogen molecular bond configuration discussed above is stable 
with a dissociation energy of about 2.8 eV. The measured dissociation energy of 
hydrogen molecular bond may be a little higher due to the kinetic energy of the 
dissociated atoms. Theoretical bond length of hydrogen bond (2a) of about 58 
pm is low in comparison with the measured bond length of about 73 pm. This 
may be due to axial thermal vibrations of the two protons constituting the bond. 
In fact, with axial vibrations of the hydrogen bond, the two orbiting electrons 
may not stay on a common orbit. The orbits of two electrons may get separated 
and the two orbits may get slightly inclined to the original transverse plane, with 
two electrons staying in phase opposition to each other.  

During the formation of the hydrogen molecular bond, the two hydrogen 
atoms will usually collide against one another with some initial kinetic energy. 
The initial kinetic energy of the constituent atoms will have to be dissipated out 
by some physical mechanism to enable the formation of a stable bond. One 
physical mechanism that is highly probable in this regard, is the pushing up of 
one of the orbiting electrons to a higher electronic state, a higher orbit with say 
2ħ angular momentum to absorb the available kinetic energy of the collision. 
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The excited electron may subsequently transition back to the ground state by 
emitting a photon to dissipate out the excess energy. Hence, the formation of 
hydrogen molecular bond is associated with emission of a photon from an ex-
cited orbiting electron.  

8. Summary & Conclusion 

In this paper, we have attempted to develop a new model, a new methodology, to 
compute the detailed instant to instant motion of electron in Hydrogen atom, 
based on the principle of conservation of energy and momentum. For this, sev-
eral new basic concepts have been used to develop a better insight and funda-
mental understanding of the sub-atomic phenomenon. The new concepts in-
clude the structure of the electron, Coulomb interaction, potential energy etc. 
We have also shown that whenever a photon is emitted from an orbiting elec-
tron, the angular momentum of that electron is changed by ħ. This may be seen 
as the origin of various quantization rules. After introducing several new fun-
damental concepts, the electron trajectories in the form of elliptical orbits, have 
been developed and their transitions plotted. The linear velocities, angular ve-
locities, K.E., radial distance r, orbital angle θ and orbital time have been com-
puted and plotted for the instant-to-instant motion of the electron in various 
electron orbits in hydrogen atom. We have also analyzed magnetic interaction 
energies associated with electron angular momentum, spin angular momentum 
of the proton and electron, and plotted their instant-to-instant variation in dif-
ferent electron orbits to explain the fine structure splitting of hydrogen spectrum 
lines. Finally, we have extended the concept of electron orbits in hydrogen atom 
to explain the hydrogen molecular bond configuration and to compute its bind-
ing energy and bond length. Hopefully, the analysis presented in this paper will 
enable the scientific community to mentally visualize the instant-to-instant mo-
tion of orbiting electrons in hydrogen atoms and their molecular bonds. 
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