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Abstract 
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group 
theoretical approach to elasticity (EL), with the only experimental need to 
measure the EL constants. In a modern framework, they used the nonlinear 
Spencer sequence instead of the nonlinear Janet sequence for the Lie groupo-
id defining the group of rigid motions of space. Following H. Weyl, our pur-
pose is to compute for the first time the linear and nonlinear Spencer se-
quences for the Lie groupoid defining the conformal group of space-time in 
order to provide the mathematical foundations of both electromagnetism 
(EM) and gravitation (GR), with the only experimental need to measure the 
EM and GR constants. With a manifold of dimension 3n ≥ , the difficulty is 
to deal with the n nonlinear transformations that have been called “elations” 
by E. Cartan in 1922. Using the fact that dimension 4n =  has very specific 
properties for the computation of the Spencer cohomology, we also prove 
that there is no conceptual difference between the (nonlinear) Cosserat EL 
field or induction equations and the (linear) Maxwell EM field or induction 
equations. As for gravitation, the dimension 4n =  also allows to have a 
conformal factor defined everywhere but at the central attractive mass be-
cause the inversion law of the isotropy subgroupoid made by second order 
jets transforms attraction into repulsion. The mathematical foundations of 
both electromagnetism and gravitation are thus only depending on the struc-
ture of the conformal pseudogroup of space-time. 
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1. Introduction 

The famous Special Relativity paper of A. Einstein published in 1905 contains 
two specific parts, the first one dealing with kinematics while the second is ap-
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plying to electrodynamics the results obtained in the first part ([1]). With more 
details, the central result of the first part is sketched as follows in a footnote: 

“When c is the speed of light, the Lorentz transformation  
( ) ( ), , , , , ,x y z t ξ η ζ τ→  can be deduced in a more direct way by supposing that 
the relation 2 2 2 2 2 0cξ η ζ τ+ + − =  must bring 2 2 2 2 2 0x y z c t+ + − = ”.  

However, the basic underlying assumption has been to suppose that the 
transformation was only depending on the relative speed v of the frames and to 
restrict the study to a linear group reducing to the Galilée group when the di-
mensionless number v/c was going to zero. As a byproduct, it must be noticed 
that people did believe that Einstein had not been influenced in 1905 by the Mi-
chelson and Morley experiment of 1887 till the rather recent discovery of hand 
written notes taken during lectures given by Einstein in Chicago (1921) and 
Kyoto (1922). As for other books on Special Relativity, each writer is similarly 
avoiding the use of the conformal group of space-time implied by the Michelson 
and Morley experiment, only caring about the Poincaré or Lorentz subgroups, 
sometimes claiming that the conformal factor could eventually depend on the 
local property of space-time, adding however that, if there was no surrounding 
electromagnetism or gravitation, the situation should be reduced to the preced-
ing one but nothing was said otherwise.  

Similarly, using standard notations of differential geometry for the exterior 
derivative on forms when 4n = , the second Maxwell operator  

( )
( ) ( )4 * 2 4 * :

ad d
ij ij j

iT T T T∧ ⊗∧ → ∧ ⊗ → ∂ =    is the adjoint of the paramet-  

rizing operator * 2 * :
d

T T A dA F→∧ → =  in electromagnetism in such a way 
that F is killed by the first Maxwell operator 2 * 3 *

d
T T∧ →∧ , independently of the 

Minkowski constitutive relations F →  between field and induction, that 
may depend on the Minkowksi metric *

2S Tω∈ . The two sets of Maxwell equa-
tions are thus separately invariant by any diffeomorphism.  

Though surprising it may look like, the conformal group of space-time is only 
the maximum group of invariance of the Minkowski constitutive law in vacuum. 
Indeed, this law is not at all 0

rs
ij ir jsF µ ω ω=   where 0µ  is the magnetic con-

stant because such a relation is not tensorial as F is a 2-form, that is a 2-covariant 
tensor, but   is a 2-contravariant tensor density. Hence, introducing the me-
tric density ( )( ) 1

ˆ det
n

ij ijω ω ω
−

= , we must set 0 ˆ ˆ rs
ij ir jsF µ ω ω=  . Accordingly, 

this constitutive law is only invariant by diffeomorphisms preserving ω̂  and 
this is exactly the definition of the Lie pseudogroup of conformal transforma-
tions (see Section 3.1 for details).  

With more details, if group theory must be used, the underlying group of 
transformations of space-time must be related to the propagation of light by it-
self rather than by considering tricky signals between observers, thus must have 
to do with the biggest group of invariance of Maxwell equations ([2] [3]). How-
ever, at the time we got the solution of this problem with the publication of ([4]) 
in 1988 (see [5] for recent results), a deep confusion was going on, which is still 
not acknowledged though it can be explained in a few lines (compare to [6]). 
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Using standard notations of differential geometry, if the 2-form 2 *F T∈∧  de-
scribing the EM field is satisfying the first set of Maxwell equations, it amounts 
to say that it is closed, that is killed by the exterior derivative 2 * 3 *:d T T∧ →∧  
as we said. The EM field can be thus (locally) parametrized by the EM potential 
1-form *A T∈  with dA F=  where * 2 *:d T T→∧  is again the exterior deriv-
ative, because 2 0d d d= = . Now, if E is a vector bundle over a manifold X of 
dimension n, then we may define its adjoint vector bundle ( ) * *nad E T E= ∧ ⊗  
where *E  is obtained from E by inverting the transition rules, like *T  is ob-
tained from ( )T T X=  and such a construction can be extended to linear par-
tial differential operators between (sections of) vector bundles. When 4n = , it 
follows that the second set of Maxwell equations for the EM induction is just 
described by ( ) 4 * 2 4 *:ad d T T T T∧ ⊗∧ →∧ ⊗ , independently of any Minkows-
ki constitutive relation between field and induction. Using Hodge duality with 
respect to the volume form 1 4dx dx dx= ∧ ∧ , this operator is isomorphic to 

2 * 3 *:d T T∧ →∧ . It follows that both the first set and second set of Maxwell eq-
uations are invariant by any diffeomorphism and that the conformal group of 
space-time is the biggest group of transformations preserving the Minkowski 
constitutive relations in vacuum where the speed of light is truly c  as a uni-
versal constant. 

It is thus natural to believe that the mathematical structure of electromagnet-
ism and gravitation have only to do with such a group having:  

4 translations 6 rotations 1dilatation 4 elations 15 parameters+ + + =  

the main difficulty being to deal with these later non-linear 4 transformations. 
Of course, such a challenge could not be solved without the help of the non-linear 
theory of partial differential equations and Lie pseudogroups combined with 
homological algebra, that is before 1995 at least ([7] [8]).  

From a purely physical point of view, these new nonlinear methods have been 
introduced for the first time in 1909 by the brothers E. and F. Cosserat for stud-
ying the mathematical foundations of elasticity theory ([9] [10] [11] [12] [13]). 
We have presented their link with the nonlinear Spencer differential sequences 
existing in the formal theory of Lie pseudogroups at the end of our book “Diffe-
rential Galois Theory” published in 1983 ([14]). Similarly, the conformal me-
thods have been introduced by H. Weyl in 1918 for revisiting the mathematical 
foundations of electromagnetism ([3]). We have presented their link with the 
above approach through a unique differential sequence only depending on the 
structure of the conformal group in our book “Lie Pseudogroups and Mechanics” 
published in 1988 ([4]). However, the Cosserat brothers were only dealing with 
translations and rotations while Weyl was only dealing with dilatation and ela-
tions. Also, as an additional condition not fulfilled by the classical Einstein- 
Fokker-Nordström theory ([15]), if the conformal factor has to do with gravita-
tion, it must be defined everywhere but at the central attractive mass as we al-
ready said in the abstract.  

Let G be a Lie group with coordinates ( ) ( )1, , pa a aρ =   be a Lie group act-
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ing on X with a local action map ( ),y f x a= . According to the second funda-
mental theorem of Lie, if 1, , pθ θ  are the infinitesimal generators of the effective 
action of a lie group G on X, then , cτρ σ ρσ τθ θ θ  =   where the ( )c c cτ τ

ρσ σρ= = −  
are the structure constants of a Lie algebra of vector fields which can be identi-
fied with ( )eT G=  the tangent space to   at the identity e G∈  by using 
the action. Equivalently, introducing the non-degenerate inverse matrix 1α ω−=  
of right invariant vector fields on G, we obtain from crossed-derivatives the 
compatibility conditions (CC) for the previous system of partial differential (PD) 
equations called Maurer-Cartan equations or simply MC equations, namely:  

0r s
s r r sa a cτ τ τ ρ σ

ρσω ω ω ω∂ ∂ − ∂ ∂ + =  

(care to the sign used) or equivalently , cτρ σ ρσ τα α α  =   (see [7] for more de-
tails).  

Using again crossed-derivatives, we obtain the corresponding integrability con-
ditions (IC) on the structure constants and the Cauchy-Kowaleski theorem fi-
nally provides the third fundamental theorem of Lie saying that, for any Lie al-
gebra   defined by structure constants ( )c cτρσ=  satisfying: 

0, 0c c c c c c c cτ τ λ µ λ µ λ µ
ρσ σρ µρ στ µσ τρ µτ ρσ+ = + + =  

one can construct an analytic group G such that ( )eT G=  by recovering the 
MC forms from the MC equations. 

EXAMPLE 1.1: Considering the affine group of transformations of the real 
line 1 2y a x a= + , the orbits are defined by 1 2

0x a x a= + , a definition leading to 
1 2

0dx da x da= +  and thus ( )( ) ( )( )1 1 2 2 1 11dx a da x da a a da= + − . We obtain 
therefore 1 xxθ = ∂ , 2 xθ = ∂ [ ]1 2 2,θ θ θ⇒ = −  and ( )1 1 11 a daω = ,  

( )2 2 2 1 1da a a daω = − 1 0dω⇒ = , 2 1 2 0dω ω ω− ∧ = [ ]1 2 2,α α α⇔ = −  with 
1 2

1 1 2a aα = ∂ + ∂ , 2 2α = ∂ . 
Now, if ( ) ( )0x a t x b t= +  with ( )a t  a time depending orthogonal matrix 

(rotation) and ( )b t  a time depending vector (translation) describes the move-
ment of a rigid body in 3 , then the projection of the absolute speed  

( ) ( )0v a t x b t= +   in an orthogonal frame fixed in the body is the so-called rela-
tive speed 1 1 1

0a v a ax a b− − −= + 

  and the kinetic energy/Lagrangian is a quadratic 
function of the 1-forms ( )1 1,A a a a b− −= 

 . Meanwhile, taking into account the 
preceding example, the Eulerian speed ( ) 1 1,v v x t aa x b aa b− −= = + −   only de-
pends on the 1-forms ( )1 1,B aa b aa b− −= −  . We notice that 1a a−

  and 1aa−
  

are both 3 × 3 skew symmetric time depending matrices that may be quite dif-
ferent. 

REMARK 1.2: An easy computation in local coordinates for the case of the 
movement of a rigid body shows that the action of the 3×3 skew-symmetric ma-
trix 1aa−

  on the position x at time t just amounts to the vector product by the  

vortex vector ( )1
2

curl vω = .  

The above particular case, well known by anybody studying the analytical 
mechanics of rigid bodies, can be generalized as follows. If X is a manifold and G 
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is a lie group (not acting necessarily on X), let us consider maps  
( ) ( )( ): :a X G x a x→ →  or equivalently sections of the trivial (principal) bun-

dle X G×  over X. If x dx+  is a point of X close to x, then ( )T a  will provide  

a point aa da a dx
x
∂

+ = +
∂

 close to a on G. We may bring a back to e on G by  

acting on a with a−1, either on the left or on the right, getting therefore a 1-form 
1a da A− =  or ( ) 1da a B− =  with value in  . As 1aa e− =  we also get  

( ) 1 1 1da a ada b db− − −= − = −  if we set 1b a−=  as a way to link A with B. When 
there is an action y ax= , we have 1x a y by−= =  and thus ( ) 1dy dax da a y−= = , 
a result leading through the first fundamental theorem of Lie to the equivalent 
formulas: 

( ) ( )( ) ( )( )1 i i
i ia da A A x dx b x b x dxτ τ σ

σω
− = = = − ∂  

( ) ( ) ( )( ) ( )( )1 i i
i ida a B B x dx a x a x dxτ τ σ

σω
− = = = ∂  

Introducing the induced bracket [ ]( ) ( ) ( ), , , , ,A A A A Tξ η ξ η ξ η = ∈ ∀ ∈   , we 
may define the curvature 2-form [ ] 2 *,dA A A F T− = ∈∧ ⊗  by the local for-
mula (care again to the sign): 

( ) ( ) ( ) ( ) ( )i j j i i j ijA x A x c A x A x F xτ τ τ ρ σ τ
ρσ∂ − ∂ − =  

This definition can also be adapted to B by using [ ],dB B B+  and we obtain 
from the second fundamental theorem of Lie: 

THEOREM 1.3: There is a nonlinear gauge sequence: 

[ ]
* 2 *

1 ,

MC
X G T T

a a da A dA A A F−

× → ⊗ → ∧ ⊗
→ = → − =

             (1) 

Choosing a “close” to e, that is ( ) ( )a x e t xλ= + +  and linearizing as usual, 
we obtain the linear operator ( )( ) ( )( )0 * 1 *: : id T T x xτ τλ λ∧ ⊗ →∧ ⊗ → ∂   
leading to (see [7] for more details): 

COROLLARY 1.4: There is a linear gauge sequence: 

0 * 1 * 2 * * 0
d d d d

nT T T T∧ ⊗ →∧ ⊗ →∧ ⊗ → →∧ ⊗ →         (2) 

which is the tensor product by   of the Poincaré sequence for the exterior de-
rivative.  

It just remains to introduce the previous results into a variational framework. For 
this, we may consider a lagrangian on *T ⊗ , that is an action ( )W w A dx= ∫  
where 1 ndx dx dx= ∧ ∧  and to vary it. With ( )1 1A a da db b− −= = −  we may 
introduce ( )1 1 0 *a a b b Tλ δ δ− −= = − ∈ = ∧ ⊗   with local coordinates  

( ) ( )( ) ( )x b x b xτ τ σ
σλ ω δ= −  and we obtain in local coordinates:  

 [ ], i i iA d A A c Aτ τ τ ρ σ
ρσδ λ λ δ λ λ= − ⇔ = ∂ −             (3) 

Then, setting ( ) 1 *i nw A Tτ
−∂ ∂ = = ∈∧ ⊗   , we get: 

[ ]( ),W Adx d A dxδ δ λ λ= = −∫ ∫   

and therefore, after integration by part, the Euler-Lagrange (EL) equations of 

https://doi.org/10.4236/jmp.2023.1411086


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2023.1411086 1469 Journal of Modern Physics 
 

Poincaré ([7] [16]): 

0i i
i ic Aσ ρ

τ ρτ σ∂ + =                          (4) 

Such a linear operator for   has non constant coefficients linearly depending on 
A and is the adjoint of the previous operator. However, setting ( ) 1a a Gδ µ− = ∈ , 
we get ( )( ) ( )1 1a a a a Ad aλ δ µ− −= =  while, setting a ab′ = , we get the gauge 
transformation:  

 ( ) ( ) ( )( ) ( )1 1 1 1 ,A A ab d ab b a da b adb Ad b A b db b G− − − −′→ = = + = + ∀ ∈   (5) 

Setting b e tλ= + +  with 1t  , then Aδ  becomes an infinitesimal gauge 
transformation. Finally, a ba′ =   

( ) ( )( ) ( )1 1 1 1A a b db a a db a b db a A− − − −′⇒ = + = + ( )A Ad a dδ µ⇒ =  when  
b e tµ= + +  with 1t  . Therefore, introducing   such that µ λ=  , we 
get the divergence-like equations:  

 0i
i σ∂ =                            (6) 

In a completely different local setting, if G acts on X and Y is a copy of X with 
an action graph ( ) ( )( ): , , ,X G X Y x a x y f x a× → × → = , we may use the theo-
rems of S. Lie in order to find a basis ( ){ }|1 p dim Gτθ τ≤ ≤ =  of infinitesimal 
generators of the action. If ( )1, , nµ µ µ=   is a multi-index of length  

1 nµ µ µ= + +  and ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = +  , we may introduce 
the system of infinitesimal Lie equations or Lie algebroid ( )q qR J T⊂  with sec-
tions defined by ( ) ( ) ( )k kx x xτ

µ µ τξ λ θ= ∂  for an arbitrary section 0 *Tλ∈∧ ⊗  
and finally obtain the Spencer operator through the chain rule for derivatives:  

 ( ) ( ) ( ) ( ) ( ) ( )1 1, i

k k k k
q i ii

d x x x x xτ
µ µ µ τµ

ξ ξ ξ λ θ+ += ∂ − = ∂ ∂         (7) 

THEOREM 1.5: When q is large enough to have an isomorphism  
0 *

1q qR R T+ ∧ ⊗   and the following (trivial) linear Spencer sequence in 
which the operators rD  are induced by d:  

 
31 2* 2 * * 0

nD DD D
n

q q q qR T R T R T R→ ⊗ →∧ ⊗ → →∧ ⊗ →          (8) 

is isomorphic to the linear gauge sequence but with a completely different mean-
ing because G is now acting on X.  

EXAMPLE 1.6: (Weyl group of transformations) For an arbitrary dimension 
n, the conformal group has n translations, ( )1 2n n −  rotations, 1 dilatation 
and n nonlinear elations, that is a total of ( )( )1 2 2n n+ +  parameters and the 
Weyl subgroup has only ( )2 2 2n n+ +  parameters. When 2n =  and the 
standard Euclidean metric, we may choose the infinitesimal generators 1 1θ = ∂ , 

2 2θ = ∂ , 1 2
3 2 1x xθ = ∂ − ∂ , 1 2

4 1 2x xθ = ∂ + ∂  of the Weyl subgroup with  
2 1 1 4+ + =  parameters by taking out the elations. Setting k kτ

µ µ τξ λ θ= ∂  with 

( )τλ λ= ∈ , we have the 4×4 full rank matrix allowing to describe the isomor-
phism 0 *

2 1R R T∧ ⊗  :  

 1 1 2 3 1 4 2 2 1 3 2 4 2 1 3 1 2 4
1 2 1 2, , ,x x x xξ λ λ λ ξ λ λ λ ξ ξ λ ξ ξ λ= − + = + + = − = = =  
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( )1 2 3 4θ θ θ θ  

1 2 1 1

2 1 2 2

1 2 3
2 1

2 1 4
2 1

1 0
0 1
0 0 1 0
0 0 0 1

x x
x x

ξ λ
ξ λ

ξ ξ λ
ξ ξ λ

    −
    
    =    − =
       =    

 

Now, in order to determine ( )1ad D , we have to integrate by parts the duality 
summation:  

 
( ) ( ) ( ) ( )1 1 1 1 2 2 2 1 1 2 2 2

1 1 1 2 1 1 1 2 2 2 2 2

12, 2 1
1 1

r r
r r

σ ξ ξ σ ξ ξ σ ξ ξ σ ξ ξ

µ ξ ν ξ

∂ − + ∂ − + ∂ − + ∂ −

+ ∂ + ∂
 

in which we have taking into account the Medolaghi equations 2 1
2 1 0ξ ξ− = , 

1 2
2 1 0ξ ξ+ = , 0k

ijξ =  defining the Weyl algebroid. We get the 4 Cosserat/Clausius 
equations describing the adjoint of the first Spencer operator in which we may 
have 1,2 2,1σ σ≠ :  

, 12, 2,1 1,2 12, ,i r i r r r
r r r rf m uσ µ σ σ ν σ∂ = ∂ + − = ∂ + =  

that we can transform into the 4 pure divergence equations by comparing ( )1ad D  
with ( )ad d :  

( ) ( )
( )

, 12, 1 2, 2 1, 12 1 2 2 1, ,i r i r r r
r r

r i r i
r i i

f x x m x f x f

x u x f

σ µ σ σ

ν σ

∂ = ∂ + − = + −

∂ + = +
 

a result not completely evident at first sight. When 2n = , the conformal group 
has therefore 6 parameters and we should follow the same procedure after add-
ing the two elations:  

( ) ( )( ) ( ) ( )( )2 2 2 21 2 1 2 1 2 2 1
5 1 2 6 1 2

1 1,
2 2

x x x x x x x xθ θ= − ∂ + ∂ = ∂ + − ∂  

in such a way that 1 2
5 62 , 2r r

r rx xθ θ∂ = ∂ =  (see [17] for the relation with the 
Clausius virial theorem and [18] for the relation with the conformal group). The 
only difference is that we have now to deal with the 6 right members  

( )1 2 12 1 2, , , , ,f f m u v v . As we have been only using the Spencer bundles C0 and C1, 
these results have strictly nothing to do with C2 involving 2-forms and the 
so-called Cartan curvature, a result also proving that the mathematical founda-
tions of Gauge theory must be revisited as we have no longer any link with the 
unitary group U(1).  

From a purely mathematical point of view, the concept of a finite length dif-
ferential sequence, now called Janet sequence, has been described for the first 
time as a footnote by M. Janet in 1920 ([19]). Then, the work of D. C. Spencer in 
1970 has been the first attempt to use the formal theory of systems of partial dif-
ferential equations that he developed himself in order to study the formal theory 
of Lie pseudogroups ([20] [21] [22]). In 1978 we have provided a link between 
these two sequences in our Fundamental Diagram I ([4] [7]). The nonlinear 
Spencer sequences for Lie pseudogroups, though never used in physics, largely 
supersede the “Cartan structure equations” introduced by E. Cartan in 1905 
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([23]) and are quite different from the “Vessiot structure equations” introduced 
by E. Vessiot in 1903 ([24] [25] [26] [27] [28]) for the same purpose but still not 
known today after more than a century because they have never been acknowl-
edged by Cartan himself or even by all his successors.  

The purpose of the previous paper ([29]) has been to apply these new methods 
for studying the conformal origin of electromagnetism in a purely mathematical 
way by constructing explicitly the corresponding nonlinear Spencer sequence for 
the conformal group when the dimension of the ground manifold X is equal to 4, 
a very specific value as we have seen. All the more specific physical consequences 
concerning gravitation are presented in the present paper and we shall discover 
that this dimension is also quite specific but for a completely different reason.  

2. Variational Calculus  

It remains to graft a variational procedure adapted to the previous results ob-
tained in ([28]). Contrary to what happens in analytical mechanics or elasticity 
for example, the main idea is to vary sections but not points. Hence, we may in-
troduce the variation ( ) ( )( )k kf x f xδ η=  and set ( )( ) ( ) ( )k i k

if x x f xη ξ= ∂  
along the canonical “vertical machinery” ([7]) but notations like i ixδ ξ=  or 

k kyδ η=  have no meaning at all.  
If Y is a copy of X with local coordinates ( )ky  and X Y= × , we shall de-

note by qΠ  the open sub-fibered manifold of the q-jet bundle ( )qJ X Y×  de-
fined independently of the coordinate system by ( ) 0k

idet y ≠  with source pro-
jection ( ) ( ): : ,q q qX x y xα Π → →  and target projection  

( ) ( ): : ,q q qY x y yβ Π → → . We denote by : :id X Y x y x→ → =  the identity 
map and we have the identification ( )( )1T id V−=  . In order to construct 
another nonlinear sequence, we need a few basic definitions on Lie groupoids 
and Lie algebroids that will become substitutes for Lie groups and Lie algebras. 
Introducing the operator  

( ) ( ) ( ) ( ) ( )( ): , , ,k k k
q q i ijj X Y J X Y f x f x f x f x× → × = → ∂ ∂  , the first idea is 

to use the chain rule for derivatives ( ) ( ) ( )q q qj g f j g j f=   whenever  
( ),f g aut X∈  can be composed and to replace both ( )qj f  and ( )qj g  re-

spectively by qf  and qg  in order to obtain the new section q qg f . This kind 
of “composition” law can be written in a pointwise symbolic way by introducing 
another copy Z of X with local coordinates (z) as follows: 

( ) ( ) ( ): , , , : , , , , , , , , , ,q q Y q q
z y z yY Z X Y X Z y z x y x z
y x y x

γ
   ∂ ∂ ∂ ∂ Π × Π →Π →    ∂ ∂ ∂ ∂    

    

We may also define ( ) ( )1 1
q qj f j f− −=  and obtain similarly an “inversion” law 

:q q qι Π →Π .  
A fibered submanifold q q⊂Π  is called a system of finite Lie equations or a 

Lie groupoid of order q if we have an induced source projection :q q Xα → , 
target projection :q q Yβ → , composition :q q Y q qγ × →   , inversion  

:q q qι →   and identity ( ) :q q qj id id X= → . In the sequel we shall only 
consider transitive Lie groupoids such that the map ( ), :q q q X Yα β → ×  is an 
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epimorphism and we shall denote by ( )0 1
q qid −=   the isotropy Lie group 

bundle of q . Also, one can prove that the new system ( )r q q rρ +=   ob-
tained by differentiating r times all the defining equations of q  is a Lie grou-
poid of order q r+ .  

The vector sub-bundle ( )( ) ( )1
q q q qid V J T−= ⊂   is called a system of infi-

nitesimal Lie equations or a Lie algebroid of order q .  
As a major result first discovered in specific cases by the brothers Cosserat in 

1909 and by Weyl in 1916, we shall prove and apply the following key result:  
THE PROCEDURE ONLY DEPENDS ON THE LINEAR SPENCER 

OPERATOR AND ITS ADJOINT, recalling that *
1: q qg T gδ + → ⊗  is minus 

the restriction of d to the symbols.  
Let the non-linear operator  

( )* 1
1 1 1 1 1: :q q q q q q qD T R f f j f id χ−
+ + + +→ ⊗ → − =  be defined as in ([7], p. 224 

and [22]). For compositions like 1 1 1 1 1q q q q qf g f f h+ + + + +′ = =  , we get:  

( ) ( ) ( )
( ) ( ) ( )

1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1
1 1 1 1 1 1 1 1 1

q q q q q q q q q q

q q q q q q q q q

Df f g j g j f id f Dg j f Df

h f j f j h id h Df j h Dh

− − −
+ + + + + + +

− − −
+ + + + + +

′ = − = +

= − = +

    

    

 

Using the local exactness of the first nonlinear Spencer sequence ([7], p. 215 or 
[25], p. 176), we get:  

LEMMA 2.1: For any section 1 1q qf + +∈ , the finite gauge transformation: 

( )* 1 *
1 1 1q q q q q q q qT f j f Df Tχ χ χ−
+ +′∈ ⊗ → = + ∈ ⊗    

exchanges the solutions of the field equations 0qD χ′ = .  
Introducing the bilinear algebraic bracket ( ) ( ){ } [ ]( )1 1, ,q q qj j jξ η ξ η+ + = , we 

may then introduce both the formal Lie derivative and the differential algebroid 
bracket on ( )qJ T  by the formulas:  

( ) { } ( ) ( )1 1 1 1 1, ,q q q q q q q qL i d i dξ η ξ η ξ η ξ η η ξ+ + + + + = + = +   

( )( )( )( ) ( ) ( )( ) [ ]( )1 1 1 ,q q q q qL j Lξ χ ζ ξ χ ζ χ ξ ζ+ += −  

in such a way that ,q q qR R R  ⊂  .  
LEMMA 2.2: Passing to the limit over the source with 1q qDfχ +=  and  

1 1 1q q qh id tξ+ + += + +  for 0t → , we get an infinitesimal gauge transformation 
leading to the infinitesimal variation:  

( )( )
( ) ( ) ( ){ } ( ) ( ) [ ]( )

( ) ( ) ( )( ) [ ]( )

1 1 1

1 1 1 1

1 1

, ,

,

q q q q

q q q q q q

q q q q

d L j

i d i d

i d L

δχ ξ ξ χ

δχ ζ ζ ξ ξ χ ζ ξ χ ζ χ ξ ζ

ζ ξ ξ χ ζ χ ξ ζ

+ +

+ + + +

+ +

= +

= + + −

= + −

  (9) 

which only depends on qχ  but does not depend on the parametrization of qχ .  
LEMMA 2.3: Passing to the limit over the target with 1q qDfχ +=  and  

1 1 1q q qg id tη+ + += + +  for 0t → , we get the other infinitesimal variation: 

( )1
1 1 1q q q qf d j fδχ η−
+ +=                      (10) 

which highly depends on the parametrization of qχ .  
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EXAMPLE 2.4: We obtain for 1q = :  

( ) ( )
( ) ( )

, , , ,

, , , , , ,

k k k r k k r r k
i i i r i r i i r

k k k r k k r k r r k r k
j i i j ij r j i j r i r i j j i r i jr

δχ ξ ξ ξ χ χ ξ χ ξ

δχ ξ ξ ξ χ χ ξ χ ξ χ ξ χ ξ

= ∂ − + ∂ + ∂ −

= ∂ − + ∂ + ∂ + − −
  (11) 

Introducing the inverse matrix 1B A−= , we obtain therefore equivalently:  
k r k k r r k i r i r i i r
i r i r i i r k r k k r r kA A A A B B B Bδ ξ ξ ξ δ ξ ξ ξ= ∂ + ∂ − ⇔ = ∂ − ∂ +  

both with:  

( ) ( ), , , , ,
k k r k r k k r k r r k
j i i j i jr r j i j r i r i j j i rAδχ ξ ξ ξ χ χ ξ χ ξ χ ξ= ∂ − + ∂ + ∂ + −  

For the Killing system ( )1 1R J T⊂  with 2 0g = , these variations are exactly 
the ones that can be found in ([10], (50) + (49), p. 124 with a printing mistake 
corrected on p. 128) when replacing a 3 × 3 skew-symmetric matrix by the cor-
responding vector. The three last unavoidable Lemmas are thus essential in or-
der to bring back the nonlinear framework of finite elasticity to the linear 
framework of infinitesimal elasticity that only depends on the linear Spencer 
operator. 

For the conformal Killing system ( )1 1R̂ J T⊂  (see next section) we obtain:  

( ) ( )
( ) ( )

, ,
r r r r r s r

i r i i i r ri r i r i i rs

r s r r r
i r i rs r i r iA

α χ δα ξ ξ ξ α α ξ χ ξ

ξ ξ α ξ ξ α

= ⇒ = ∂ − + ∂ + ∂ −

= ∂ − + ∂ + ∂
 

( ) ( )( ) ( )s r s r r r r
ij i j j i ij j i rs i j rs rj i ir j r ijA Aϕ α α δϕ ξ ξ ϕ ξ ϕ ξ ξ ϕ= ∂ − ∂ ⇒ = ∂ − ∂ + ∂ + ∂ + ∂  

These are exactly the variations obtained by Weyl ([3], (76), p. 289) who was as-
suming implicitly 0A =  when setting 0r r i

r r iξ ξ α ξ= ⇔ = −  by introducing a 
connection. Accordingly, r

riξ  is the variation of the EM potential itself, that is 
the iAδ  of engineers used in order to exhibit the Maxwell equations from a 
variational principle ([3], § 26) but the introduction of the Spencer operator is 
new in this framework. If 1 1f id= , we have 0 0χ =  and  

( ) ( )r r r r
i i r ri r i r iδα ξ ξ α ξ ξ α= ∂ − + ∂ + ∂ .  

The explicit general formulas of the three previous lemmas cannot be found 
somewhere else (The reader may compare them to the ones obtained in [22] by 
means of the so-called “diagonal” method that cannot be applied to the study of 
explicit examples). The following unusual difficult proposition generalizes well 
known variational techniques used in continuum mechanics and will be crucially 
used for applications:  

PROPOSITION 2.5: The same variation is obtained whenever  
( )( )1q q q qfη ξ χ ξ+= +  with 1q qDfχ += , a transformation which only depends 

on ( )1 qj f  and is invertible if and only if ( ) 0det A ≠ . 
Proof: First of all, setting ( )q q qξ ξ χ ξ= + , we get ( )Aξ ξ=  for 0q = , a 

transformation which is invertible if and only if ( ) 0det A ≠  and thus 0∆ ≠ . In 
the nonlinear framework, we have to keep in mind that there is no need to vary 
the object ω  which is given but only the need to vary the section 1qf +  as we 
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already saw, using ( )q qR Yη ∈  over the target or q qRξ ∈  over the source. 
With ( )1q q qfη ξ+= , we obtain for example:  

k k k r
r

k k u k r k r
i u i r i ri
k k u v k u k r k r k r k r

ij uv i j u ij r ij ri j rj i rij

f f

f f f f

f f f f f f f f

δ η ξ

δ η ξ ξ

δ η η ξ ξ ξ ξ

= =

= = +

= + = + + +

 

and so on. Introducing the formal derivatives id  for 1, ,i n=  , we have:  

( ) 1,k k k k u k r k r
q q u r r

f f d f f fµ µ µ µ µ µδ ζ η η η ξ ξ+= = = + = + +   

We shall denote by ( ) ( ) ( )# ,k
q q q qky V

yµ
µ

η ζ η ∂
= ∈

∂
  with k kζ η=  the cor-

responding vertical vector field, namely:  

( ) ( ) ( )( ) ( ) ( )( )# 0 k k u k u v k u
q u i uv i j u iji k k k

i ij

y y y y y y y y
x y y y

η η η η η∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂
  

However, the standard prolongation of an infinitesimal change of source coor-
dinates described by the horizontal vector field ξ , obtained by replacing all the 
derivatives of ξ  by a section q qRξ ∈  over Tξ ∈ , is the vector field:  

( ) ( ) ( )( )

( ) ( ) ( )( )

0i k r
q r ii k k

i

k r k r k r
r ij rj i ri j k

ij

x y x
x y y

y x y x y x
y

ξ ξ ξ

ξ ξ ξ

∂ ∂ ∂
= + −

∂ ∂ ∂

∂
− + + +

∂




 

It can be proved that ( ) ( ) ( ), , , ,q q q q q q qRξ ξ ξ ξ ξ ξ ′ ′ ′ = ∀ ∈      over the source, 
with a similar property for ( )# .  over the target ([25] [27]). However, ( )qξ  is 
not a vertical vector field and cannot therefore be compared to ( )# qη .The solu-
tion of this problem explains a strange comment made by Weyl in ([3], p. 289 + 
(78), p. 290) and which became a founding stone of classical gauge theory. In-
deed, r

rξ  is not a scalar because k
iξ  is not a 2-tensor. However, when 0A = , 

then qχ−  is a qR -connection and ,
r r r i

r r r iξ ξ χ ξ= +  is a true scalar that may be 
set equal to zero in order to obtain ,

r r i
r r iξ χ ξ= − , a fact explaining why the EM- 

potential is considered as a connection in quantum mechanics instead of using 
the second order jets r

riξ  of the conformal system, with a shift by one step in 
the physical interpretation of the Spencer sequence (see [4] for more historical 
details). 

The main idea is to consider the vertical vector field ( )( ) ( ) ( )q q qT f Vξ ξ− ∈   
whenever ( )q qy f x= . Passing to the limit 0t →  in the formula  

q q q qg f f h=  , we first get  
( ) ( )( ) ( )( )g f f h f x t f x f x t xη ξ= ⇒ + + = + +    . Using the chain rule 

for derivatives and substituting jets, we get successively:  

( ) , ,k r k k r k k r
r i r i r i

k r k k r k r k r
ij r ij rj i ri j r ij

f x f f f f

f f f f f

δ ξ δ ξ ξ

δ ξ ξ ξ ξ

= ∂ = ∂ +

= ∂ + + +
 

and so on, replacing 1r

r kfµξ +  by r k
r fµξ ∂  in ( )1q q qfη ξ+=  in order to obtain:  
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( )1 1i r

k k r i k k k r k r
r i rf f f f f fµ µ µ µ µ µδ η ξ ξ ξ+ += + = ∂ − + + +   

where the right member only depends on ( )1 qj f  when qµ = .  
Finally, we may write the symbolic formula  
( ) ( ) ( )*

1 1 1 1q q q q q qf j f f df T Vχ+ + += − = ∈ ⊗   in the inductive form: 

, 1 , 1r i

k r k r k k
r i i if f f fµ µ µ µχ χ+ ++ + = ∂ −  

Substituting in the previous formula provides ( )( )1q q q qfη ξ χ ξ+= +  and we 
just need to replace q by 1q +  in order to achieve the proof. Checking directly 
the proposition is not evident even when 0q =  but cannot be done by hand 
when 1q ≥ .                                                        

3. Applications  

Before studying gravitation in a specific way, we shall provide a technical result 
which, though looking like evident at first sight, is at the origin of a misunders-
tanding done by the brothers Cosserat and Weyl on the variational procedure 
used in the study of physical problems.  

Setting 1 ndx dx dx= ∧ ∧  for simplicity and using the fact that the standard 
Lie derivative is commuting with any diffeomorphism, we obtain at once:  

( ) ( ) ( )( ) ( ), k
iy f x x g y dy det f x dx x dx= = ⇒ = ∂ = ∆  

( ) ( ) ( ) ( )( ) ( ) ( ) r
y x rT f dy x dx div divη ξ η ξ δ η ξ ξ= ⇒ = ∆ ⇒ ∆ = ∆ = ∆ + ∂ ∆   

The interest of such a presentation is to provide the right correspondence be-
tween the source/target and the Euler/Lagrange (actual/initial) choices. Indeed, 
if we use the way followed by most authors up to now in continuum mechanics, 
we should have source = Lagrange, target = Euler, a result leading to the conser-
vation of mass 0dm dy dx dxρ ρ= = =  when 0ρ  is the original initial mass per 
unit volume. We may set 0 1ρ =  and obtain therefore ( )( ) ( )1f x xρ = ∆ , a 
choice leading to:  

( )
2

1
kk r

k k
k k k r ky y y x y

ρηρ η ρ ξδρ η δ δρ ρ η ρ δρ
∂∂ ∂ ∂ ∂

+ = − ∆⇒ = − − = − ⇒ = −
∂ ∆ ∂ ∂ ∂ ∂

 

but the concept of “variation” is not mathematically well defined, though this 
result is coherent with the classical formulas that can be found in the literature 
where “points are moved”.  

On the contrary, if we adopt the unusual choice source = Euler, target = La-
grange, we should get ( ) ( )x xρ = ∆ , a choice leading to δρ δ= ∆  and thus:  

( )
k r

r r
r rk ry x

η ξδρ ρ ρ ξ ρ ρξ∂ ∂
= = + ∂ = ∂

∂ ∂
 

which is the right choice agreeing, up to the sign, with classical formulas but 
with the important improvement that this result becomes a purely mathematical 
one, obtained from a well defined variational procedure involving only the 
so-called “vertical” machinery. We obtain the fundamental identity over the 
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source and over the target:  

( ) ( )( )

( )( ) ( )( )

0,

1 0,

i

i k

k
ik

gx f x x X
x y

f g y y Y
y g y

 ∂ ∂
∆ ≡ ∀ ∈ ∂ ∂ 
 ∂

⇔  ∂  ≡ ∀ ∈
 ∂ ∆ 

 

which becomes the conservation of mass when 4n =  and 4k = .  
In addition, as many chases will be used through many diagrams in the sequel, 

we invite the reader not familiar with these technical tools to consult the books 
([30] [31] [32]) that we consider as the best references for learning about homo-
logical algebra. As for differential homological algebra, one of the most difficult 
tools existing in mathematics today, and its link with applications, we refer the 
reader to the various references provided in ([8] [32]-[37]).  

3.1. Poincare, Weyl and Conformal Groups  

When constructing inductively the Janet and Spencer sequences for an involu-
tive systems ( )q qR J E⊂ , we have to use the following commutative and exact 
diagrams in which we have set ( )0 q qF J E R= :  

( )

( ) ( )

( )

1 * *
1

1 * * *
1

* 1 * * *
1 0

0 0 0

0 0

0 ( 0

0 0

0 0 0

r r
q q r

r r
q q r

r r r
q q r

T g T R C

T S T T T J E C E

T R T S T E T F F

δ

δ

δ

−
+

−
+

−
+

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ → →

↓ ↓ ↓
→ ∧ ⊗ ⊗ → ∧ ⊗ → →

↓ ↓ ↓

→ ∧ ⊗ + ∧ ⊗ ⊗ → ∧ ⊗ → →

↓ ↓ ↓

 

It follows that the short exact sequences ( )0 0
r

r r rC C E F
Φ

→ → → →  are allow-
ing to define the Janet and Spencer bundles inductively. If we consider two in-
volutive systems ( )ˆ0 q q qR R J E⊂ ⊂ ⊂ , it follows that the kernels of the in-
duced canonical epimorphisms ˆ 0r rF F→ →  are isomorphic to the cokernels 
of the canonical monomorphisms ( )ˆ0 r r rC C C E→ → ⊂  and we may say that 
Janet and Spencer play at see-saw because we have the formula  

( ) ( ) ( )( )r r rdim C dim F dim C E+ = . 
When dealing with applications, we have set E T=  and considered systems 

of finite type Lie equations determined by Lie groups of transformations. Accor-
dingly, we have obtained in particular ( )* *

2 2
ˆˆr r

r r rC T R T R C C T= ∧ ⊗ ⊂ ∧ ⊗ = ⊂  
when comparing the classical and conformal Killing systems, but these bundles 
have never been used in physics. However, instead of the classical Killing system 

( )1 1R J T⊂  defined by the infinitesimal first order PD Lie equations  
( ) 0ξ ωΩ ≡ =  and its first prolongations ( )2 2R J T⊂  defined by the infinite-

simal additional second order PD Lie equations ( ) 0ξ γΓ ≡ =  or the confor-
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mal Killing system ( )2 2R̂ J T⊂  defined by ( ) ( )2A xξ ω ωΩ ≡ =  and  
( ) ( ) ( ) ( )( ) *

2
k k ks
i j j i ij sA x A x A x S T Tξ γ δ δ ω ωΓ ≡ = + − ∈ ⊗ , we may also con-

sider the formal Lie derivatives for geometric objects:  

( )( )1 0r r r
ij rj i ir j r ijij

L ξ ω ω ξ ω ξ ξ ωΩ ≡ ≡ + + ∂ =  

( )( )2 0
kk k k r k r r r r k

ij ij rj j ir j ij k r ijij
L ξ γ ξ γ ξ γ ξ γ ξ ξ γΓ ≡ ≡ + + − + ∂ =  

We may now introduce the intermediate differential system ( )2 2R J T⊂  de-
fined by ( ) ( )2A xξ ω ω=  and ( ) 0ξ γΓ ≡ = , for the Weyl group obtained 
by adding the only dilatation with infinitesimal generator i

ix ∂  to the Poincaré 
group. We have the relations 1 1 1

ˆR R R⊂ =  and the strict inclusions ( )2 1 1R Rρ= , 

( )2 1 1R Rρ=  , ( )2 1 1
ˆ ˆR Rρ= 2 2 2

ˆR R R⇒ ⊂ ⊂  but we have to notice that we must 
have 0i iA A∂ − =  for the conformal system and thus 0iA A cst= ⇒ =  if we do 
want to deal again with an involutive second order system ( )2 2R J T⊂ . How-
ever, we must not forget that the comparison between the Spencer and the Janet 
sequences can only be done for involutive operators, that is we can indeed use 
the involutive systems 2 2R R⊂   but we have to use 3R̂  even if it is isomorphic 
to 2R̂ . Finally, as *

2ĝ T  and 3ˆ 0g = , 3n∀ ≥ , the first Spencer operator 
1 *

2 2
ˆ ˆ

D
R T R→ ⊗  is induced by the usual Spencer operator  

( ) ( )*
3 2

ˆ ˆ : 0,0, , 0 0, 0 , 0
D

r r r r
rj rij i ri i rjR T R ξ ξ ξ ξ→ ⊗ = → ∂ − ∂ −  and thus projects by co-

kernel onto the induced operator * * *T T T→ ⊗ . Composing with δ , it projects 
therefore onto * 2 * :

d
T T A dA F→∧ → =  as in EM and so on by using he fact 

that D1 and d are both involutive or the composite epimorphisms  

( )* * * * 1 *
2 2 2

ˆ ˆ ˆ ˆr r r r
r r rC C C T R R T g T T T

δ
+→ ∧ ⊗ ∧ ⊗ ∧ ⊗ →∧ 

   . The main 
result we have obtained is thus to be able to increase the order and dimension of 
the underlying jet bundles and groups as we have the inclusions:  

POINCARE GROUP WEYL GROUP CONFORMAL GROUP⊂ ⊂  

that is 10 11 15< <  when 4n =  and our aim is now to prove that the mathe-
matical foundation of gravitation only depends on the second order jets, exactly 
like we have already proved in ([29]) that the mathematical foundation of elec-
tromagnetism only depends on these second order jets.  

With more details, the Killing system ( )2 2R J T⊂  is defined by the infinite-
simal Lie equations in Medolaghi form with the well known Levi-Civita iso-
morphism ( ) ( )1, jω γ ω  for geometric objects:  

0

0

r r r
ij rj i ir j r ij

k k r k r r k r k
ij rj i ir j ij r r ij

ω ξ ω ξ ξ ω

γ ξ γ ξ γ ξ ξ γ

Ω ≡ + + ∂ =

Γ ≡ + − + ∂ =

 

We notice that ( ) ( )2 2 , ,R R a a cstω ω ω ω γ γ= ⇔ = = =  and refer the reader 
to ([28]) for more details about the link between this result and the deformation 
theory of algebraic structures. We also notice that R1 is formally integrable and 
thus R2 is involutive if and only if ω  has constant Riemannian curvature along 
the results of L. P. Eisenhart ([4] [25] [27] [35]). The only structure constant c 
appearing in the corresponding Vessiot structure equations is such that c c a=  
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and the normalizer of R1 is R1 if and only if 0c ≠ . Otherwise R1 is of codimen-
sion 1 in its normalizer 1R  as we shall see below by adding the only dilatation. 
In all what follows, ω  is assumed to be flat with 0c =  and vanishing Weyl 
tensor.  

The Weyl system ( )2 2R J T⊂  is defined by the infinitesimal Lie equations:  

( )2

0

r r r
rj i ir j r ij ij

k k r k r r k r k
ij rj i ri j ij r r ij

A xω ξ ω ξ ξ ω ω

ξ γ ξ γ ξ γ ξ ξ γ

 + + ∂ =


+ + − + ∂ =
 

and is involutive if and only if 0i A A cst∂ = ⇒ = . Introducing for convenience  

the metric density ( )( )
1

ˆ n
ij ij detω ω ω= , we obtain the Medolaghi form with 

the geometric objects ( )ˆ ,ω γ :  

2ˆ ˆ ˆ ˆ ˆ 0

0

r r r r
ij rj i ir j ij r r ij

k k k r k r r k r k
ij ij rj i ri j ij r r ij

n
ω ξ ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ + − + ∂ =

Γ ≡ + + − + ∂ =

 

Finally, the conformal system ( )2 2R̂ J T⊂  is defined by the following infini-
tesimal Lie equations:  

( )
( ) ( ) ( )

2r r r
rj i ir j r ij ij

k k r k r r k r k k k kr
ij rj i ri j ij r r ij i j j i ij r

A x

A x A x A x

ω ξ ω ξ ξ ω ω

ξ γ ξ γ ξ γ ξ ξ γ δ δ ω ω

 + + ∂ =


+ + − + ∂ = + −
 

and is involutive if and only if 0i iA A∂ − =  or, equivalently, if ω  has vanish-
ing Weyl tensor ([7] [26]).  

However, introducing again the metric density ω̂  while substituting, we  

obtain after prolongation and division by ( )( )
1
ndet ω  the second order system  

( )2 2R̂ J T⊂  in Medolaghi form with geometric objects ( ) ( )1ˆ ˆ ˆ, jω γ ω  such 
that:  

( )1ˆ ˆ 0k k k r k r ks r r
ij ij i rj j ri ij rs rin
γ γ δ γ δ γ ω ω γ γ= − + − ⇒ =  

( )

2ˆ ˆ ˆ ˆ ˆ 0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

r r r r
ij rj i ir j ij r r ij

k k k r k r kr s k r k r r k r k
ij ij i rj j ri ij rs rj i ri j ij r r ij

n

n

ω ξ ω ξ ω ξ ξ ω

ξ δ ξ δ ξ ω ω ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ + − + ∂ =

Γ ≡ − + − + + − + ∂ =


 

Contracting the first equations by ˆ ijω  we notice that r
rξ  is no longer vanish-

ing while, contracting in k and j the second equations, we now notice that r
riξ  is 

no longer vanishing. It is also essential to notice that the symbols 1ĝ  and 2ĝ  
only depend on ω  and not on any conformal factor. We let the reader exhibit 
similarly the finite Lie forms of the previous equations that will be presented 
when needed. We have to distinguish the strict inclusions ( )ˆ aut XΓ ⊂ Γ ⊂ Γ ⊂  
with:  
● The Lie pseudogroup ( )aut XΓ ⊂  of isometries which is preserving the 

metric *
2S Tω∈  with ( ) 0det ω ≠  and thus also γ .  

● The Lie pseudogroup Γ  which is preserving ω̂  and γ .  
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● The Lie pseudogroup Γ̂  of conformal isometries which is preserving ω̂  
and thus also γ̂ .  

3.2. Gravitation  

In ([7] [29] [35]), we have proved that the EM field 2 *F T∈∧  could be de-
scribed by ( )1 2n n −  components of the bundle *

2ˆT g⊗  of 1-forms with 
value in the conformal symbol 2ĝ , which is a sub-bundle of the first Spencer 
bundle for the conformal group described by the bundle *

2
ˆT R⊗  of 1-forms 

with value in the Lie algebroid 2R̂ , with no relation at all with the second 
Spencer bundle 2 *

2
ˆT R∧ ⊗  that can be identified with the Cartan curvature. 

Similarly, in this subsection 2, which is by far the most difficult of the whole pa-
per because third order jets are involved, we shall prove that the substitute for 
the Riemann curvature is only described by ( )1 2n n +  other linearly indepen-
dent components of * *

2 2
ˆˆT g T R⊗ ⊂ ⊗  in such a way that  

( ) ( ) ( )2 *
2ˆ1 2 1 2n n n n n dim T g− + + = = ⊗ .  

Let us start with a preliminary mathematical comment, independently of what 
has already been said, and explain the main differences existing between the ini-
tial part of the Janet sequence for a formally integrable system  

( ) ( )0 0q qC R J E C E= ⊂ =  with a 2-acyclic symbol *
q qg S T E⊂ ⊗  such that 

1 0qg + =  and the initial part of the corresponding Spencer sequence for the first 
order involutive system ( )1 1q qR J R+ ⊂ . First of all, we recall the following com-
mutative diagram with short exact vertical sequences, only depending on the left 
lower commutative square:  

( ) ( ) ( )

1 2

1 2

1

0 1 22 1 1

0 1 21 1

0 1

0 11

0 0 0

0

0

0

0 0

q

q

j D D

j D D

q

C C C

E C E C E C E

E F F

↓ ↓ ↓

→ Θ → → →

↓ ↓ ↓

→ → → →

↓Φ ↓Φ

→ Θ → → →

↓ ↓





 

In this diagram, 0Φ =Φ  is defined by the canonical projection  
( ) ( ) 0: q q qJ E J E R FΦ → =  with kernel qR  and  

( ) ( )( )* * *
1 1q q qF T J E T R S T Eδ += ⊗ ⊗ + ⊗  is induced by 0Φ  after only one 

(care) prolongation. As D1 is a first order operator because it is induced by the 
Spencer operator, it is essential to notice that such a result is coming from the 
fact that 1  is of order 1 because qR  is formally integrable and qg  is 2-acyclic 
(see [7], p. 116, 120, 165). This very delicate result cannot be extended to the 
right with 2 1 2: F F→  unless qg  is involutive, a situation fulfilled by qj  
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which is an involutive injective operator. Also the first order operator  

( ) ( )* *
1 1 1 1 1: q q q q q qD R J R R C T R g T Rδ+ +→ = ⊗ = ⊗  is trivially involutive 

because 1 0qg + =  and ( )1 1C C E⊂  while ( )2 *
2 2qC T R C E= ∧ ⊗ ⊂ . Hence, 

the upper sequence is formally exact, a result that can be extended to the right 
side (see [28] for a nice counterexample). From a snake chase in this diagram, it 
follows that the (local) cohomology at C1 in the upper sequence is the same as 
the (local) cohomology at F0 in the lower sequence though there is no link at all 
between C1 and F0. Moreover, in the present situation, we have an isomorphism 

1q qR R+   and obtain therefore 1 1q qD dξ ξ += , q qRξ∀ ∈ .  
For helping the reader, we provide the two long exact sequences allowing to 

define C1 and C2 in the Spencer sequence while proving the formal exactness of 
the upper sequence on the jet level if we set ( ) 0, 0rJ E r= ∀ <  and ( )0J E E=  
for any vector bundle E:  

( ) ( ) ( )

( ) ( ) ( )

* * *
1 0 1 1 2

1 1 0 1 1 2

0 1 1 2 2

0 0 0

0

0

0

0 0 0

r r r

q r r r r

q r r r r

S T C S T C S T C

R J C J C J C

R J C J C J C

+ −

+ + + −

+ − −

↓ ↓ ↓
→ ⊗ → ⊗ → ⊗

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

It just remains to apply inductively the Spencer δ-operator to the various upper 
symbol sequences obtained by successive prolongations, starting from the case 

0r =  already considered.  
Similarly, if we define F2 in the Janet sequence by the following commutative 

and exact diagram:  

( ) ( ) ( )

( ) ( )

* * *
2 0 2 0 1 2

2 2 2 0 1 1 2

1 1 1 0 1

0 0 0 0

0 0

0 0

0 0

0 0 0 0

q

q q

q q

S T C S T F T F F

R J E J F J F F

R J E J F F

+

+ +

+ +

↓ ↓ ↓ ↓
→ ⊗ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ → → → → →

↓ ↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓



 

we have ( )2 2 2F C E C . If we apply the Spencer δ-operator to the long symbol 
sequence:  

* * * *
3 3 0 2 1 20 qS T E S T F S T F T F+→ ⊗ → ⊗ → ⊗ → ⊗  

we discover, through a standard snake diagonal chase, that such a sequence may 
not be exact at *

2 1S T F⊗  with a cohomology equal to ( )3
qH g  that may not 

vanish.  
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With 4, 2n q= =  and the conformal system ( )2 2R̂ J T⊂ , we provide below 
the fiber dimensions:  

1 2

2 1 2

1

1 1

1 1

0 1

2 1

0 0 0

15 60 90

0 4 60 160 180

4 45 100

0 0

D D

j D D

↓ ↓ ↓

→ →

↓ ↓ ↓

→ → → →

↓Φ ↓Φ

→ →

↓ ↓





 

Now ( )3
2ˆ 0H g ≠  when 4n =  as 2ĝ  is 3-acyclic only when 5n ≥  but no 

classical approach could even allow to imagine such a specific cohomological 
importance of 4n =  ([17], pp. 26-28).  

The large infinitesimal equivalence principle initiated by the Cosserat brothers 
becomes natural in this framework, namely an observer cannot measure sections 
of qR  but can only measure their images by D1 or, equivalently, can only meas-
ure sections of C1 killed by D2. Accordingly, for a free falling particle in a con-
stant gravitational field, we have successively:  

4 4 4 4 44 440, 0, 0 0, 1 , 3k k k k k
i i kξ ξ ξ ξ ξ∂ − = ∂ − = ∂ − = ≤ ≤  

This result explains why the elations are sometimes called “accelerations” by 
physicists ([34]).  

Our purpose is now to extend these comments to the nonlinear sequences and 
we start with a few useful but technical local computations ([29]). First of all, we 
may define:  

( ) ( ), , , ,
k k u r u k i k k i u u k k
l i u i l i rl r s s r i u s i r rs r s rsg f A f B g B f f Tχ τ χ= ∂ − ⇒ = = ∂ − = − Γ  

( ) ( ), , , ,
r s k k k k k k i j k k
i j r s s r i j j i r s s r r s i j j iA A A A B B A Aτ τ τ τ− = ∂ − ∂ ⇒ − = ∂ − ∂  

LEMMA 3.2.1: Summing on k and r when 0γ = , we get successively:  

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )
( )( )

, ,
r r r j k k
i r r i i k r j j r

r j k j s
i k r j r s j

r j k r
i k r j r i

r r
i r r i

r
r i

det A B B A A det A

B B A A B det A

B B A det A det A B

B det A det A B

B det A

τ τ− = ∂ − ∂

= ∂ + ∂

= ∂ + ∂

= ∂ + ∂

= ∂

 

( )( ) ( ) ( ) ( )

( ) ( )
, , , ,

, , ,

ij r s ij r s ij r r s ij r s
r i sj j i sr r i i r sj j i sr

ij r ij r ir j s
r i i r r i sj

B det A det A det A

det A

ω ξ ω τ ξ ω τ τ ξ ω τ ξ

ω τ ω τ ω τ ξ

 − ∂ − = − − 
 = − + 
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( ) ( )

( )

( )

, , ,

, ,

,

2

2

ij r ij r ir j s
r i i r i r sj

ij r jr t s
r i t r sj

ij r s
r i sj

det A

det A
n

n det A
n

ω τ ω τ ω τ ξ

ω τ ω τ ξ

ω τ ξ

 = − + 
 = −  
−

=

 

Using the “vertical machinery”, namely the isomorphism  
( )( ) ( )( )q qV J J V  , like in the preceding sections, we shall vary the sections 

( )( )k
qf f xµδ δ=  while setting ( )( ) ( )( )k k

i if x f xµ µδ δ∂ = ∂  as it is done in ana-
lytical mechanics with the notations q qδ δ=   when studying the variation of a 
Lagrangian ( ), ,L t q q .  

LEMMA 3.2.2: Let us compute directly the variation of the 1-form α  over 
the target and over the source, recalling that i

idxα α=  with  

( ),
r r k r s k r

i r i k i r i k rs i i rg f A g f n a A aα χ= = ∂ − = ∂ −  and r k
i k rina g f= . We have succes-

sively:  

,k k r k k k u r k k r
r i u i r i r if f f f f fδ η ξ δ η ξ ξ= = ∂ = = ∂ +  

k k u v k u r k k r k r k r
ij uv i j u ij r ij rj i ri j r ijf f f f f f f fδ η η ξ ξ ξ ξ= + = ∂ + + +  

( )r k k r r k u v k u u r k r s
i k ri ri k k uv i r u ir ri k u i srn a g f f g g f f f f g fδ δ δ η η η η= + = + − =  

( ) ( )( )
( )

s r k k r k r k r u s t r k k r
i k r is rs i ri s r si si k u r t r t

r r r
r i r i ri

n a g f f f f f g g f f

n a a

δ ξ ξ ξ ξ ξ ξ

ξ ξ ξ

= ∂ + + + − ∂ +

= ∂ + +
 

k r s k k k u k
i i k i i sr i k k i i k k i u

k s k k r
i sk i k r i k

r r
k rk r k

a f b n a f nf b nb f nf b nb f

f nf b nb f

n b nb

δ η δ δ δ η

η δ η

δ η η

= ⇒ = = + = +

⇒ = +

⇒ = −

 

Then, using the definition of a, namely ( )k na
idet f e= , we have:  

( )( ) ( ) ( )1 k k i k s i r k k r
i i k i s k r i r i

r r
r r

n a det f det f g f g f f

n a

δ δ δ η ξ ξ

ξ ξ

= = = = ∂ +

= ∂ +
 

Using the variation k r k k r r k
i r i r i i rA A A Aδ ξ ξ ξ= ∂ + ∂ − , we finally get:  

( ) ( )
( ) ( )

,

r r
i i i r r i

r r r r s r
i r ri r i r i i rs

r s r r r
i r i rs r i r i

n a nA a na A

A

δα δ δ δ

ξ ξ ξ α α ξ χ ξ

ξ ξ ξ α α ξ

= ∂ − −

= ∂ − + ∂ + ∂ −

= ∂ − + ∂ + ∂

 

The terms ( )r r r
i r r i r iξ ξ α α ξ∂ + ∂ + ∂  of the variation, including the variation of 

i
idxα α=  as a 1-form, are exactly the ones introduced by Weyl in ([3] formula 

(76), p. 289). We also recognize the variation iAδ  of the 4-potential used by 
engineers now expressed by means of second order jets.  

We have over the target:  
k l

k r k k r r k u u r r l k
r i i r i i u r i i l k iu kf A f f A A f f A g f

y y
η ηδ η δ η

 ∂ ∂
= ∂ ⇒ + = ∂ ⇒ = − ∂ ∂ ∂ 
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s l
r l k r k ss

i l k r i i r skk k

s l
s l ks
sk l k ik k

ng a f A f
y y

nb f
y y

η ηδα η η

η ηη η

  ∂ ∂
= − − ∂ −  ∂ ∂  
    ∂ ∂

= − − − ∂    ∂ ∂    

 

a result only depending on the components of the Spencer operator, in a cohe-
rent way with the general variational formulas that could have been used other-
wise. We notice that these formulas, which have been obtained with difficulty for 
second order jets, could not even be obtained by hand for third order jets. They 
show the importance and usefulness of the general formulas providing the 
Spencer non-linear operators for an arbitrary order, in particular for the study of 
the conformal group which is defined by second order lie equations with a 
2-acyclic symbol. It is also important to notice that: 

( )

k k
i k i k ik

k r
k u k

i k i k i k r iu k

bn b f f
y

f f f
y y

α β

η ηδα δβ β δβ β

 ∂
= − ∂ = ∂ ∂ 

 ∂ ∂
⇒ = ∂ + ∂ = + ∂ ∂ ∂ 

 

and thus δβ  does not only depend linearly on the Spencer operator, contrary 
to δα .  

LEMMA 3.2.3: We have over the source:  

( ) ( )
( ) ( )

( )( ) ( )( )

i k
k i

i r k k r r k
k r i r i i r

r r r
r r r

det A det A B A

det A B A A A

det A det A

δ δ

ξ ξ ξ

ξ ξ ξ

=

= ∂ + ∂ −

= ∂ + ∂ −

               

Now, we recall the identities:  

, , , , , , , , 0k k r k r k r k r k
i l j j l i l i r j l j r i i lr j j lr iA Aχ χ χ χ χ χ χ χ∂ − ∂ − + − + =  

that we may rewrite in the equivalent form:  

( )
( ) ( )

, , , , , , , ,

, , , , , ,

k k i j k k r k r k
lr s ls r r s i l j j l i l i r j l j r i

i j k k t k t k
r s i l j j l i l r t s l s t r

B B

B B

τ τ χ χ χ χ χ χ

χ χ τ τ τ τ

− = ∂ − ∂ − +

= ∂ − ∂ − −
 

Looking only at the terms not containing the jets of order 2 in the right member, 
we have separately:  

( ) ( )( ) ( )( ) ( )( )( )i j k u k u i j k u k u
r s i u j l j u i l r s i u j l j u i lB B g f g f B B g f g f∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂  

( )( ) ( ) ( )( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

t i u k i v i j t u k v
u r i l v s i t r s u i l v j t

i j t u v k
r s u i l t j v

i j k u
r s j u i l

g B f g B f r s B B g f g f r s

B B g f f g r s

B B g f r s

∂ ∂ − ↔ = ∂ ∂ − ↔

= − ∂ ∂ − ↔

= − ∂ ∂ − ↔

 

and the total sum vanishes.  
Looking at the terms linear in the second order jets k u

u ijg f , we have separately 
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(care to the sign):  

( ) ( ) ( ), ,
i j t t k u t t k u t i v i v k u
r s j i i j u tl r s s r u tl v s i r r i s u tlB B A A g f g f g B f B f g fτ τ∂ − ∂ = − = ∂ − ∂  

( ) ( )( ) ( )t i u k v k j v t u
u r i l v st v s j t u rlg B f g f g B f g f r s∂ + ∂ − ↔           (12) 

The simplest and final checking concerns the derivatives of the second order 
jets. We get:  

( ) ( ) ( )( )
( ) ( )

, ,
i j k k i j t k u t k u
r s i l j j l i r s i j u tl j i u tl

j k u i k u
s j u rl r i u sl

B B B B A g f A g f

B g f B g f

χ χ∂ − ∂ = ∂ − ∂ +

= ∂ − ∂ +





    (13) 

with ( ) ( )y f x x g y= ↔ = , it remains to substitute the formulas  
i k i k
r rB f g y= ∂ ∂  while introducing the finite Lie equations:  

 ( )( )( ) ( )k k u u r s k k k kr
ij u ij rs i j ij i j j i ij rg f f x f f x a a aγ γ δ δ ω ωΦ ≡ + = + + −  

and setting 0γ =  in the conformal case, a local result leading to  
k k k kr
ij i j j i ij ra a aδ δ ω ωΦ = + −  in *

2S T T⊗  which only depends on the Min-
kowski metric ω  and not on a conformal factor.  

The novelty and most tricky point is to notice that we have now only n2 com-
ponents for ( ) *

, 2ˆk
li j T gτ ∈ ⊗  and no longer the ( )2 2 1 12n n −  components of 

the Riemannian curvature.  
As we have already used the ( )1 2n n −  components , ,

r r
ij ri j rj i jiϕ τ τ ϕ= − = −  

for describing EM in ([29]), we may choose the ( )1 2n n +  symmetric compo-  

nents ( ), ,
1
2

r r
ij ri j rj i jiτ τ τ τ= + =  that should involve the third order jets which are  

only vanishing in the linear case but do not vanish at all in the non-linear case. 
To avoid such a situation, we shall use the following key proposition that must 
be compared to the procedure used in classical GR for defining the *

2Ricci S T= , 
( )2

1 1Riemann H g=  and ( )2
1 1ˆWeyl H g=  tensor bundles along the Fundamen-

tal diagram II that only depends on the Spencer δ-cohomology through the 
second order symbol 2ĝ  allowing to define the elations and has been provided 
for the first time in 1983 ([4]):  

( )

( )

2
1 1

* 2
2 1 1

* * * 2 *
2

0

0

0 0

ˆ ˆ0 0

0 0

0 0

Ricci

Z g Riemann

T g Z g Weyl

S T T T T

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ ⊗ → → →
↓ ↓ ↓

→ → ⊗ → ∧ →
↓ ↓

 

It is important to notice that this diagram splits and does not depend on any 
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conformal factor.  
PROPOSITION 3.2.4: Defining , , ,

k k k
l ij li j lj iρ τ τ= −  it is just sufficient to study 

, , ,
r

i j i rj j iρ ρ ρ= ≠  and ( ) ,
ij

i jtr ρ ω ρ=  or , ,
r

i j ri jτ τ=  and ( ) ,
ij

i jtr τ ω τ= . Setting:  

( ) ( ), , , ,
1 2 1, ,
2

r r r r
ij ri j rj i ij ri j rj i ij ij ij

n tr
n n

ϕ τ τ τ τ τ ρ τ ω τ−
= − = + = +  

in a way not depending on any conformal factor, we have the equivalences:  

, ,0 0 0 0 0k k
li j l ij ij ij ij ijτ ρ ϕ τ ϕ ρ= ⇔ ⇔ = ⊕ = ⇔ = ⊕ =  

Proof: As *
2ĝ T , we have successively: 

, , , , , , ,

, , ,

k k r k r ks r k r k r ks r
l ij l ri j i rl j li rs j l rj i j rl i lj rs i

r
r ij i j j i

nρ δ τ δ τ ω ω τ δ τ δ τ ω ω τ

ρ τ τ

= + − − − +

⇒ = −
 

( ) ( ) ( ), , , , , ,

, , , ,

1 1r r st r
i j ri j rj i ij rs t i j j i ij

i j j i i j j i

n n n trρ τ τ ω ω τ τ τ ω τ

ρ ρ τ τ

= − − + = − − +

⇒ − = −
 

( ) ( ) ( ) ( ),2 1 2 1ij r
ri jntr n n trρ ω τ τ= − = −  

When we suppose that there is no EM, that is:  

, , , ,0ij i j j i ij ji i j j i ij jiϕ τ τ τ τ ρ ρ ρ ρ= ⇔ = = = ⇔ = = =  

the above formulas become simpler with:  

( ) ( ) ( )( ) ( )2
2 2 1 2ij ij ij ij ij ij

n nn n tr tr
n n n

ρ τ ω τ τ ρ ω ρ= − + ⇔ = −
− − −

 

In the general situation, we have:  

( ) ( ) ( ) ( ), , , , , ,1 , 1i j i j j i ij j i j i i j ijn n tr n n trρ τ τ ω τ ρ τ τ ω τ= − − + = − − +  

Surprisingly while summing, we discover that the same formula is still valid. 
We may thus express ,

k
l ijρ  by means of ,i jρ  or by means of ,i jτ  while using 

the relations , , , , ,
r

ij r ij i j j i i j j iϕ ρ τ τ ρ ρ= = − = − . As 2ĝ  is 2-acyclic when 4n ≥  
in the conformal case ([17]), we have the short exact sequence:  

( )* *
3 2 2ˆ ˆ ˆ0 0g T g T g

δ δ
δ→ → ⊗ → ⊗ →  

Moreover, as 3ˆ 0g =  when 3n ≥ , we have an isomorphism  

( )* *
2 2ˆ ˆT g T gδ⊗ ⊗ , both vector bundles having the same fiber dimension 

( ) ( )2 1 1
2 2

n n n n
n

− +
= +  when 4n ≥  and thus , ,0 0k k

li j l ijτ ρ= ⇔ = .  

When there is no EM, that is when 0ϕ = , then one can express ,
k
l ijρ  by 

means of , ,ij i j j i jiρ ρ ρ ρ= = =  but there is no longer the Levi-Civita isomor-
phism ( ) ( )1, jω γ ω  in the Spencer sequence and the above proposition is 
quite different from the concept of curvature in GR as it just amounts to the va-
nishing of the Weyl tensor.                                            

We notice that no one of the preceding results could be obtained by classical 
methods because they crucially depend on the Spencer δ-cohomology. As a by-
product, the same formulas provide:  

COROLLARY 3.2.5: The corresponding Weyl tensor vanishes.  
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Supposing again that there is no EM and looking for the derivatives of the 
second order jets, contracting in k and r while replacing l by i and s by j, we get 
with k

i i ka f b= :  

( ) ( )
( )

( ) ( ) ( )

, ,

2

r r t r u t r u
ij ji ri j ij r j t u ri r t u ij

t t r r rs
j t i r t i j j i ij s

jl k l rs ki i s
j i j ij rl k l k

k l rsk s
i j kll r

B g f B g f

nB a B a a a

aa a anf f f f
y y y y

b bf f n y y
y y

ρ ρ τ τ

δ δ ω ω

ω ω

ω ω

= = − = ∂ − ∂ +

= ∂ − ∂ + − +

∂∂ ∂ ∂
= − − + +

∂ ∂ ∂ ∂

 ∂ ∂
= − + + ∂ ∂ 









 

with a bracket symmetric under the exchange of k and l that has been obtained 
by using the fact that we have for example:  

( )k k
i kl l k l li k i

j j i j j kl l l l

f ba b ff f f f f b
y y y y

∂∂ ∂ ∂
= = +

∂ ∂ ∂ ∂
 

We have thus to take into account the following terms linear in the kb , left aside 
in the derivations:  

( )

( )

1

1

kk k
jl l rs li s

j i ij r kl l l

t k t k rs l k
j t i i t j ij r t s k

ff fn f f f b
y y y

n B f B f f f b

ω ω

ω ω

 ∂∂ ∂
− + + 

∂ ∂ ∂  
 = − ∂ + ∂ + ∂ 

 

Under the same assumption, let us work out the quadratic terms in kb  as 
follows:  

( ) ( )( ) ( )( ), , , ,
t k t k t u k v t u k v
l r t s l s t r u rl v st u sl v rtg f g f g f g fτ τ τ τ− = −  

Contracting in k and r as above while replacing l by i and s by j, we get:  

( ) ( )( ) ( )( ), , , ,
t r t r t u r v t u r v
i r t j i j t r u ri v jt u ij v rtg f g f g f g fτ τ τ τ− = −  

that is:  

( )( ) ( )t t st r r rs t t st
r i i r ri s j t t j jt s i j j i ij s ta a a a a a n a a a aδ δ ω ω δ δ ω ω δ δ ω ω+ − + − − + −  

Effecting all the contractions, we get:  

( ) ( ) ( ) ( )2 2rs rs rs
i j i j ij r s ij r s i j ij r sna a a a a a a a n a a a aω ω ω ω ω ω+ − − − −  

and obtain the unexpected very simple formula:  

( ) ( )
2 2 2

2 2

rs rs
i j i j ij r s i j ij r s

rs
i j ij r s

na a a a a a na a n a a

n a a n a a

ω ω ω ω

ω ω

+ − − +

= − + −
 

or, equivalently ( ) ( ) ( )2 2k l rs
i j k l kl r sf f n b b n y b bω ω − + −  . Collecting these re-

sults, we finally get:  
THEOREM 3.2.6: When there is no EM, we have over the target the formu-

las:  

( ) ( ) ( ) ( ) ( ) ( )2 2 2k l rs rsk s
ij i j kl k l kl r sl r

b bf f n y y n b b n y b b
y y

ρ ω ω ω ω
 ∂ ∂

= − + + − − − ∂ ∂ 
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( ) ( )1
2

k l rsk
ij i j k l kl r sl

bnf f b b y y b b
y

τ ω ω
 ∂

= + − ∂ 
  

that do not depend on any conformal factor for ω  and thus simply:  

( ) ( ) ( ) ( )2
2 2

2 2
kl kl kl klk k

k l k ll l

b bn n ny y b b n y y b b
y y

τ ω ω ω ω
   ∂ ∂− −

= − = −   Θ ∂ ∂   
  

that only depends on the new metric 2ω ω= Θ  defined over the target.  
Proof: We have to prove the following technical result which is indeed the 

hardest step of this paper, namely that ijρ  does not contain terms linear in kb  
over the target. The main problem is that, if we have any derivative of the second 
order jets over the source, like r ia∂ , we obtain therefore a term like  

( ) ( )k k k
r i k i r k r i kf b f b f b∂ = ∂ + ∂  which is bringing a term linear in the kb  and 

we have to prove that such terms may not exist if we work only over the target.  
For this, let us set over the source when ω  is the Minkowski metric with 

0γ = :  

, , , ,, ,k k k k k i u k k k k kt k
s r s r rs s r u r i s r s rs r s s r rs t srT T g B f T a a aτ δ δ ω ω= −Φ = ∂ ≠ Φ = + − = Γ  

Looking for the derivatives of the second order jets, we already saw in (13) that 
they can only appear through the terms:  

k k
i k i k v url sl
s i rl r i sl s rv uB B f f

y y
∂Φ ∂Φ

∂ Φ − ∂ Φ = −
∂ ∂

 

Contracting in k and r, we get when there is no EM:  

( ) ( )

( )
( ) ( ) ( )

( )

1

2

r r
v u v u r r rtrl sl

s r s l r s l l s sl tv u v u

u v v
l u s v t vv u rt u

s l sl rv u u

u v rt u vv v
l s sl r tu u

f f f na f a a a
y y y y

f b f b f b
n f f f

y y y
b bn f f f f
y y

δ δ ω ω

ω ω

ω ω

∂Φ ∂Φ ∂ ∂
− = − + −

∂ ∂ ∂ ∂

∂ ∂ ∂
= − − +

∂ ∂ ∂
∂ ∂

= − + +
∂ ∂



 

but we have to take into account the linear terms produced by an integration by 
parts:  

( )1
u v v

v u rt ul s t
s u l v ls r vv u u

f f fn f b f b f b
y y y

ω ω
∂ ∂ ∂

− − +
∂ ∂ ∂

 

that is to say, we have to subtract:  

( )
( ) , , ,

1

1

t i u t i v rt u i v
u s i l t v l i s t ls v r i t u

t t rt u
l s t s l t ls t r u

n g B f a g B f a g B f a

n T a T a T a

ω ω

ω ω

− ∂ − ∂ + ∂

= − − −
 

Meanwhile, as we already saw in (12), we have to compute:  

( ) ( ) ( ), , , , , ,
t t k t k k t t k k t

r s s r lt l r st t s lr l s rt t r lsT T T T T T− Φ − Φ + Φ + Φ + Φ  

and to contract in k and r in order to get:  

( ) ( ) ( ), , , , , ,
t t r t r r t t r r t

r s s r lt l r st t s lr l s rt t r lsT T T T T T− Φ − Φ + Φ + Φ + Φ  
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However, two terms are disappearing and we are left with:  

( ), , , ,
t r t r t r r t

s r lt l r st l s rt t r lsT T T T− Φ − Φ + Φ + Φ  

that is to say:  

( ) ( )
( )

, ,

, ,

t r r ru t r r ru
s r l t t l lt u l r s t t s st u

t r t t tu
l s t t r l s s l ls u

T a a a T a a a

nT a T a a a

δ δ ω ω δ δ ω ω

δ δ ω ω

− + − − + −

+ + + −
 

and thus:  

, , , , , ,

, , , ,

t r ru t t t ru t
s l s r l lt r s u l s t l t s st l r u

t r r tu r
l s t l r s s r l ls t r u

T T a T a T a T a T a

nT a T a T a T a

ω ω ω ω

ω ω

− − + − − +

+ + + −
 

The four terms containing la  and sa  are disappearing and we are left with:  

( ) , , , , ,1 t t ru t ru t tu r
l s t s l t lt r s u st l r u ls t r un T a T a T a T a T aω ω ω ω ω ω− − + −  

Taking into account twice successively the conformal Killing equations, we ob-
tain:  

( )

( )

, , , ,

, , ,

21

1

t t ru t tu r
l s t s l t ls t r u ls t r u

t t rt u
l s t s l t ls t r u

n T a T a T a T a
n

n T a T a T a

ω ω ω ω

ω ω

− − + −

= − − −
 

that is exactly the terms we had to substract and there is thus no term linear in 

ia  in the Ricci tensor over the target, a quite difficult result indeed because no 
concept of classical Riemannian geometry could be used.  

We finally obtain from the definition of Θ  while taking inverse matrices:  

( ) ( ) ( ) ( )
( ) ( )

2 2

2

k l kl i j ij
kl i j ij k l

kl ij k l
i j

y f f x y g g x

y x f f

ω ω ω ω

ω ω

−

−

Θ = ⇒Θ =

⇒Θ =
 

and just need to set ij
ijτ ω τ=  in order to get the last formula.                

REMARK 3.2.7: When r r
i iA δ= , we get  

, , , , , , ,
k k k r k r k
l ij i l j j l i l i r j l j r iρ χ χ χ χ χ χ= ∂ − ∂ − +  with ,

k k u k u
j i u i j u ijg f g fχ = ∂ − . However, in 

such a situation, we have:  

( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

2

2

a xk l
kl i j ij

a xk l
kl i j ij ij

f x f f e x

f x f x f x e x x

ω ω

ω ω ω

=

⇒ ∂ ∂ = =
 

Using the Minkowski metric ω  which is locally constant and thus flat, it fol-
lows from the Vessiot structure equations that ω  must also be flat but we may 
have ( )2 2f j f≠  even though ( )1 1f j f= . As ω  is conformally equivalent to 
ω , then both metric have vanishing Weyl tensor and the integrability condition 
for ω  is thus to have a vanishing Ricci tensor, that is to say, prolonging once 
the system ( ) ( )1

1j f ω ω− = , we get ( ) ( )1
2j f γ γ− =  and obtain:  

0 k k k kr
ij i j j i ij ra a aγ γ δ δ ω ω= ⇒ = ∂ + ∂ − ∂  

( ) ( ) ( )2 2 2 0rs rs
ij ij rs i j ij r sn a a n a a n a aω ω ω ω− ∂ + ∂ + − ∂ ∂ − − ∂ ∂ =  

This is a very striking result showing out for the first time that there may be 
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links between the non-linear Spencer sequence and classical conformal geometry 
as the above result is just the variation of the classical Ricci tensor under a con-
formal change of the metric and the reason for which we introduced exponen-
tials for describing conformal factors.  

THEOREM 3.2.8: We have the variation over the source:  

, , , , ,
r s r r r r s

j i i r sj r j i j r i r i j j i srBδτ ξ ξ τ τ ξ τ ξ τ ξ= ∂ + ∂ + + −  

Proof: Using the general variational formulas one obtains:  

 
( )
( )

, , , ,

, , , , . ,

k k k r k k r k r
lj i i lj lij r lj i lj r i lr i j

k r r k k r r k r k r k
rj i l lj i r r i lj l i rj j i lr i lrj

δχ ξ ξ ξ χ χ ξ χ ξ

χ ξ χ ξ χ ξ χ ξ χ ξ χ ξ

= ∂ − + ∂ + ∂ +

+ − + − − −
 

where one must take into account that the third order jets of conformal vector 
fields vanish, that is to say 0k

lrjξ = . Contracting in k and l, we get:  

, , , , . ,
s s r s s r s r r s r s
sj i i sj r sj i sj r i sr i j j i sr i srjδχ ξ ξ χ χ ξ χ ξ χ ξ χ ξ= ∂ + ∂ + ∂ + − −  

, , , , , , , ,
k r k k r k k r r s s r
lj i i lj r lj i i lj r lj r i i sj r sj i j r iA A A A Aχ τ δχ δτ τ δ δτ δχ τ δ= ⇒ = + ⇒ = −  

( ), , , , . ,
r s r s s r s r r s s r r s s r
i j r i sj r sj i sj r i sr i j j i sr j r s i s i i sA A A Aδτ ξ ξ χ χ ξ χ ξ χ ξ τ ξ ξ ξ= ∂ + ∂ + ∂ + − − ∂ + ∂ −  

( ), , , , ,
r s r r r r s

j i i r sj r j i j r i r i j j i srBδτ ξ ξ τ τ ξ τ ξ τ ξ= ∂ + ∂ + + +              

Using the fact that ω  is locally constant and not varied (care), we have at 
once:  

( ) ( )
( ) ( )
( )

, , ,

, ,

, ,
2

ij r s r ij r r ij r s
i r sj r j r i r i j j i sr

ij r s r is r js r ij r s
i r sj r r s i j j i sr

ij r s r rs t ij r s
i r sj r r s t j i sr

B

B

B
n

δτ ω ξ ξ τ ω τ ξ τ ξ ω τ ξ

ω ξ ξ τ τ ω ξ ω ξ ω τ ξ

ω ξ ξ τ ω τ ξ ω τ ξ

= ∂ + ∂ + + −

= ∂ + ∂ + + −

= ∂ + ∂ + −

 

and thus:  

COROLLARY 3.2.9: ( ), , , , ,
r s r r r r s

j i i r sj r j i j r i r i j j i srBδτ ξ ξ τ τ ξ τ ξ τ ξ= ∂ + ∂ + + −   

Combining this result with the three preceding Lemmas, we finally obtain:  
COROLLARY 3.2.10: The action variation over the source is:  

( )( ) ( ) ( ) ( )( ) ( )

( ) ( ),

2

2

r ij r s r
r i sj r

ij r s
r i sj

ndet A det A x B det A det A
n

n x det A
n

δ τ ξ τ ω ξ τ ξ

ω τ ξ

−
= ∂ + −

−
+

  

Proof: According to Lemma 5.C.3, we have:  

( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

( )

( ) ( ) ( )( ) ( )

( )( ) ( )

,

,

2

2

ij r s r r
i r sj r r

ij r s
j i sj

r ij r s r
r i sj r

ij r s ij r s
r i sj j i sr

det A det A det A

nB det A det A det A
n

det A

ndet A x B det A det A
n

B det A det A

δ τ δτ τδ

ω ξ ξ τ τ ξ

ω τ ξ

ξ τ ω ξ τ ξ

ω ξ ω τ ξ

= +

−
= ∂ + ∂ −

−

−
= ∂ + −

− ∂ −
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and we just need to use Lemma 3.2.1.                                    
THEOREM 3.2.11: We have the following Euler-Lagrange equations when 

4n =  only:  

gravitational potential

Poisson equation

Newton law

r
ri
r
r
r

ξ

ξ

ξ

 →∃
 →∃
 →∃

 

In particular , ,
10 0 0r r

r i r i i k kb
y

τ χ α ∂Θ
= ⇔ = ⇔ = ⇔ = −

Θ ∂
.  

Proof: For n arbitrary, we have:  

( ) ( )

( )

2

2
2 1 2

2
2

4
2

n kl klk
k ll

n kl kl
k l k l

b ndet A n b b
y

nn
y y y y

τ ω ω

ω ω

−

− − −

 ∂ −
= Θ ∆ − ∂ 

 ∂ Θ − ∂Θ ∂Θ
= − Θ ∆ Θ + Θ ∂ ∂ ∂ ∂ 

 

Hence, for 4n =  only, we have ( )
2

4 kl
k ldet A

y y
τ ω ∂ Θ

= − ∆Θ
∂ ∂

. In the static case  

the gravity vector must be in first approximation  

44 44 0 0k k kl
l k kg b b bγ ω ω− = = − < ⇔ > , 1,2,3k∀ =  (care to the minus sign 

coming from the inversion of the elations). If we introduce the gravitational po-  

tential GM
r

φ =  where r is the distance at the central attractive mass M and G is 

the gravitational constant, then we have 2 1
c
φ
  as a dimensionless number and 

1Θ =  when there is no gravity. When there is static gravity, the conformal factor 

Θ  must be therefore close to 1 with vanishing Laplacian and 0
y

∂Θ
<

∂
. The only 

coherent possibility is to set 21
c
φ

Θ = +  in order to correct the value 21
c
φ

Θ = −   

we found in ([7], p. 450) and we have already explained the confusion we made 
on the physical meaning of source and target. Hence, gravity in vacuum only 
depends on the conformal isotropy groupoid through the conformal factor but 
this new approach is quite different from the ideas of G. Nordström, H. Weyl or 
even Einstein-Fokker. Indeed, it has only to do with the nonlinear Spencer se-
quence and not at all with the nonlinear Janet sequence, contrary to all these 
theories, as we just said, and the conformal factor Θ  is now well defined eve-
rywhere apart from the origin of coordinates where is the central attractive mass. 
We have thus no longer any need to introduce the so-called horizon 2r GM c=  
and gravitation only depends on the structure of the conformal group theory like 
electromagnetism, with the only experimental need to fix the gravitational con-
stant. Such a “philosophy” has been first proposed by the Cosserat brothers in 
([10] [13] [14]) for elasticity with the only experimental need to measure the 
elastic constants and extended to electromagnetism in the last section with the 
same comments. An additional dynamical term must be added for the Newton 
law but this rather physical question will be studied in another paper as we al-
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ready said in the Introduction.                                          

With GM
r

φ =  and thus 2 1
c
φ
 , we have thus been able to replace 21

c
φ

−  

by 21
c
φ

+ , suppressing therefore the horizon 2r GM c=  when G is the gravi-  

tational constant and M the central mass, along the following scheme based on 
the fact that inversion exchanges source with target:  

inversionATTRACTION REPULSION←→  

With more details, the inversion rule for the second order jets is k k r s t
ij t i j rsf f f f g= −  

or, equivalently, u u i j r
kl r k l ijg g g g f= − . In the case of the conformal Lie groupoid, we 

may set y x= , 1k k
i if δ−= Θ  and obtain therefore 3

44 44
k kg f= −Θ  for 1,2,3k =  

but such a procedure could not be even imagined in any classical framework 
dealing with Lie groups of transformations.  

REMARK 3.2.12: We shall find back the same Euler-Lagrange variational 
equations by using the variation over the target. With dy dx= ∆  by definition, 
we have indeed for n arbitrary:  

( ) ( ) ( ) ( )2 2
2

n kl klk
k ll

b ndet A dx n y y b b dy
y

τ ω ω−  ∂ −
= Θ − ∂ 

∫ ∫  

If we are only interested by the variation of the second order jets, we may equi-
valently vary the kb  alone and get after integration by parts:  

( ) ( ) ( ) ( )3 2 12 2 0n nkl kl
l k kk kb n n b b

y y
δ ω ω− −∂Θ ∂Θ

→ − Θ + − Θ = ⇒ = −
Θ∂ ∂

 

Now, with 1 ndx dx dx= ∧ ∧  and 1 ndy dy dy= ∧ ∧ , we have:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
3 4

3 4

4
2

2
2

n nkl kl
k l k l

n nkl kl
l k k l

n n
det A dx n y y dy

y y y y

n n
n y dy y dy

y y y y

τ ω ω

ω ω

− −

− −

 −∂ Θ ∂Θ ∂Θ
= − Θ + Θ ∂ ∂ ∂ ∂ 

− ∂ ∂Θ ∂Θ ∂Θ
= − Θ − Θ ∂ ∂ ∂ ∂ 

∫

∫ ∫

∫
 

If we only vary the section ( )y f x=  of X Y×  over X, we have dy dx= ∆ , 
u

uy
ηδ ∂

∆ = ∆
∂

 and:  

( )( ) ( )1 0
u

n k k k
i i i ik u k

u

k u k

det f x f f
y y y

y y y

ηδ δ

ηδ

 ∂Θ ∂Θ ∂
Θ = ⇒ = ∂ Θ = ∂ + ∂ ∂ ∂ ∂ 

 ∂Θ ∂Θ ∂
⇒ = − ∂ ∂ ∂ 

 

It follows that the variation of the last integral is:  

( ) ( ) ( )4 12
2

u u
n kl

l u k k l un n y dy
y y y y y y

η ηω−  ∂Θ ∂Θ ∂ ∂Θ ∂Θ ∂
− − Θ − ∂ ∂ ∂ ∂ ∂ ∂ 
∫  

After integration by parts, we get, up to a divergence:  

( ) ( ) ( ) ( )4 12
2

n rk k rs u
uk r u r sn n y y dy

y y y y y
ω δ ω η−  ∂ ∂Θ ∂Θ ∂Θ ∂Θ

− − Θ −  ∂ ∂ ∂ ∂ ∂  
∫  
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When 4n = , the direct computation becomes simpler because a part of the 
integral disappears. We are left with ( ) 4det Aτ = − Θ Θ  and we recognize the 
well known Abraham tensor in the bracket, without any other assumption. Ac-
cordingly, we may finally say as in the previous section that the whole gravita-
tional scheme only depends on the structure of the conformal group.  

REMARK 3.2.13: Proceeding as in GR, we may consider the variation:  

( ) ( ) ( )1 0
2

kl rsl
k l kl r sk

by b b y y b b dy
y

δ ω ω
 ∂

+ − = ∂ 
∫g  

Varying only the second order jets kb , we get equivalently through an integra-
tion by parts:  

( )2
kl

kl kl rs
rs l lb

y
ω ω ∂

− =
∂
g

g g  

If we set ( )( ) ( )b f x a x=  and ( ) ( )b yy e−Θ = , then ( ) ( )22 b yy e−Θ =  and we 
have successively:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

2

a x b yk l k l
kl i j ij kl i j ij

k l
kl i j ij

y f f e x e y f f x

y y f f x

ω ω ω ω

ω ω

−= ⇔ =

⇔Θ =
 

Inverting the matrices, we obtain equivalently:  

( ) ( ) ( ) ( ) ( ) ( )2 2kl i j ij kl ij k l
k l i jy y g g x y y x f fω ω ω ω− −Θ = ⇔Θ =  

and thus:  

( ) ( ) ( ) ( ) ( )22 1 1n k n k k k n
i i i idet f det f det A det f det fΘ = ⇒Θ = ⇒ = ∂ = Θ ∆  

Hence, if we set ( ) ( ) ( ) ( )2nkl kly y yω−= Θg , we finally obtain:  

( ) ( ) ( ) ( )2 3 12 2n n
k kk kn b n b

y y
− − ∂Θ ∂Θ

− Θ = − − Θ ⇒ = −
Θ∂ ∂

 

in a coherent way with the logarithmic derivatives:  
10

1 0

k kk k

k k r k r
i i k i r k i i r ik

b b
y y

a f b f a g f A a
y

β

α

∂ ∂Θ
= ⇔ = − =

Θ∂ ∂
∂Θ

⇔ ∂ = − ∂ = ∂ = ∂ = ⇔ =
Θ ∂

 

4. Conclusion 

This paper is the achievement of a lifetime research work on the common con-
formal origin of electromagnetism and gravitation. Roughly speaking, the Cos-
serat brothers have only been dealing with the 3 translations and 3 rotations of 
the group of rigid motions of space with 6 parameters ([10], p. 137) or with the 
Poincaré group of space-time with 10 parameters ([10], p. 167) while Weyl has 
only been dealing with the dilatation and the 4 elations of the conformal group 
of space-time with now 4 6 1 4 15+ + + =  parameters ([3]). Among the most 
striking results obtained from this conformal extension obtained by adding the 
elations, we successively notice:  

https://doi.org/10.4236/jmp.2023.1411086


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2023.1411086 1493 Journal of Modern Physics 
 

● We have revisited the mathematical foundations of Special Relativity without 
appealing to any “Gedanken experiment” using specific signals. As a bypro-
duct, the two sets of Maxwell equations are separately invariant by any dif-
feomorphism, but the conformal group is the biggest group of invariance of 
the Minkowski constitutive law between field and induction in vacuum that 
only depends on one constant. Contrary to classical Gauge Theory, the group 
U(1) never appears.  

● The generating linear first order compatibility conditions (CC) for the Cos-
serat fields are exactly described by the first order nonlinear second Spencer 
operator D2. Accordingly, there is no conceptual difference between these li-
near CC and the first set 2 * 3 *:d T T∧ →∧  of Maxwell equations where d is 
the exterior derivative. However, the classical CC of elasticity are described 
by the linear second order Riemann operator existing in the linear Janet se-
quence but this different canonical linear differential sequence could not ex-
plain the existence of field-matter couplings like piezzoelectricity or photoe-
lasticity ([5] [36]). On the contrary, in the conformal approach, it is essential 
to notice that the elastic and electromagnetic fields are both specific sections 
of *

1 2
ˆ ˆC T R⊗  killed by D2. They can thus be coupled in a natural way but 

cannot be associated to the concept of curvature described by 2Ĉ . This shift 
by one step to the left, even in the nonlinear framework, can be considered as 
the main novelty of this paper.  

● The linear Cosserat equations are exactly described by the (formal) adjoint 
( )1ad D  of the linear first Spencer operator 1 0 1

ˆ ˆ:D C C→  which is a first 
order operator ([13]). Accordingly, there is no conceptual difference between 
these equations and the second set ( )ad d  of Maxwell equations where 

* 2 *:d T T→∧ . This result explains why the Cosserat equations are quite dif-
ferent from the Cauchy equations which are described by the formal adjoint 
of the Killing operator in the Janet sequence used in classical elasticity, that is 

( )Cauchy ad Killing=  in the language of operators. It follows that the elastic 
and electromagnetic inductions are both specific sections of  

4 * * 3 * *
1 2

ˆ ˆT C T R∧ ⊗ ∧ ⊗ , independently of any constitutive relation.  
● Combining the two previous comments, respectively related to “geometry” 

and “physics” according to H. Poincaré ([16]), there is no conceptual differ-
ence between the elastic constitutive constants of elasticity and the magnetic 
constant µ  or rather 1 µ  of electromagnetism in the case of homogene-
ous isotropic materials on one side (space) or between the mass per unit vo-
lume and the dielectric constant ε  on the other side (time), a result con-
firmed by the speeds of the various elastic or electromagnetic existing waves 
([4] [8] [29] [36]). In general, one has 2 2c nεµ =  where n is the index of re-
fraction but in vacuum we have 2

0 0 1cε µ =  and we have thus only one elec-
tromagnetic constant involved in the corresponding Minkowski constitutive 
law of vacuum ([2]).  

● We have pointed out the fact that, in the framework of Lie groupoids consi-
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dered by Spencer, all the fibered and vector bundles are constructed over the 
“source” x and that the “target” y is just used as a kind of “hidden variable”. 
Like in classical fluid dynamics, this has been the reason for calling x the Euler 
variable and y the Lagrange variable, though using transformations ( )y f x= .  

● As for gravitation and the possibility to exhibit a conformal factor defined 
everywhere but at the origin, we may simply say that we needed 25 years in 
order to correct the result we already obtained in 1994 at the end of ([7]). 
Such a possibility highly depends on the new mathematical tools involved in 
the construction of the Janet or Spencer linear/nonlinear differential sequences 
for various groups, in particular for the conformal group of space-time. In-
deed, in this case only, the Spencer δ-cohomology has very specific properties 
for the dimension 4n =  only (see [28] for a computer algebra checking by 
our former PhD student A. Quadrat, INRIA).  

This paper proves that, what was surely true for electromagnetism a few years 
ago, must also become true for gravitation in the future. For the moment, in 
General Relativity, the usual way is to shrink down the group of invariance of 
the underlying metric as we have indeed 10 parameters for the Minkowski me-
tric, 4 parameters for the Schwarzschild metric and only 2 parameters for the 
Kerr metric ([37]). On the contrary, following the Cosserat brothers and Weyl, 
group theory and differential sequences must define the guiding lines by enlarg-
ing the Poincaré group of space-time (10 parameters) to the Weyl group of 
space-time (11 parameters) by adding 1 dilatation and then to the conformal 
group of space-time (15 parameters) by adding the 4 elations. We claim that the 
most striking results of this paper are coming from the Fundamental Diagram I 
(1978) and from the Fundamental Diagram II (1983) that only depends on these 
elations. However, the Spencer operator and its δ restriction have yet never been 
used in mathematical physics, a fact explaining why we have not been able to 
provide many other references.  

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Einstein, A. (1905) Annalen der Physik, 17, 891-921.  

https://doi.org/10.1002/andp.19053221004 
Sur l’Electrodynamique des Corps en mouvement, Gauthier-Villars, Paris (1955).  

[2] Ougarov, V. (1979) Théorie de la Relativité Restreinte. MIR, Moscow. 

[3] Weyl, H. (1918, 1958) Space, Time, Matter. Springer, Berlin. 

[4] Pommaret, J.-F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach, New 
York. 

[5] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1566-1595.  
https://doi.org/10.4236/jmp.2019.1013104 

[6] Gutt, S. (1983) Invariance of Maxwell’s Equations. In: Cahen, M., Lemaire, L. and 

https://doi.org/10.4236/jmp.2023.1411086
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.4236/jmp.2019.1013104


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2023.1411086 1495 Journal of Modern Physics 
 

Vanhecke, L., Eds., Differential Geometry and Mathematical Physics, Mathematical 
Physics Studies (A Supplementary Series to Letters in Mathematical Physics), Vol. 3, 
Springer, Dordrecht, 27-29.  
https://link.springer.com/chapter/10.1007/978-94-009-7022-9_3  
https://doi.org/10.1007/978-94-009-7022-9_3 

[7] Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Wolters 
Kluwer, Alphen aan den Rijn. https://doi.org/10.1007/978-94-017-2539-2 

[8] Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-010-0854-9 

[9] Appell, P. (1909) Traité de Mécanique Rationnelle, Gauthier-Villars, Paris, Particu-
larly t II Concerned with Analytical Mechanics and t III with a Note by E. and F. 
Cosserat “Note sur la Théorie de l’Action Euclidienne”, 557-629. 

[10] Cosserat, E., Cosserat, F. (1909) Théorie des Corps Déformables. Hermann, Paris. 

[11] Koenig, G. (1897) Leçons de Cinématique (The Note “Sur la Cinématique d’un Mi-
lieu Continu” by E. Cosserat and F. Cosserat Has Rarely Been Quoted). Hermann, 
Paris, 391-417. 

[12] Pommaret, J.-F. (1997) Annales des Ponts et Chaussées, 82, 59-66. 

[13] Pommaret, J.-F. (2010) Acta Mechanica, 215, 43-55.  
https://doi.org/10.1007/s00707-010-0292-y 

[14] Pommaret, J.-F. (1983) Differential Galois Theory. Gordon and Breach, New York.  

[15] Einstein, A. and Fokker, A.D. (1914) Annalen der Physik, 44, 321-328.  
https://doi.org/10.1002/andp.19143491009 

[16] Poincaré, H. (1901) C.R. Académie des Sciences Paris, 132, 369-371.  

[17] Pommaret, J.-F. (2015) From Thermodynamics to Gauge Theory: The Virial Theo-
rem Revisited. In: Gauge Theories and Differential Geometry, NOVA Science Pub-
lisher, Hauppauge, 1-46. 

[18] Pommaret, J.-F. (2021) Journal of Modern Physics, 12, 1822-1842.  
https://doi.org/10.4236/jmp.2021.1213106 

[19] Janet, M. (1920) Journal of Mathematics, 8, 65-151.  

[20] Spencer, D.C. (1965) Bulletin of the American Mathematical Society, 75, 1-114. 

[21] Goldschmidt, H. (1972) Journal of Differential Geometry, 6, 357-373. 

[22] Kumpera, A. and Spencer, D.C. (1972) Lie Equations. Annals of Mathematics Stu-
dies, Vol. 73, Princeton University Press, Princeton.  
https://doi.org/10.1515/9781400881734 

[23] Cartan, E. (1904) Annales Scientifiques de l’École Normale Supérieure, 21, 153-206.  
https://doi.org/10.24033/asens.538 

[24] Vessiot, E. (1903) Annales Scientifiques de l’École Normale Supérieure, 20, 411-451.  
https://doi.org/10.24033/asens.529 

[25] Pommaret, J.-F. (2022) Mathematics in Computer Science, 16, Article No. 23.  
https://doi.org/10.1007/s11786-022-00546-3 

[26] Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudo-
groups. Gordon and Breach, New York. 

[27] Eisenhart, L.P. (1926) Riemannian Geometry. Princeton University Press, Prince-
ton. 

[28] Pommaret, J.-F. (2016) Deformation Theory of Algebraic and Geometric Structures. 
Lambert Academic Publisher (LAP), Saarbrucken. 

https://doi.org/10.4236/jmp.2023.1411086
https://link.springer.com/chapter/10.1007/978-94-009-7022-9_3
https://doi.org/10.1007/978-94-009-7022-9_3
https://doi.org/10.1007/978-94-017-2539-2
https://doi.org/10.1007/978-94-010-0854-9
https://doi.org/10.1007/s00707-010-0292-y
https://doi.org/10.1002/andp.19143491009
https://doi.org/10.4236/jmp.2021.1213106
https://doi.org/10.1515/9781400881734
https://doi.org/10.24033/asens.538
https://doi.org/10.24033/asens.529
https://doi.org/10.1007/s11786-022-00546-3


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2023.1411086 1496 Journal of Modern Physics 
 

https://arxiv.org/abs/1207.1964 
https://doi.org/10.1007/BFb0083506 

[29] Pommaret, J.-F. (2022) Journal of Modern Physics, 13, 442-494.  
https://doi.org/10.4236/jmp.2022.134031 

[30] Northcott, D.G. (1966) An Introduction to Homological Algebra. Cambridge Uni-
versity Press, Cambridge. 

[31] Rotman, J.J. (1979) An Introduction to Homological Algebra. Academic Press, 
Cambridge. 

[32] Pommaret, J.-F. (2005) Chapter 5. Algebraic Analysis of Control Systems Defined 
by Partial Differential Equations. In: Advanced Topics in Control Systems Theory, 
Lecture Notes in Control and Information Sciences Vol. 311, Springer, Berlin, 155-223.  
https://doi.org/10.1007/11334774_5 

[33] Pommaret, J.-F. (2015) Multidimensional Systems and Signal Processing, 26, 405-437.  
https://doi.org/10.1007/s11045-013-0265-0 

[34] Pommaret, J.-F. (2012) Spencer Operator and Applications: From Continuum Me-
chanics to Mathematical Physics. In: Yong, G., Ed., Continuum Mechanics-Progress 
in Fundamentals and Engineering Applications, InTech, London, 1-32.  
https://doi.org/10.5772/35607 

[35] Pommaret, J.-F. (2018) New Mathematical Methods for Physics, Mathematical Phys-
ics Books. Nova Science Publishers, New York, 150 p. 

[36] Pommaret, J.-F. (2001) Acta Mechanica, 149, 23-39.  
https://doi.org/10.1007/BF01261661 

[37] Pommaret, J.-F. (2023) Journal of Modern Physics, 14, 31-99.  
https://doi.org/10.4236/jmp.2023.141003 

 
 

https://doi.org/10.4236/jmp.2023.1411086
https://arxiv.org/abs/1207.1964
https://doi.org/10.1007/BFb0083506
https://doi.org/10.4236/jmp.2022.134031
https://doi.org/10.1007/11334774_5
https://doi.org/10.1007/s11045-013-0265-0
https://doi.org/10.5772/35607
https://doi.org/10.1007/BF01261661
https://doi.org/10.4236/jmp.2023.141003

	Nonlinear Conformal Gravitation
	Abstract
	Keywords
	1. Introduction
	2. Variational Calculus 
	3. Applications 
	3.1. Poincare, Weyl and Conformal Groups 
	3.2. Gravitation 

	4. Conclusion
	Conflicts of Interest
	References

