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Abstract 
A century ago, de Broglie discovered the wave associated to the motion of the 
electron. We present here the soliton solutions of a nonlinear relativistic wave 
equation. Two such solitons exist, corresponding to the two possible states of 
a particle with spin j = 1/2. The mystery of wave-particle dualism is solved: 
the electron is both a particle, a point which is a singularity, and a wave ex-
tended throughout the whole space. 
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1. Introduction 

Wave particle dualism began with Einstein’s paper [1] explaining that light was 
both an electromagnetic wave and contained energy-momentum quanta (pho-
tons). This dualism was extended by L. de Broglie to any matter particle [2]. A 
major controversy followed Schrödinger’s discovery of a non-relativistic wave 
equation for de Broglie’s wave: Bohr thought that matter was sometimes wave 
and sometimes particle. Schrödinger thought matter was only wave. Like Eins-
tein, he was seeking a solution to the dualism in Einstein’s gravitational theory: 
General Relativity. De Broglie continued to think of matter as simultaneously 
wave and particle. He first tried the idea of a wave guiding his particle, later a 
double wave following the same equation. He also studied the relativistic wave 
equation formulated by Dirac [3], in the 30s and again in the 50s [4] [5]. Then 
Einstein succeeded in linking the motion of a matter particle, which is a singu-
larity in the gravitational field, to the equation of this gravitational field. The so-
liton solutions that we present here are thus the result of a very long quest, 
mainly developed by Einstein, de Broglie and their relatively few followers. 
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2. The Wave Equation 

The wave equation is best suited to the use of the Pauli algebra, which is also the 
Clifford algebra 3Cl  of three-dimensional physical space (see for instance [6], 
Chapter A). The wave is a function φ  of space and time, with value in 3Cl . 
Our wave equation reads:  

 3
ˆ ˆ e ,βφ σ φ φ−∇ = + ii qA m                         (1) 

 ( ) ( )
* *

1 2 1 2
* *

2 1 2 1

ˆ ˆˆ: 2   2 ; 2   2 ,
ξ η η ξ

φ ξ η φ η ξ
ξ η η ξ
   − −

= = = =   
   

     (2) 

 ˆˆ ˆ ˆ: ; : ; : ; : ,µ µ µ µ
µ µ µ µσ σ σ σ∇ = ∂ ∇ = ∂ = =A A A A                (3) 

 ( ) †  0
e : det ; :

0
βρ φ η ξ

 
= = =  

 
i l

m
r

                   (4) 

where β  is the Yvon-Takabayasi angle, l  and r  are two masses which re-
place the unique mass of the Dirac wave equation. Using the Planck length Pl , 
our wave equation may be obtained from the following Lagrangian density:  

 ( )†0 ; v ,η η = = + =ℜ − ∇ + + 
 

L R
Lk i qA

m
l

l r
           (5) 

( )3 ˆˆ ˆ; v ,P Rl k c i qAξ ξ = = ℜ − ∇ + + r  †  

and this density may also be obtained from the wave equation, since it is equiva-
lent to the system:  

( )0 v ,η= − ∇ + +i qA l  

 ( )ˆˆ ˆ0 v ξ= − ∇ + +i qA r                       (6) 

 ( )†Jv : ; J : ; : det .φφ ρ φ
ρ

= = =                   (7) 

3. The Soliton Wave of the Electron 

To solve our wave equation and to obtain a soliton wave, in the case of a wave 
equation without exterior electromagnetic potential A, we use the separation of 
variables in spherical coordinates discovered by H. Krüger [7] [8], letting (see 
also [6] Chapter C):  

 1 2 3: sin cos   ;  : sin sin   ;  : cos .θ ϕ θ ϕ θ= = =x r x r x r           (8) 

The following notations are used:  

 1 23 1 2 31 2 3 12 3:  ;  :  ;  : ,σ σ σ σ σ σ= = = = = =i i i i i i             (9) 

 ( )
1

1 23 2
ˆ: exp exp  ;  : sin ,

2 2
ϕ θ θ −−   = − − Ω = Ω =   

   
S i i r S        (10) 

3 1 2
1 1: .

sinθ ϕσ σ σ
θ

′∂ = ∂ + ∂ + ∂


r r r
 

H. Krüger obtained the remarkable identity [7]:  
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 1,−′∂ = Ω∂ Ω
 

                           (11) 

The wave equation to be solved reads:  

 21
ˆ ˆ0 e ,βφσ φ φ−= ∇ + + iqA m                      (12) 

 ( )0 3
ˆ ˆ e .βφ φ φ−∂ − ∂ = +



ii qA m                     (13) 

It’s possible to separate at one go the t and ϕ  variables from the r and θ  va-
riables by using:  

 ( ) ( )0 0
3 3x xˆ ˆ: e ; e ,

λϕ λϕ
φ φ

− −
= Ω = Ω

E i E i
X X                 (14) 

* *

* *
ˆ: ; ,

   − −
= =   
   

AU B V DU C V
X X

CV D U BV A U
 

where A, B, C and D are functions, with value in  , of the radial variable r; U 
and V are real functions of the angular variable θ ; cE  is the electron energy; 
and λ  is a real constant referred to as the magnetic quantum number in the 
case of the electron in an hydrogen atom. We have:  

 ( ) ( )†
2

det
e det ,

sin
βρ η ξ φφ φ

θ
= = = =i X

r
              (15) 

 ( ) * 2 * 2e : det .βρ = = +i
X X AD U CB V               (16) 

The wave Equation (12) uses:  

( )3
*

*

*
*

*
*

1
sin e  eˆe

e  e1
sin

 
sin sin

 
sin sin

θ ϕ λϕ λϕ
λϕ

λϕ λϕ

θ ϕ

θ

θ

λ λ
θ θ

λ λ
θ θ

−

−

  ∂ ∂ − ∂    −  ′∂ =      ∂ + ∂ −∂  
  

    ′ ′ ′ ′+ + − + −    
   =

    ′ ′ ′ ′− − − + −    
   



r i i
i

i i

r

i
r DU C V

X
BV A Ui

r

B V A UD U V C U
r r

A U C VU B V V A U
r r

3e .λϕ






i

 (17) 

If U and V are solutions of the following system:  

 ; ,
sin sin
λ λκ κ
θ θ

′ ′− = − + =
U VU V V U                   (18) 

it implies that:  

 ( )3 3

* *

* *

ˆe e .λϕ λϕ

κ κ

κ κ

    ′ ′+ − −    
    ′∂ =

    ′ ′− − − −    
    

 i i

D B U C A V
r r

X
B D V A C U

r r

        (19) 

The Equation (12) gives, if we suppose the existence of an interior potential 
= −qA u r :  

 ( )3 3 3
3

ˆ ˆ0 e e e e .λϕ λϕ λϕβ−  ′= + − ∂ − 
 

i i iiuE X X i X
r

m          (20) 

The following system is hence obtained:  
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 0 e ,βκ −    ′= + − + −        
iuE D i D B A U

r r
l                (21) 

 0 e ,βκ −    ′= + + + −        
iuE B i B D C V

r r
l                (22) 

 * * * *0 e ,βκ −    ′= + + + −        
iuE C i C A B V

r r
r              (23) 

 * * * *0 e .βκ −    ′= + − + −        
iuE A i A C D U

r r
r              (24) 

A similar system was solved in Chapter C of [6]. We will thus use the same me-
thod. The κ  constant is an integer number which cannot be zero. It is linked 
to the total angular number j by 1 2κ = +j . In the case 1κ =  and 1 2λ = , 
we obtain:  

 sin cos ; sin sin ,
2 2
θ θθ θ   = − = −   
   

U V              (25) 

 2 2 2 2 2sin ; sin cos ; 2 sin .θ θ θ θ+ = − = =U V U V UV          (26) 

Similarly with 1κ =  and 1 2λ = − , we obtain:  

 sin sin ; sin cos ,
2 2
θ θθ θ   = − =   
   

U V              (27) 

 2 2 2 2 2sin ; sin cos ; 2 sin .θ θ θ θ+ = − = − = −U V U V UV          (28) 

It is easy to prove that, in all cases, 2 2−U V  has a cosθ  factor and is hence 
null in the equatorial plane 2θ = π . The radial system of our wave equation is 
thus close to the radial system of the Dirac equation. 

3.1. Resolution of the Radial System 

Conjugating the two last equations, the radial system becomes:  

 0 e ,βκ −   ′= + − + −   
   

iuE D i D B A
r r

l                (29) 

 0 e ,βκ −   ′= + + + −   
   

iuE B i B D C
r r

l                (30) 

 0 e ,βκ   ′= + − + −   
   

iuE C i C A B
r r

r                 (31) 

 0 e .βκ   ′= + + + −   
   

iuE A i A C D
r r

r                 (32) 

The mass-energy is supposed to be the harmonic mean m of the two masses 
( 2 1 1= +m l r ), and the case 1κ = , 1 2λ =  is chosen. We now let:  

 e ; e ; e ; e .−Λ −Λ −Λ −Λ= = = =s mr s mr s mr s mrA ar B br C cr D dr        (33) 

where Λ is a positive real constant and a, b, c and d are complex constants. Di-
viding by e−Λs mrr  the radial system becomes:  
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 0 e ,βκ −   = + − − Λ − −   
   

iu sm d i m d i b a
r r r

l               (34) 

 0 e ,βκ −   = + + − Λ + −   
   

iu sm b i m b i d c
r r r

l               (35) 

 0 e ,βκ   = + − − Λ − −   
   

iu sm c i m c i a b
r r r

r               (36) 

 0 e .βκ   = + + − Λ + −   
   

iu sm a i m a i c d
r r r

r               (37) 

This system, with any r value, is equivalent to the following system:  

 ( ) ( )0 1 e ;  0 ,β κ−= + Λ − = − −im i d a u is d i bl              (38) 

 ( ) ( )0 1 e ;  0 = ,β κ= − Λ − + +im i a d u is b i dr              (39) 

 ( ) ( )0 1 e ;  0 ,β κ−= − Λ − = − −im i b c u is c i al              (40) 

 ( ) ( )0 1 e ;  0 .β κ= + Λ − = + +im i c b u is a i cr              (41) 

A non-zero solution exists only if the determinant of each system of two linear 
equations is zero. And we obtain actually only two conditions:  

 2
20 1 ,= + Λ −

m
lr                         (42) 

 2 2 20 .κ= + −u s                         (43) 

We let:  

 21 : 1 e ; : e .δ γκ+ Λ = + Λ + =i ii s iu                 (44) 

Since we supposed that the mass-energy is the harmonic mean m, not the geo-
metric mean =gm lr , we can have:  

 
2

2
2 2 21 1; 1.Λ = − = − Λ = −gm

m m m
lr lr                (45) 

Moreover, we have:  

 21 1 e e ,δ δ+ Λ = + Λ = gi im
i

m
                  (46) 

 e ; 1 eγ δ− −− = − Λ = gi im
s iu i

m
                  (47) 

with those conditions, the radial system (34)-(37) is equivalent to the four inde-
pendent relations:  

 ( ) ( )e ; e ,δ β δ β− + −= =i id a b cl l
r r

               (48) 

 e ; e .γ γ−= − = −i ib d c a                     (49) 

And those relations imply:  

 ( ) ( )e e e e ,δ β δ β γγ γ − + − − += − = − = −i ii i l lb d a a
r r

          (50) 
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 ( ) ( ) ( ) ( )e = e e e .δ β δ β δ β γγ− − − −−= − = −i i iib c a al l l
r r r

        (51) 

Hence we obtain:  

mod 2 ; mod ,δ β γ δ β γ γ δ− − + = − − =π π  

 e eγ δ= ±i i                            (52) 

To obtain a probability density, it is necessary to choose 0>s . We thus suppose, 
with 1κ = :  

2

1; e
1

δγ δ + Λ
= + = =

+ Λ
i is iu  

 
2 2

1 ; ,
1 1

Λ
= = =

+ Λ + Λg

ms u
m

                (53) 

 ( )e ; e ; e .δ ββ δ − +− −= − = − = ii ib a c a d al l
r r

            (54) 

If the anomalous gyromagnetic ratio comes from the difference between the 
two means m and mg (see [6] 1.5.7) we have:  

 ( )
2 41.00115965218091 26 ; 0.048

2 4
−

= = = Λ = ≈g a

g

m m g g
m m

 (55) 

Now by letting:  

( ) ( )2
1 1: ; : e ; : ln ln ,ζ= = = −iaa a a a l r  

 
 e

: ,
 e

δ

δ δ

  
=   

   

i

i

a b a bf
c d c d

                  (56) 

the wave becomes:  

 
0x2 33 2 21 2 2 4 2 2 24 2 2 2

1
ˆ e e e e e e .

δ β ζ δ β ϕζ ϕ θ θ

δφ
   − − − − − + −−Λ − −   −    

 
= −   

 

i a i E imr i i isa r f    (57) 

Since 1<s , the center is a singularity of the electron wave, which appears both 
as a point particle and as extended throughout the whole space. Moreover we 
have:  

 3 2 2 32 2 2 2
3

1 e 1 e xe e e e ,
2 2

ϕ θ θ ϕ δ δ

δ σ
− −   + −

= +  
 

i ii i i i
f

r
           (58) 

 
0

2 3x
1 2 2 4 2 24

1 3
1 e 1 e xˆ e e  e ,

2 2

δ β ζ δ βζ δ δ

φ σ
   − − − − − −−Λ    −     + −

= − + 
 

i ii a i E imrsa r
r

 (59) 

 
0

2 3x
1 2 2 4 2 24

1 3
1 1 xe e  e .

2 2

δ β ζ δ βζ δ δ

φ σ
   − −+ + − − −−Λ    −     + −

= − + 
 

i ii a i E imrs e ea r
r

 (60) 

3.2. Case 1κ =  and 1 2λ = −  

The wave Equation (12) now uses:  
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3
*2 2

2

*2 2

*
*

*

1
e esinˆe

1
e e

sin

2sin 2sin

2sin 2sin

ϕ ϕ
θ ϕϕ

ϕ ϕ

θ ϕ

θ

θ

θ θ

θ θ

−
−

−

    ∂ ∂ − ∂    −   ′∂ =          ∂ + ∂ −∂      

   ′ ′ ′ ′+ − − + +   
   =

   ′ ′ ′ ′+ − − − −   
   



i ir
i

i i
r

i
DU C Vr

X
i

BV A Ur

B V A UD U V C U
r r

A U C VU B V V A
r r

32

*

e .
ϕ

−

 
 
 
 
 
 

i

U

 (61) 

Since κ  is still +1, we obtain the same radial system. Next we have:  

 

3
*2 2

2

*2 2

*

*

e   eˆe
e   e

sin  cos
2 2sin e

cos  sin
2 2

ϕ ϕ
ϕ

ϕ ϕ

θ θ

θ
θ θ

−
−

−

−Λ

 
− =  

 
 

 − − 
=  

 − 
 

i i
i

i i

s mr

DU C V
X

BV A U

d c
r

b a

            (62) 

Next we use (54):  

 

( ) **

* *

e sin  e cossin cos
2 22 2

cos sin e cos sin2 2 2 2

δ β δ

β

θ θθ θ

θ θ θ θ

− −

−

   −− −   
 = 
  −   − −   

i i

i

a ad c

b a a a

l
r

l
r

        (63) 

 
2 32 2 4 2 24

1 2

e cos  sin
2 2e e e ,

sin  e cos
2 2

δ
δ β ζ δ βζ

δ

θ θ

θ θ

   − − − − −   
   

 
 

=  
 − 
 

i
i a i i

i
a i               (64) 

 3 2 32 2 2
2 2 3

e cos  sin 1 e e 1 x2 2e e e .
2 2sin  e cos

2 2

δ
ϕ θ ϕ δ δ

δ

θ θ

σ
θ θ

− − −

 
   + −

= +   
   − 
 



i
i ii i i

i
i i

r
   (65) 

Here also the center is a singularity of the electron wave, which appears both as a 
point particle and as extended to the whole space. We have:  

 
0

2 3x
1 2 2 4 2 24

1 2 3
1 e e 1 xˆ e e  e ,

2 2

δ β ζ δ βζ δ δ

φ σ
   − − − − − −−Λ    −     + −

= × + 
 

i ii a i E imrsa r i
r

  (66) 

 
0

2 3x
1 2 2 4 2 24

1 2 3
1 e e 1 xe e  e .

2 2

δ β ζ δ βζ δ δ

φ σ
   − −+ + − − −−Λ    −     + −

= × + 
 

i ii a i E imrsa r i
r

  (67) 

3.3. Normalization 

The normalization of the wave is a necessary consequence of the equivalence 
principle, the equality between inertial mass and gravitational mass linked to the 
frequency of de Broglie’s clock (see [6] 1.5.5), which means that 0

0d= ∫∫∫E vT . 
This equality is indeed equivalent, for any stationary solution of the wave equa-
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tion, to:  

 
0

1 d ; : D D ,= = +∫∫∫
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L R
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c k k
J J

l r
                (68) 

 † † †3 3
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2 2
σ σ

φ φ φ φ φ σ φ
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L R
m m m m l r
l r l r l r

    (69) 

In the case 1 2λ = , we obtain:  
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   (71) 

This gives:  

 ( )
2

2 2 21
3

D D 2 sine 1 x ,δ σ− − Λ   = + = + ×   +   

s mrL R am r
k k r

lJ
l r l r

      (72) 

 
2

0 2 2 21 2 e .− − Λ=
+

s mra r
k

lJ
l r

                   (73) 

In the proper frame of the electron, its probability density has indeed the spher-
ical symmetry. But this density—contrary to non-relativistic quantum mechan-
ics—is not at all static, but rather turns about the third axis: the electron is a par-
ticle with spin, and thus a magnet, as explained by de Broglie [4]. 

With 1 2λ = −  we have:  

 ( )
0

2 3x
† 1 2 2 4 2 24

1 3 2
1 e 1 e xe e e  

2 2

δ β ζ δ βζ δ δ

φ σ
   − + − − − − −−Λ    −      + −

= − − 
 

i ii a i E imrsa r i
r

  (74) 
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(75) 

where a plane symmetry is used, with:  

 * 1 2 3
2 2 1 2 3x : x x x xσ σ σ= = − +

 i i                    (76) 

A symmetry thus appears, which was completely overlooked by nonrelativistic 
quantum mechanics: when we go from the 1 2λ =  to the 1 2λ = − , the cur-
rent density not only changes sign, but the space itself is changed by a symmetry. 
And we obtain:  

 ( )
2

2 2 2 *1
3

D D 2 sine 1 x ,δ σ− − Λ   = + = − ×   +   

s mrL R am r
k k r

lJ
l r l r

    (77) 
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                      (78) 

Only the probability density is unchanged; the normalization of the wave is the 
same and we obtain:  
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4. Discussion 

The electron without interaction is nevertheless a complicated object: the center 
of the wave is a singularity and the wave is present in the whole space. The elec-
tron wave is stationary in its proper frame and indefinitely stable. Two spin 
states are possible, the magnetic quantum number is 1 2λ = +  or 1 2λ = − . 
The stationary wave is seen by any observer moving relative to the electron as a 
progressive wave, as a consequence of the transformation †: x x x′ =R M M  
which acts also on the time, thus on the phase of the wave, seen as propagating 
in space. 

The phase used in non-relativistic quantum mechanics is the angle of a rota-
tion of the probability current in the “spin plane” as understood by de Broglie’s 
followers, as explained by R. Boudet [9]. The particle is the “small clock” of de 
Broglie’s thesis [2]. Any clock uses a periodic movement, which is here the 
movement of rotation of the probability current about the third axis. 

The soliton wave of the electron was imagined for a very long time, and is 
similar to Descartes’ vortex; many physicists followed this idea, but two reasons 
stopped them: first the rapid dispersion of the quantum wave, and the non-physical 
nature of the wave as only a mathematical tool to calculate a probability density. 
Our soliton wave is a physical vortex, with a proper momentum with value 2  
(see [6] 2.5). This momentum is quantized, it is impossible to change its value; 
there is no dispersion, it is linked both to the non-linearity of our wave equation 
and to the conservation of the kinetic momentum. Next the probability density 
is a physical necessity, arising from the equivalence principle, and actually issues 
from an energy-momentum density. And there are not only one but two ener-
gy-momentum tensors, because the electron wave has not only one but two 
parts, left η  and right ξ . The necessity of the Lagrangian formalism is also 
part of the wave properties (see [6] 2.3.4), and determines the value of the ener-
gy-momentum and kinetic momentum tensors. 

Our soliton wave also bypasses the difficulty of the infinite proper energy of 
Lorentz’s attempt for a model of electron-particle: the mass-energy of the elec-
tron is not the energy of the electromagnetic field, but the energy-momentum of 
the wave. At the center of the soliton wave the energy density is indeed infinite, 
but the sum over all space of this energy density is finite, and this allows the 
normalization of the wave. Moreover the electromagnetic field associated to this 
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wave directly combines the components of the energy-momentum tensor (see [6] 
1.10). 

The electron wave, as calculated above, cannot be obtained without a nonzero 
difference between the left and right masses (otherwise the exponential term 
cancels in the radial functions). This explains why this calculation was not pre-
viously made. It was indeed necessary, before: 

1) to avoid the non-relativistic framework of the Schrӧdinger equation (quan-
tum field theory was not able to realize that change, because this theory cannot 
work out the domain of the unique phase of the non-relativistic wave), 

2) to discover the importance of chirality in the quantum domain, which was 
discovered only in 1956, 

3) to obtain the true nonlinear wave equation, from the relativistic wave equa-
tion of the electron and from the wave equation of Lochak’s magnetic monopole 
[10] [11], 

4) to understand the yield brought by the strict constraints of *
3Cl , a mathe-

matical framework where chirality and relativistic invariance are naturally hig-
hlighted, 

5) to observe the tracks of magnetic monopoles [12] and to see there the pos-
sibility of two different masses for a single fermion wave: physics is first an expe-
rimental science, 

6) to transpose this hypothesis to the electron wave, and to state that electron 
physics is compatible with the existence of two masses, 

7) It was finally necessary to understand how the above soliton waves may be 
obtained, particularly to abandon the idea that the electromagnetic potential u/r 
is exterior to the wave. 

The soliton wave obtained for the electron may be generalized to the other 
fermions (positron, muon, quarks, neutrinos…), and this was already described 
in [6]. 

5. Conclusion 

We thus may consider as finally solved that difficult question of wave-particle 
dualism for the fermions: a fermion is a soliton wave, following an equation with 
partial derivatives, strictly deterministic. But this wave is also compelled to ad-
just its internal mass-energy, that of the little clock imagined by de Broglie, to 
the energy-momentum density of the whole wave: this is a perfectly nonlocal 
condition. 
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