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Abstract 
We study non-equilibrium behaviors of a particle subjected to a high-frequency 
cutoff noise in terms of generalized Langevin equation, where the spectrum of 
internal noise is considered to be of the generalized Debye form. A closed so-
lution is impossible even if the equation is linear, because the Laplace trans-
form of the memory kernel is a multi-value function. We use a numerical me-
thod to calculate the velocity correlation function of a force-free particle and 
the probability of a particle passing over the top of an inverse harmonic poten-
tial. We indicate the nonergodicity of the second type, i.e., the auto-correlation 
function of the velocity approaches to non-stationary at large times. Applied 
to the barrier passage problem, we find and analyse a resonant phenomenon 
that the dependence of the cutoff frequency is nonmonotonic when the initial 
directional velocity of the particle is less than the critical value, the latter is 
determined by the passing probability equal to 0.5. 
 

Keywords 
Nonergodicity, Generalized Debye Noise, Resonance Passing 

 

1. Introduction and Model 

The well-known Debye spectrum of noise is a common expression to study dy-
namic characteristics of lattices in solid physics [1] [2]. It has been successful to 
solve incoherent scattering cross section in [3], vibrational relaxation of impuri-
ties in solids [4] and the dynamics of glasses and liquids [5] [6]. Besides, many 
chemical reactions can be modeled by a single coordinate buffered by the ran-
dom force and corresponding to the memory friction, both obeying the fluctua-
tion-dissipation theorem. Starting out from the system-plus-reservoir model, this 
dynamics can conveniently be described by a generalized Langevin equation (GLE) 
[7] [8] of Mori-Lee form:  
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where the zero-mean noise ( )tε  obeys a Gaussian distribution and the memo-
ry kernel ( )tΓ  is related to the internal noise ( )tε  through  

( ) ( ) ( )Bt t mk T t tε ε γ′ ′= −  [9]. Bk  is the Boltzmann constant, T denotes the 
bath temperature and ( )U x  is the external potential. The motion of the par-
ticle is affected by dissipative influence of a disordered medium. The non-Ohmic 
model can be described by a rich variety of frequency-dependent friction mechan-
isms [10], which arises from the spectral density ( )J ω  [11]. The relationship  

can be described as ( ) ( ) ( )
0

1 d cos
J

t t
m

ω
γ ω ω

ω
∞

= ∫ . 

The truncated form of spectral density of noise is usually chosen to be low- 
frequency [12] or with channel-frequency cutoff [13] [14]. If the spectrum of 
noise is replaced by the generalized Debye form, non-equilibrium properties, the 
fundamental variables and other properties in a such thermal fluctuation envi-
ronment can be further obtained. Moreover, the non-equilibrium characteristics 
in such system are investigated, but its dynamic motions still remain open. In the 
present work, the environment spectrum ( )J ω  takes the generalized Debye 
form.  
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0,  

s

s

mJ
δ
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− <= 
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                 (2) 

This corresponds, e.g., to the long-wavelength limit of one-dimensional acoustic 
phonons. For a noise originated from a coupled oscillator chain, sω  is the Debye 
phonon frequency, ω  denotes a reference frequency allowing for the friction to 
have the dimension of a viscosity of any δ . The mean square displacement of a 
force-free particle in the non-Ohmic thermal bath is proportional to the frac-
tional power of the time at long times, namely, ( )2x t tδ∝ . The cases of  
0 1δ< <  and 1 2δ< <  are sub-Ohmic and super-Ohmic baths, which result in 
sub-diffusion and super-diffusion, respectively; 1δ =  is the Ohmic damping 
leading to the normal diffusion. 

In this work, we pay attention to the nonergodicity of second type, which mani-
fests that the auto-correlation function of the velocity approaches non-stationarity 
at large times and its dynamical effect. The paper is organized as follows. In Sec. 
II, we describe our GLE model subjected to a high-frequency cutoff noise. In Sec. 
III, the velocity auto-correlation functions of a force-free particle and a harmon-
ic particle are calculated numerically, respectively. In Sec. IV, we address a bar-
rier-passage problem and show a resonant phenomenon. The summary is given 
in Sec. V. 

2. Nonergodicity of the Second Type 

Within the GLE dynamics, the criterion of non-ergodicity is that the velocity 
autocorrelation function ( ) ( ) ( )0vC t v t v=  of a force-free particle does not 
vanish in the long-time limit. In the calculations, in order to make the particle 
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having enough time to reach equilibrium, ( )vC t  is calculated after 100t = . In 
the following, the natural units 1m =  and 1Bk = , the dimensionless damping 
coefficient 1.0δγ = , as well as the time step 0.01t∆ =  are used. The statistic 
averaging is performed over the ensemble consisting of 5 × 104 particles. The test 
particles start from zero and their velocities are sampled from the Gaussian dis-
tribution with zero mean and width ( )2 0 Bv k T m= . 

For such a finite spectrum, the physical dynamic properties of the particle in 
the free filed ( ) 0U x =  need to be studied first. In Figure 1, we present the ve-
locity correlation function obtained for subdiffusion ( 0.5δ = ), normal diffusion 
( 1.0δ = ), and superdiffusion ( 1.5δ = ) for various sω . This measures the im-
portance of the nonequilibrium of the system, which causes ( )vC t  to oscillate 
over the time for large t. Also, the behaviour of the oscillation of ( )vC t  strong-
ly depends on the values of the Debye phonon frequency sω . Due to the ab-
sence of the high frequency, the energy exchange between particles and the en-
vironment is not sufficient. Thus the system can not reach to the equilibrium in 
the long time limit. If the frequency cutoff sω  is small, the lower frequency cu-
toff of the system becomes weaker. It is conducive to the particle to dissipate ki-
netic energy. On the other hand, if the frequency cut sω  is large, the damping 
becomes bigger. Thus the energy dissipation of the particle is increased and the 
energy exchange between particles and the environment becomes larger. Thus 
the oscillation of ( )vC t  is weaker when increasing the frequency cutoff. 

Meanwhile, it is worth pointing out that this phenomenon of nonequilibrium 
is divided by the diffusion index δ , which indicates how fast the diffusion oc-
curs. We show the relationship of ( )vC t  with δ  in detail in Figure 2 when  
 

 

Figure 1. ( )vC t  as a function of time t for various sω  at 0.5T = . The parameters 

used are (a) 0.5δ = ; (b) 1.0δ = ; (c) 1.5δ = , respectively. 
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Figure 2. ( )vC t  as a function of time t for various δ  at 0.5T = , 0.5sω = . 

 
frequency cut is small. It is seen that the amplitude of oscillation of ( )vC t  be-
comes weaker when the diffusion is strong. Namely, faster diffusion results in 
the non-equilibrium of the system being not obvious. As δ  decreases, the par-
ticle’s memory of initial state gradually increases. The fast diffusion of the par-
ticles compensates the lack of systematic dissipation. As a consequence, slow 
diffusion makes it harder for the system to achieve equilibrium. 

For a general potential, the system will reach thermal equilibrium where the 
single oscillator is coupled to a finite bath of the harmonic oscillator [15]. What 
will happen if the particle is found in a harmonic oscillator potential  
( ) 2 2

0 2U x m xω=  with Debye spectrum? Can the system reach thermal equili-
brium at large t? In Figure 3, the velocity correlation function of the particle in a 
harmonic oscillator potential is presented. Obviously, the oscillation behavior is 
weaker when the frequency of the harmonic oscillator potential 0ω  increases. 
But it can not reach to the thermal equilibrium considering the effects of the ex-
ternal harmonic oscillator potential. Ref. [16] also revealed similar effects of the 
harmonic potential. It is demonstrated that non-equilibration emerges because 
of the formation of bound states in the coupled system-plus-bath using the mi-
croscopic model of a bath as a collection of oscillator.  

We now investigate nonergodicity of the second kind of a harmonic particle 
subjected to an internal colored noise with generalized Debye spectrum, namely, 
the asymptotical result of a dynamical variable does not approach a constant. 
The mean energy of the particle is determined by  

 ( ) ( ) ( )21 .
2

E t m v t U x= +                    (3) 

The results are plotted in Figure 4, where the initial variance displacement width  

( )2 0x  and the initial velocity width ( )2 0v  are chosen to be 02
0

Bk T
mω

 and 

0
Bk T

m
, respectively. Here, 0T  is the initial temperature of such a system. As we  
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Figure 3. Time-dependent ( )vC t  for various frequency 0ω  in a harmonic potential. 

The parameters used are 0.5T = , 0.5sω = , and 1.5δ = . 

 

 

Figure 4. Time dependence mean energy ( )E t  of a harmonic particle for various ini-

tial temperatures 0T , the continuous and Debye spectrums, respectively. The parameters 
used are 0.5T = , 0 1.0ω = , 1.5sω = , and 1.0δ = . 

 
know, in the case of a continuous spectrum, the velocities fluctuations in har-
monic potential are clearly ergodic. The property of ergodicity under the condi-
tion of a continuous spectrum with the high frequency function e cω ω−  [17] is 
shown in Figure 4(a). Nevertheless, as can be seen from Figure 4(b), it provides 
a clear indication of nonergodicity of the second type in the case of a Debye 
spectrum. Namely, the value of ( )E t  strongly depends on the initial prepara-
tion of the particle in the limit of large times [18] [19]. Another distinct feature 
is revealed that the mean energy of the particle in such a system oscillates around 
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a fixed value in the limit of time, which has the similar behaviour as already 
mentioned above. The stationary state can not arrive at the equilibrium one in a 
large time limit due to the fact of insufficient dissipation. 

3. The Barrier-Passing Probability 

For the barrier passage process, the potential ( )U x  around the saddle point is 
treated to be an inverted parabola 2 2 2bm xω− . The coefficients are supposed to 
be constant around the saddle. Here, we define a Langevin trajectory starting 
from ( ) 00x t x= = , finally crossing the saddle point 0bx = . Given a set of ini-
tial conditions, 0 0x <  and 0 0mx > , the Langevin equation can be exactly solved, 
see Refs [20] [21], and leads necessarily to a Gaussian distribution. The time- 
dependent passing probability is simply given by [22]  

 ( )
( )
( )0 0 2

1, , erfc ,
2 2 x

x t
P x v t

tσ

 
= − 

 
 

                 (4) 

where ( )x t  and ( )2
x tσ  are average position and variance of the particle and 

are given by  

 ( ) ( ) ( )2
0 0 01 d ,
t

bx t t t x t vδ δω φ φ ′ ′= + +  ∫                (5) 

and  

 ( ) ( ) ( ) ( )12
1 2 1 2 10 0 22 d d ,

t t
x Bt mk T t t t t t t t tδ δσ φ φ γ= − − −∫ ∫          (6) 

respectively. The response function δφ  results from its Laplace transfrom ( )ˆ zδφ  
given by ( ) ( )

12 2ˆ ˆ bz z z zδφ γ ω
−

 = + −  , in which ( )zγ  is the Laplace transform 
of the friction memory kernel ( )tγ . In particular, for GLE, ( )tγ  can be given  

by ( ) ( ) ( )
0

1 d cos
J

t t
m

ω
γ ω ω

ω
∞

= ∫ . 

As usual, the average position and variance can be given by the Laplace trans-
form and the residue theorem if the spectra of the noise is continuous [23] [24]. 
However, in order to form the current Debye spectra in this paper. ( )ˆ zγ  can 
be given as ( ) ( )ˆ ~ arctanz zγ  [25]. In order to get δφ , the residue theorem needs 
to be used. The roots of equation ( )

12 2ˆ 0bz z zγ ω
−

 + − =   have to be known. 
Nevertheless, the equation has an infinite number of roots because special func-
tion ( )arctan z  is a multi-valued function. Thus the analytical result for the pass-
ing probability can not be given in a closed form [26]. For the sake of the effects 
of the absence of high frequency on the passing probability, numerical simula-
tion is necessary and of great importance.  

In order to study the thermally activated escape of a particle over a potential 
barrier, average position and variance of the particle must be obtained from 
above discussion. In the previous section, we have shown that the behaviour of 
dynamic variables in such a Debye spectrum is oscillation. Do these two va-
riables of the particle still oscillate when crossing the potential barrier? How 
does the phenomenon of passing probability evolved over time? In Figure 5, we  

https://doi.org/10.4236/jmp.2023.1410076


X. Y. Shi 
 

 

DOI: 10.4236/jmp.2023.1410076 1329 Journal of Modern Physics 
 

 
Figure 5. The average trajectory (solid lines) and variance (dotted lines) as function of 
time for initial velocity 0 3.0,1.0v =  from top to bottom (black solid line: 0 3.0v = ; blue 
solid line: 0 1.0v = ; red dotted line: 0 3.0v = ; purple dotted line: 0 1.0v = ). The average 
trajectory for smaller initial velocity is plotted in the inset. The parameters used are 

0.5T = , 0.5sω = , 0 1x = − , 1.0bω =  and 0.5δ = .  

 
plot the time-dependent average trajectory and variance for different initial ve-
locities. From this figure, an intriguing phenomenon can be observed that the 
dynamic variables ( )x t  and ( )2

x tσ  do not oscillate with time. Nevertheless, 
in the case of the inverse mechanism, the system is not equilibrated, at least with 
respect to a collective degree of freedom such as the reaction coordinate. The 
change of dynamic variables with time is not the oscillation. This behavior ap-
pears because the interaction of the particle with the external potential field oc-
curs very quickly and the reaction time of the particle passing process is too 
short to observe the oscillation of dynamic variables with time. This implies that 
for the environment of the absence of the high frequency, e.g. Debye spectrum, 
the passing probability approaches a constant in the large time limit. This also 
provides a favorable basis for further research on how the truncation of high 
frequency affects the passing probability.  

In Figure 6, we plot the passing probability of the sub-Ohmic particle as a 
function of high frequency cut sω  with different initial energy. It is seen that 
the probability of passage varies nonmonotonically with the truncated frequency 

sω  as the initial energy of the particle is small. For 0sω = , i.e., without thermal 
fluctuations. It is clear that particle will not be able to pass over the barrier if the 
initial particle energy is smaller than the height of the potential barrier. Once 

sω  is increased to a small value, thermal fluctuations arise. As a consequence, 
the particle has more probability to overcome the potential barrier. Neverthe-
less, increasing the high frequency is not conducive to the particle crossing the 
barrier. It can be understood well by the friction of the system. In the case of 
larger high frequency cut. Namely, the vibration frequency of the environmental  
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Figure 6. The passing probability as a function of sω  for various initial velocity at fixed 

0.5δ = . The parameters used are 0.5T = , 2.0bω = , and 0 1x = − . 

 
oscillator is very high. The damping in such environment is going to be very large. 
The recovery of system instability will be faster. Because of the much energy 
consumption of the particle before crossing the barrier, the passing probability is 
reduced. It is worth pointing out that this nonmonotonic phenomenon can only 
occur when the initial energy is less than the barrier height. Obviously, the prob-
ability of passage decreases monotonically with truncated frequency if the initial 
energy is larger than barrier height. 

4. Summary 

Considering the truncation property of the generalized Debye spectrum, none-
quilibrium characteristics of the system and the dynamics of the particle have 
been investigated in this paper. The oscillation behavior of the velocity autocor-
relation function with time in a free field is analyzed. Remarkably, this oscilla-
tion is related to the speed of particle diffusion. Slower diffusion of the particle is 
favorable to the nonequilibrium observation of the system. In order to analyze 
further the equilibrium characteristic behavior subjected by such finite noise 
spectrum, we put the particle in an external potential, for instance a harmonic 
potential, respectively. For the case of a harmonic potential, we show that the 
system will not equilibrate when the noise spectrum is of the form of a Debye 
spectrum. As we expected, we find that making the system nonlinear restores 
thermal equilibration. Besides, the nonergodicity of the second kind of a har-
monic particle subjected to an internal colored noise with generalized Debye 
spectrum is investigated. Moreover, by using numerical simulation techniques, 
the stable passing probability turns out to be a nonmonotonic function of the 
Debye phonon frequency. This phenomenon can be only observed when the ini-
tial energy is less than the barrier height. It is due to the fact that the larger lack 
of high frequency, the smaller the corresponding damping. Thus, the particle 
can easily to overcome the barrier and run to the other side of the potential. 
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