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Abstract 
This article identifies the maximum entropy distribution among those in the 
polytope of probability distributions cohering with quantum theoretic pre-
scriptions pertinent to Bell’s inequality in the optical context. Perhaps surpri-
singly, the maxent distribution is not a uniform mixture of the extreme ver-
tices of the convex hull of distributions agreeing with the theory. The expec-
tation ( )E s  it supports equals 1.1296, within the permitted coherent inter-
val of ( ]1.1213,2 . The maxent mixture of the extreme agreeable vertices is 
compared herein with two other mixture distributions over the convex hull of 
those supported by quantum theory. One of these is a simple uniform mix-
ture over the solution vectors to the appropriate linear programming prob-
lems that specify the polytope. The other is the mixture underlying simulated 
results of Aspect’s experiments that have been shown to estimate ( )E s  as 
1.7678. Further computations provide examples of the types of claims that 
would be entailed in a unique distribution within the cohering convex hull 
such as maxent. These defy quantum theoretic adherence to the general un-
certainty principle which proclaims an agnostic position with respect to im-
agined joint observation operators that do not commute. They also display 
questionable implications of the “many worlds” proposal which the author 
does not favour. The article raises questions that deserve to be discussed con-
cerning the general proposal that the maximum entropy principle should be 
employed to make precise probabilistic assertions about equilibrium pheno-
mena when specific physical theory prescribes only an interval. 
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1. Prelude and Outline of This Discussion 

Well known since the insistent analysis of Fine [1], quantum theoretic consider-
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ations do not motivate a complete joint probability distribution for the polariza-
tion products constituting the linear combination that underlies Bell’s inequality 
in a gedankenexperiment. The author of the present article has identified [2] 
precisely the four-dimensional convex hull of distributions that do cohere with 
the limited prescriptions of quantum theory in this regard. These do not specify 
a unique distribution for the gedanken quantity s which is defined as an unob-
servable combination of four polarization products on the same pair of photons. 
Neither does the theory motivate even a unique quantum expectation value 
( )E s  for this quantity. It surely does not specify the expectation as 2 2  in 

Aspect’s setup [3], which is widely promoted as the value defying Bell’s inequa-
lity. Challenging several long-held assessments of the matter, the author’s con-
tribution has identified, rather, the interval ( ]1.1213,2  as representing the li-
mited implication of quantum theory for this expectation. The present article 
presumes some familiarity of the reader with these issues. It extends the analysis 
to expose some interesting implications of the suggestion that the maximum en-
tropy distribution within the convex hull of distributions explicitly supported by 
quantum theory ought to be entertained as a unique distribution to represent the 
content of physical theory. 

The article of Caticha [4] contains the latest review of extensive work on these 
matters. The proposition that the maxent distribution would be appropriate is 
motivated by its appending the minimum amount of information to an analysis 
in keeping with observation of a physical system in equilibrium. The equilibrium 
state of a pair of particles such as Aspect’s pair of photons is typically characte-
rized as changing smoothly in keeping with Schrödinger’s equation. Some con-
testable interpretations of the Bell construct [5] [6] [7] see it as pertaining to the 
average polarization products of many paired particle emissions, which could 
constitute a system in equilibrium. At any rate, the author is not swayed by such 
a motivation for the maximum entropy reduction of the expectation assessment, 
preferring rather that the interval assessment of ( )E s  remains unless or until 
further supplementary conditions of the optical experiment under consideration 
might be identified. Of course discussion of the matter would be welcome. The 
numerical results of this article will present some interesting implications rele-
vant to the dialogue. 

Section 1 begins directly with a presentation of computational results. These 
identify the maximum entropy distribution over eight conceivable observation 
vectors for polarization products induced by a pair of photons in an Aspect/Bell 
gedankenexperiment, agreeing both with the prescriptions of quantum theory 
and with the principle of local realism as it pertains to Bell. The experiment is 
framed in the CHSH form of Clauser et al. [8] as described in the review by As-
pect [3]. The substantive implications of quantum theory for the complete re-
sults of the experiment are imprecise. However, the author [2] has identified 
precise restrictions on distributions allowed by the theory that still respect local 
realism. These leave four free dimensions of agreeable probability vectors for the 
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imagined observation possibilities, and an identifiable convex hull of distribu-
tions within them. The maximum entropy selection procedure has been pro-
posed to resolve this indeterminacy as a unique mixture distribution within the 
free solution space. The computed probability mass function this procedure 
supports is compared here with two other recognizable mass function vectors. 

Section 2 then assesses these results relative to the general uncertainty prin-
ciple which is honoured fastidiously within standard quantum theory. This spe-
cifies that when two non-commuting observation operators are defined on a 
state vector characterized within a Hilbert space, a joint measurement of the two 
considered aspects of the state is recognized to be impossible. Such impossibility 
is evident experimentally as well. Quantum theory specifies an agnostic position 
with respect to statements about the numerical values of unobservable record-
ings. Whatever its due merits may be, our deliberations lead us to question the 
motivation for relying on a maximum entropy resolution of the indeterminacy 
inhering in quantum theoretic prescriptions. 

2. Computational Results for Specific Mixtures 

The first four rows of Table 1 display 16 columns of possibilities for the paired 
polarization observations A and B in an Aspect/Bell thought experiment, 
wherein a single pair of photons is ejected simultaneously in opposite directions 
from a central site toward four pairs of polarizers. These are set in the ( ),x y  
planes perpendicular to the direction of emissions at the relative angles ( ),a b , 
( ), ′a b , ( ),′a b , and ( ),′ ′a b . The bold notations of a  or ′a  and b  or ′b  
identify alternate directions of the polarizers. The observation possibilities pre-
sume that the value achieved by ( )A a  does not vary from its value in a paired 
observation with ( )B b  when it is paired alternately with ( )B ′b . This accords 
with the principle of local realism whose relevance is studied via such an expe-
riment. The second partitioned bank of four rows display the component-wise  
 

Table 1. Maxent probabilities for vectors of possible gedanken observations. 

A(a) 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 

B(b) 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 

A(a') 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 

B(b') 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 

***** 
                

A(a)B(b) 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 

A(a)B(b') 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 

A(a')B(b) 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 

A(a')B(b') 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 

***** 
0.0978 0.0978 0.0272 0.0978 0.0978 0.0272 0.0272 0.0272 0.0272 0.0272 0.0272 0.0978 0.0978 0.0272 0.0978 0.0978 

maxentP 
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products of these various possibilities. The final partitioned row displays the 
maximum entropy probability mass function value among all those that honour 
the prescriptions of quantum theory assessed for each column possibility, whose 
generation we shall now discuss. All computations in this article pertain to the 
setting of relative angles between polarizer directions at stations A and B sus-
pected by Aspect as stimulating the strongest defiance of Bell’s inequality: 
( ), 8π= −a b , ( ), 8′ = π−3a b , ( ), 8′ π=a b , and ( ), 8π′ ′ = −a b .  

While the first partitioned bank of polarization observations contains sixteen 
distinct columns, the second bank of polarization products contains only eight 
distinct columns. The final eight columns of the second bank repeat the first 
eight, merely reversed in order. The upshot of this feature of the thought expe-
riment is that the realm matrix of possibilities for the four polarization products 
contains only eight columns rather than sixteen. These appear again on their 
own as follows, with each column appended by the value of Bell’s quantity that it 
would entail,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s A B A B A B A Bλ ′ ′ ′ ′≡ − + +a b a b a b a b : 

viz., 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

A B
A B
A B
A B

s λ

  − − − − 
   ′ − − − −   
   ′ = − − − −
   ′ ′ − − − −   

   − − − −  

a b
a b

R a b
a b

      (1) 

Since the final row of R  has components equal only to either 2 or −2, each 
one of the polarization products in the thought experiments appearing in the 
first four rows must equal a function value of the other three. For further refer-
ence, we shall identify this gedankenfunction as ( ), ,G ⋅ ⋅ ⋅ . Specifically, notice that 
if any three of the first four elements in a column of R  sum to +3 or to −1, 
then the fourth component must equal +1; whereas if the three sum to −3 or +1, 
then the fourth must equal −1. (In making sense of this, notice the negative sign 
on the second component of the linear combination defining ( )s λ .) It is the 
neglect of these symmetric functional relations among the components of ( )s λ  
that has given rise to the mistaken notion that the probabilities of quantum be-
haviour specify the expectation value ( ) 2 2E s = , defying the Bell inequality 
which recognizes that ( )2 2E s− ≤ ≤ + . 

Of course it is true that the expectation of ( )s λ  must equal a linear combi-
nation of the expectations of its components. It is also true that quantum theory 
identifies the expectations of individual polarization products in Aspect’s expe-
riments on four distinct pairs of photons as  

( ) ( ) ( ) ( ) ( ) ( ) ( )4cos 1 2E A B E A B E A B′ ′ ′     = = = =π     a b a b a b , and  
( ) ( ) ( )cos 4 1 2E A B ′  = − 3π = −a b . However in the gedankenexperiment 

that gives rise to Bell’s inequality, only any three of these free expectations would 
be relevant to the evaluation of ( )E s . The expectation of the fourth would in-
volve assessing a function of these three variables, and must be evaluated by li-
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near programming problems. In brief, this is how they are formulated. The ex-
pectation for the vector of quantities detailed in R  must equal a convex com-
bination of its columns, 8Rq , where 8q  is a vector of non-negative coefficients 
that sum to 1. This combination would be constrained by the quantum theoretic 
expectations specified for each three of the four polarization products, observa-
ble on its own without involvement in any gedankenexperiment. 

Quantum theoretic distributions do identify precise expectations for the pola-
rization products that might result from emitting a pair of photons at any one of 
the four angle pairings considered in the Aspect/Bell problem. Any three of these 
expectation values would constitute linear restrictions on the components of 8q  
in a gedankenexperiment which assesses results from a single pair of photons 
approaching all four angle pairings. Conforming to these restrictions is a 4-D 
polytope of vectors 8q . It is spanned by eight solution vectors 8

∗q  to four pairs 
of min and max LP-problems for an objective function specified by the expecta-
tion of Bell’s quantity, ( )E s λ   . Each of these problem pairs arises from a dis-
tinct choice of three polarization angles from the four that are involved in Bell’s 
gedankenexperiment to specify the constraints. The eight 8-D vectors that solve 
these extreme value problems are those displayed as columns of the matrix 

8
∗q Mat , shown below. It was published in Lad [2] Section 7.2, atop page 1132, an 

article which presents more expansive details.  

8

0 0.1464 0 0.1464 0.7803 0.5607 0 0.1464
0.7803 0.5607 0 0.1464 0 0.1464 0 0.1464
0.0732 0 0.0732 0 0.0732 0 0 0

0 0.1464 0.7803 0.5607 0 0.1464 0 0.1464
0 0.1464 0 0.1464 0 0.1464 0.7803 0.5607

0.0732 0 0 0 0.0732 0 0.0732 0
0.0732 0 0.0732 0 0

∗ =q Mat

0 0.0732 0
0 0 0.0732 0 0.0732 0 0.0732 0

 
 
 
 
 
 
 
 
 
 
  
 

  

(2) 

The columns of 8
∗q Mat  are the minimum and maximum solution vectors to 

linear programming problems that yield the extreme value of ( )E s  when the 
“fourth” dependent variable of the function ( ), ,G ⋅ ⋅ ⋅  is, sequentially, ( ) ( )A B′ ′a b , 
( ) ( )A B′a b , ( ) ( )A B ′a b , and ( ) ( )A Ba b . As befits the symmetry of the prob-

lem structures, the columns 1, 3, 5, and 7 of minimum LP solutions are permu-
tations of one another, as are the columns 2, 4, 6, and 8 of maximum solutions. 
The minimum and maximum values of ( )( )E s λ  that these column solutions 
support are alternately 1.1213 and 2. The associated (entropy, extropy) pairs the 
alternating columns inhere, respectively, are (0.7678, 0.5444) and (1.1684, 
0.7668). 

The extropy of a probability mass function is a measure that is complementa-
ry and dual to its entropy. Introduced and analyzed in [9], the extropy is a 
measure assessing the probabilities of non-occurrence of possible values of an 
observation vector. Computationally it equals ( ) ( )1 1 log 1N

i ii p p
=

− − −∑  as op-
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posed to the entropy ( )1 logN
i ii p p

=
−∑ . Algebraically it is equivalent to the (res-

caled) entropy in the mass function complementary to Np , viz., the entropy in 
the mass function ( ) ( )1N N N− −1 p . 

The “maxent distribution” within this polytope is specified by that convex 
combination of these eight solution vectors whose entropy is a maximum. It has 
been identified using Monte Carlo methods that scan convex coefficient vectors 
over the unit simplex 7 . It turns out that in this problem the maximum en-
tropy distribution is also the maximum extropy distribution among those that 
share the entropy value, a feature that does not necessarily hold. 

Two other distributions have also been studied, for comparison. One of them 
is the uniform combination of the 8

∗q Mat  solution vectors. The other is a mass 
function vector underlying one component of the Monte Carlo simulation of 
Aspect’s experiments that was analysed in Section 7 of the “Quantum violations” 
article [2]. The three NAMED vectors appear as the first three columns of the 
matrix shown in Table 2. They are followed in the Table by the 8-D vectors of 
linear coefficients for the columns of 8

∗q Mat  that define them. We shall refer to 
such coefficient vectors as 8NAMEc , displayed here as column vectors. Com-
putational procedures and a discussion will follow the display. 

2.1. Computational Methods 

The maxent pmf vector was identified through a two-stage procedure. To begin, 
twenty runs of one hundred million Monte Carlo selections of 8-D convex com-
bination vectors were engaged using a uniform distribution over the unit-simplex  

 
Table 2. Three probability vectors constructed as mixtures of the extreme solutions to the 
Aspect/Bell expectation ( )( )E s λ , followed by the linear coefficients 8c  on the extreme 

solution vectors that support them. Each probability vector equals the matrix 8
∗q Mat  

multiplied by the correspondingly named 8c  vector. Below each mixed probability vec-

tor is its entropy value, H, its extropy value, J, and the expectation value ( )E s  it speci-

fies.  

q8 MAXNT UNFORM SIMUL c8MXNT c8UNFRM c8SIMUL 

q1 0.1956 0.2225 0.1067 0.2476 0.125 0.2214 

q2 0.1956 0.2225 0.6219 0.0024 0.125 0.8241 

q3 0.0544 0.0275 0.0183 0.2476 0.125 0.0143 

q4 0.1956 0.2225 0.1067 0.0024 0.125 −0.0295 

q5 0.1956 0.2225 0.1067 0.2476 0.125 0.0143 

q6 0.0544 0.0275 0.0183 0.0024 0.125 −0.0295 

q7 0.0544 0.0275 0.0183 0.2476 0.125 0.0143 

q8 0.0544 0.0275 0.0031 0.0024 0.125 −0.0295 

H(q8) 1.9101 1.7325 1.2495 
   

J(q8) 0.9119 0.8911 0.7277 
   

E(s(λ)) 1.1296 1.5607 1.7678 
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7 . Each selection resulted in a non-negative vector summing to 1, a probability 
mass function vector (pmf). Each of these selections specifies a distinct convex 
combination of the LP solution vectors composing 8

∗q Mat  whose entropy and 
extropy were then computed. The maximum entropy value among those of the 
pmf vectors so determined was 1.9089maxH = . Interestingly enough, that pmf 
entailed the maximum extropy value among them as well, this being  

.9117maxJ = . However, the maxent and maxext pmf displayed above is not ex-
actly this one derived simply from the outcome of the Monte Carlo search. The 
one displayed derived from an adjustment and a perturbation, the motivation 
for which is now described. 

To begin computations, the uniform mixture of the columns of 8
∗q Mat  was 

computed as a simple average of its columns. This was found to entail an entro-
py value of 1.7325HU =  and extropy 0.8911JU = . These values were lower 
than the maximum values reported in the paragraph above on both counts, as 
expected. On examining this uniform mixture of the columns of 8

∗q Mat , it was 
noticed that two of its component values (0.2225 and 0.0275) were each repeated 
four times in the vector. Examining then the values of the maxent vector discov-
ered via the Monte Carlo runs, it was noticed that the values corresponding to 
each of the repeated components in the uniform mixture were also very nearly 
equal among themselves in both cases. Members of these two groups were then 
averaged separately to replace them, yielding a mass function with slightly high-
er entropy. Finally, this function was then perturbed a bit to identify the 
MAXNT mass function displayed in Table 2. All computations displayed have 
been rounded to four decimal places from the standard sixteen place computa-
tion, except for MAXNT which I specified exactly to four places. I have not yet 
discovered another 8q  vector with higher entropy, but the one that is displayed 
may be inaccurate as the true maxent distribution beyond the fourth decimal 
place. It is interesting that the value of ( )E s λ    it supports is quite close to 
the minimum value allowed by quantum theoretic prescriptions, which is 
1.1213. Nonetheless, the entropy of any odd numbered column of the 8

∗q Mat  
matrix which support this minimum value of ( )E s λ    is only 0.7678, and the 
extropy is 0.5444. 

Finally, the 8q  vector displayed as the SIMUL vector in Table 1 was com-
puted from a simulation design that was used to construct the results of the 
Quantum violations article [2] in its Section 8.2. This specified choosing any 
three of the simulated polarization product values ( ) ( )A B∗ ∗a b  independently 
using probabilities appropriate to specifications of quantum theory. These derive 
from the well-known values of probabilities for polarization pairs computed as  

( )21 cos ,
2

∗ ∗a b  and ( )21 sin ,
2

∗ ∗a b , reported as Equation (1) in [2] and of course  

elsewhere. The computed example on display in Table 2 is specific to following 
this procedure using the three relative polarizer angles ( ) ( ), , , ′a b a b , and 
( ),′a b , and then determining the polarization product at ( ),′ ′a b  from them, so 
to ensure the value of the Aspect/Bell quantity s equals either −2 or +2 as re-
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quired. For example, the values of 1q  accorded to the first column of the Realm 
matrix was computed via the prescription  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )2 2 28

1 1 1

cos cos cos 0.8536 0.1464 0.8536 0.1068 8 7

P A B P A B P A B

−π −3

′ ′     = = =     
= = × ×π π =

a b a b a b
 

The remaining values of 8q  for the SIMUL column were computed similarly, 
with adjustments of the quantum probability factors when the observation val-
ues of the polarization products are designated differently, yielding one, two, or 
three −1’s among the three polarization products rather than having all equal to 
1 as shown in the line above. This procedure simulates the experimental results 
of Aspect exactly, in the sense that he conducted his experimental runs relevant 
to any string of four relative angles independently. However, he ignored the 
functional relations embedded in the components of Bell’s quantity pertaining to 
thought experiments on a single pair of photons; whereas I had used each choice 
of three independent simulations to generate the fourth polarization product via 
the required functional relationships denoted by ( ), ,G ⋅ ⋅ ⋅  among the four. Our 
simulation data would only mimic his experimental results, because they arise 
merely from the probabilistic specifications of quantum theory rather than from 
his experimentation. However, structurally they are similar. 

2.2. Completing the Simulation Procedure 

Each of the three 8q  vectors MAXNT, UNFORM, and SIMUL can be expressed 
as a linear combination of the columns of our vertex matrix via  

( )8 8 8NAME NAME∗=q q Mat c . Using the pseudo-inverse of the vertex matrix 

8
∗q Mat , the vectors 8NAMEc  corresponding to each of them has been com-

puted as ( )8 8NAME∗PseudoInv q Mat q . Each of the three 8NAMEc  vectors so 
computed sums to 1. 

The fact that 8MXNTc  and 8UNFRMc  vectors are strictly positive identi-
fies their 8q  vectors as lying within the convex hull of solution vectors to the 
Bell LP problems. The disturbing fact that 8SIMULc  has three negative com-
ponents means that this SIMUL vector is not in the hull! It does not cohere with 
the prescriptions of quantum theory, the basis of the constraints that gave rise to 
those extreme LP solutions. Something is amiss, and we need to address it 
forthwith. It turns out that there is nothing wrong with what has been done, but 
merely that the procedure has been incomplete. 

The simulation procedure we have formalised to mimic Aspect’s empirical 
work requires completion. When using quantum probabilities for polarization 
products at three angles independently, the functional relation ( ), ,G ⋅ ⋅ ⋅  would 
specify a degenerate conditional distribution for the product at the fourth angle 
conditional on these. For the computation of the SIMUL vector in Table 1 we 
chose freely the simulated polarization products at the three chosen angles 

( ) ( ), , , ′a b a b , and ( ),′a b , and then computed the fourth value of ( ) ( )A B′ ′a b  
according to the function ( ) ( ) ( ) ( ) ( ) ( ), ,G A B A B A B′ ′  a b a b a b . But we could 
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have chosen any one of the four to be determined by a choice of three other free 
angles using the same functional relationship among them. There would be a 
distinct procedure of simulating the four polarization measurements for each 
choice of the function value variable. The probabilities reported for SIMUL in 
Table 2 derive from only one of the ways to generate exemplars of the possible 
outcome vectors, specifying the choice of the polarization product at the relative 
angle ( ),′ ′a b  as the product determined by the ( ), ,G ⋅ ⋅ ⋅  function. 

The columns of Table 3 display quantum probability vectors 8q  that arise 
from the same procedure that generated the SIMUL vector in Table 2, but each 
of them involves a different denomination of relative angle as “the fourth” whose 
polarization product is determined via the G function of the others. The first 
column replicates the column SIMUL from Table 1, but the others arise from 
different selections of a polarization product as the dependent variable. The 8q  
components of the fifth column are the averages of corresponding row compo-
nents in the first four columns. It too yields a pmf vector. The entropy, extropy, 
and ( )E s  values inhering in each 8q  column appear below it. 

As is expected from the symmetry of their construction, the first four columns 
of these 8q  vectors are permutations of one another. 

Now premultiplying the five pmf columns of Table 3 by the  

( )8
∗PseudoInv q Mat  yields a column of coefficient vectors 8c  that will orient 

them in the interior of the convex hull of solution vectors for the Bell LP prob-
lems. These are displayed as columns of Table 4. 

What a pleasant surprise! While the 8c  coefficients for any single component 
of the simulation procedure supports a 8q  vector that is outside the convex hull  
 
Table 3. Columns of simulation probabilities for Bell’s gedanken possibility vectors, de-
rived from alternative choices of Aspect’s fourth polarization product to be determined 
by the ( ), ,G ⋅ ⋅ ⋅  function. These appear as the first four columns. The fifth column is 

their average. The final three rows display the entropy, extropy, and ( )( )E s λ  inhering 

in each. 

G map → A(a')B(b') A(a')B(b) A(a)B(b') A(a)B(b) Average q8 

q1 0.1067 0.1067 0.6219 0.1067 0.2355 

q2 0.6219 0.1067 0.1067 0.1067 0.2355 

q3 0.0183 0.0183 0.0183 0.0031 0.0145 

q4 0.1067 0.6219 0.1067 0.1067 0.2355 

q5 0.1067 0.1067 0.1067 0.6219 0.2355 

q6 0.0183 0.0031 0.0183 0.0183 0.0145 

q7 0.0183 0.0183 0.0031 0.0183 0.0145 

q8 0.0031 0.0183 0.0183 0.0183 0.0145 

H(q8) 1.2495 1.2495 1.2495 1.2495 1.6079 

J(q8) 0.7277 0.7277 0.7277 0.7277 0.8788 

E(s(λ)) 1.7678 1.7678 1.7678 1.7678 1.7678 
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Table 4. Coefficient vectors 8c  that orient the simulation vectors 8q  of Table 3 with 
respect to the convex Hull of Bell LP solutions. 

G map → A(a')B(b') A(a')B(b) A(a)B(b') A(a)B(b) c8 For Average 

c1 0.2214 0.0143 0.0143 0.0143 0.0661 

c2 0.8241 −0.0295 −0.0295 −0.0295 0.1839 

c3 0.0143 0.2214 0.0143 0.0143 0.0661 

c4 −0.0295 0.8241 −0.0295 −0.0295 0.1839 

c5 0.0143 0.0143 0.2214 0.0143 0.0661 

c6 −0.0295 −0.0295 0.8241 −0.0295 0.1839 

c7 0.0143 0.0143 0.0143 0.2214 0.0661 

c8 −0.0295 −0.0295 −0.0295 0.8241 0.1839 

 
of quantum solution vectors (negative components of the coefficient vector 8c ), 
a procedure that mixes the use of all four produces a 8q  vector inside the hull. 
All the components of “ 8c  For Average” are positive, and they sum to 1. 

3. Maxent Probability Assertions Eschewed by QM 

It is well known that quantum theory abstains from providing a joint probability 
distribution for quantity vectors that cannot possibly be observed, denying as-
sertions such as  

( )( ) ( )( ) ( )( ) ( )( )P A a B b A a B b ′ ′ ′ ′= = = = a b a b           (3) 

applying to the 16 possibility vectors [ ], , ,a b a b′ ′  for which each component 
equals either +1 or to −1. Such a possibility vector cannot be observed because it 
is physically impossible to set up the gedakenexperiment. Rather, the theory 
promotes only the four paired probability assertions ( )( ) ( )( )P A a B b∗ ∗ = = a b  
pertinent to a pair of photons for each of the polarizer angle pairings that can be 
observed. The choice of the maxent distribution among those that agree with 
accepted quantum theoretic prescriptions does not shy away from such a propo-
sition. It is interesting to study the implications of such boldness. 

To begin, the maxent joint distribution pertinent to the four polarizer prod-
ucts that specify Bell’s quantity s also specifies a complete mass function for the 
vector of polarization observations themselves. We repeat these here from Table 1.  

 

Maxent probabilities for vectors of possible gedanken observations 

A(a) 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 

B(b) 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 

A(a') 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 

B(b') 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 

***** 
0.0978 0.0978 0.0272 0.978 0.0978 0.0272 0.0272 0.0272 0.0272 0.0272 0.0272 0.978 0.978 0.0272 0.978 0.978 

mxntP 
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Without further explication, these probabilities for individual results of the 
four polarization observations derive from the maxent probabilities for polariza-
tion products reported in Table 2, supplemented by the fact that quantum proba-
bilities specify further symmetry conditions for each angle pairing ( ),∗ ∗a b  that  

( ) ( )( ) ( ) ( ) ( )( ) ( ), 1, 1 , 1, 1P A B P A B∗ ∗ ∗ ∗   = + + = = − −   a b a b , and 

( ) ( )( ) ( ) ( ) ( )( ) ( ), 1, 1 , 1, 1P A B P A B∗ ∗ ∗ ∗   = + − = = − +   a b a b . 

These equalities hold no matter what are the polarizer directions ∗a  and ∗b , 
identical on the two sides of either equation. The probabilities massed at the 
columns of joint polarization observations are merely the probabilities for the 
products they imply but divided by 2. We will need access to these probabilities 
to address the questions we pose now. 

It is standard fare that any joint probability assertion can be factored into the 
product of a sequence of conditional probabilities, such as  

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

1 1 1 1

1 1 | 1

1 | 1 1

1 | 1 1 1

P A B A B

P A P B A

P A A B

P B A B A

 ′ ′= = = = 
   = = = =   
 ′× = = = 
 ′ ′× = = = = 

a b a b

a b a

a a b

b a b a

          (4) 

Now quantum theory would surely specify values for the first two of these 
four factored multiplicands if we were to conduct an experiment exclusively at 
the polarizing angle ( ),a b , say, as ( )( )1 1 2P A = = a  and  

( )( ) ( )( ) ( )21 | 1 cos ,P B A = = = b a a b . Perhaps surprisingly, however, while this 
first specification for individual polarization values continues to hold for the 
thought experiment on the photon pair at all four angle pairings, the conditional 
probability ( )( ) ( )( )1 | 1P B A = = b a  is no longer determined precisely in the 
gedanken context. Rather, coherency with the quantum theoretic probabilities 
specified for the four separate polarization angles merely bounds the conditional 
probability ( )( ) ( )( )1 | 1P B A = = b a  within the interval [ )0,0.8536 . This 
can be determined by an array of fractional programming computations imple-
menting de Finetti’s fundamental theorem of probability as it applies to condi-
tional probabilities, see [10] Section 3.3. It can also be derived from the assess-
ment of conditional probabilities associated with the expansions of the solution 
vectors to the linear programming problems we have identified as 8

∗q Mat . 
Though somewhat of an aside at the moment, it is worth noticing that the co-

herent bounds on the conditional probability ( )( ) ( )( )1 | 1P B A = = b a  in-
clude the value of 0.5, which is the value of the quantum theoretic specification 
of ( )( )1P B =b  on its own. This peculiarity is worth noticing because the dif-
ference of this conditional probability ( )( ) ( )( ) ( )21 | 1 cos ,P B A = = = b a a b  
from ( )( ) 11 2P B = =b  in an actual experiment at a single paired polarization 
angle is the feature that characterizes the fabled entanglement of the photons’ 
behaviour at the observation stations A and B. Just saying. 
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For now I should also mention that maxent specifies a precise value for the 
conditional probability ( )( ) ( )( )1 | 1P B A = = b a  as 0.3206/5 = 0.6412, while 
the average simulation specifies it as a value rounding to 0.7288. Both of these 
values lie within the interval that coheres with the prescriptions of quantum 
theory, and both of these differ from the marginal probability of 0.5, as is speci-
fied by quantum theory in an actual experiment at a single relative polarizer an-
gle. 

To complete our analysis of the factorization of joint probability we have 
identified in Equation (4) we need to consider the third and fourth factors that 
appear therein. Once again, quantum theory itself specifies nothing about them, 
as their assessment involves consideration of unobservables. Nonetheless, the 
probabilities deriving from quantum theory do place bounds on the third and 
fourth factors if they are to cohere with the positive prescriptions it does pro-
vide. Specifically, ( )( ) ( )( ) ( )( )1 | 1 1P A A B ′ = = = a a b  is bounded to lie within 
the interval [ ]0,0.9142 , while ( )( ) ( )( ) ( )( ) ( )( )1 | 1 1 1P B A B A ′ ′= = = = b a b a  
may lie anywhere in the unit interval [ ]0,1 . These bounds also derive either 
from fractional programming computations or from the assessment of the ver-
tices of the convex hull appearing in (2). In contrast to the quantum specifica-
tion of mere intervals, these liberties are taken specifically by the MAXNT as-
sessment as the values 0.6101 and 0.5, and by the average SIMUL assessment as 
0.6532 and 0.5. 

We have already noted that the specification of the second factor in (4) may 
portray the so-called entanglement of the two photons’ behaviours via a condi-
tional probability that differs from its marginal value ( )( ) 11 2P B = =b . While 
this is surely the case in a real experiment with a pair of photons engaging a spe-
cific polarization angle, it seems peculiar that this is no longer required (though 
it would be permitted) in the gedanken scenario. However quantum theory itself 
says nothing at all pertinent to the third and fourth factors which describe fea-
tures of unobservable behaviour. Yet contemporary physical theory does enter-
tain such considerations in the form of the so-called “many worlds” hypothesis. 
In the spirit of the tendered principle of local realism, one might consider pro-
posing a condition such as  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 | 1 1 1 | 1P A A B P A B   ′ ′= = = = = =   a a b a b .  

While the entanglement of distant photon behaviour is a recognized feature of 
experimentation [allowing that the value of ( )B b  may be informative about 
( )A ′a ], it would be hard for many to accept that physical occurrences in another 

world in which the polarizer at A is directed at a  could be informative in any 
way about the observation of ( )A ′a . 

Similar, but more intricate quandary would be involved in the specification of 
the fourth factoring conditional mass function  

( )( ) ( )( ) ( )( ) ( )( )1 | 1 1 1P B A B A ′ ′= = = = b a b a . 

Which of the impossibly jointly conditioning observations should be consi-
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dered relevant to ( )B ′b , that of ( )A a  or that of ( )A ′a ? …not to speak of the 
relevance of ( )B b . Comparatively in the scenario we have been considering, the 
quantum theoretic specifications of ( )( ) ( )( )1 | 1P B A ′ = = b a  and  

( )( ) ( )( )1 | 1P B A ′ ′= = b a  are both different and complementary in distinct 
real experiments. They sum to 1 as the square of a cosine and the square of a 
sine. 

Nonetheless, the maxent resolution of the incomplete quantum theoretic as-
sessment of such issues is decisive. The maxent resolution specifies the values of 

( )( ) ( )( ) ( )( )1 | 1 1 0.6101P A A B ′ = = = = a a b , which differs from its specifica-
tion of ( )( ) ( )( )1 | 1 0.6412P A B ′ = = = a b . Meanwhile it also asserts  

( )( ) ( )( ) ( )( ) ( )( ) 11 | 1 1 1 2P B A B A ′ ′= = = = = b a b a , while concomitantly  

asserting ( )( ) ( )( )1 | 1 0.3588P B A ′ = = = b a  along with  

( )( ) ( )( )1 | 1 0.6412P B A ′ ′= = = b a . 

One wonders on what foundation do these strange assertions of maxent dis-
tributions rest, proclaiming information conveyed across worlds. It appears that 
supporters of a maxent resolution to incomplete quantum theory have some 
questions to answer. Rather than speculating, we shall conclude now, leaving 
such issues as a proposal for discussion. On my own account, I would resign 
myself to consider the quantum theoretic assertion of ( )E s  merely as the in-
terval ( ]1.1213,2 . I believe this would be the position held by de Finetti, and 
surely by the many proponents of interval probabilities as representative of 
scientific uncertainty. 
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