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Abstract 
In our investigation, we examine the initial state of an electron that is 
represented as a massless point-like charge before it absorbs an infinite num-
ber of photons. We consider this state as an eigen-function corresponding to 
the electron charge as an eigenvalue. As a result, we obtain a three-dimensional 
delta function as expected. 
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1. Introduction 

The theory that particle mass is generated by Higgs mechanism is widely ac-
cepted. Especially after the discovery of the Higgs particle [1], the Higgs me-
chanism has been convinced as the true origin of bosons. Encouraged by this 
discovery, many physicists have been trying to show that the Higgs mechanism 
is also true for fermions, specifically by showing a mass hierarchy for quarks and 
leptons [2]. However, some physicists are still not convinced that the Higgs me-
chanism is true for fermions, primarily because of lepton consideration. In this 
regard, it becomes very important whether an electron charge is a point or 
spreads out to finite volume because Weinberg shows that electron charge 
spreads out to finite volume simultaneously when it gains mass by absorbing in-
finite number of photons by estimating its charged radius in his famous book of 
Quantum Theory of Field I [3], for one instance. This point has become more 
important after ACME collaboration reports that they could not find a dipole 
moment inside electron [4]. Recently, this problem has attracted to scientists in 
other fields beyond particle physics, especially electron Laser physics [5]. We al-
so investigated this problem considering an electron charge distribution as a 
corresponding eigen-function of electron mass that plays as an eigenvalue sti-
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mulating by Weinberg’ description of electron in previous article [6]. The pur-
pose of this paper is to show that our method used in the previous article is rea-
sonable by showing that an initial state of electron is massless point particle as 
described in Weinberg’s book [3] using same method in Ref. [6]. 

2. Formulation 

We investigated an electron charge distribution function stimulated by Wein-
berg’s consideration [3] in the previous article [6]. Weinberg considered that an 
electron is point-like charge before absorbing infinite number of photons and by 
absorbing infinite photons it obtains mass and simultaneously its charge is 
spread out finite volume. In our previous article, by introducing a charge matrix 
and by considering the equation of motion, we obtained an electron charge dis-
tribution function in its final state as a corresponding eigen-function to electron 
mass as an eigenvalue. In this paper, we investigate an initial state of electron 
corresponding to Weinberg’s electron state before absorbing infinite photons. 
To approach this problem, we use the same method as the previous article be-
cause the obtained result may show whether our charge distribution function in 
Ref. [6] is actuary comparable to Weinberg’s description of electron or not. To 
consider this problem, we assume that an electron charge before absorbing infi-
nite photons is a bare charge be  and that a vacuum permittivity is 0  that is 
different from normal vacuum permittivity 0 . In fact normal vacuum permit-
tivity is considered under finite volume. However, to follow Weinberg’s consid-
eration, we must consider the vacuum permittivity at 0 0a →  case that is de-
fined under volume-less vacuum. To do this, we use the estimation method for 
vacuum permittivity by Mainland et al. [7]. According to Mainland et al., the 
vacuum permittivity is estimated as 

0 3
00

1
VF

p

P

EL
=  

where 0 pL : zitterbewegung length (refer to Ref. [7]) 

0E : electron field strength interacting with a single photon 
VFP : expectation value of electric dipole moment 

They use electron mass to estimate a zitterbewegung length 0 pL . However, 
we are going to consider an initial state of electron case in which its mass is zero. 
Thus, we estimate 0 pL  from an eigen-function associated to an eigenvalue 

0 0P a  ( 0a : electron charge radius) of an equation of motion describing in later 
part of this section. 

As shown in later, the obtained eigen-function is 
2

2

2
0

e expr r
a

−  
= − 

 
. Thus, it  

is allowable for us to set as 0 0~pL a . The electron field strength interacting with 
a single photon 0E  can be expressed as  

0 2
0

beE
a

=  
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be : electron bare charge 
By denoting an eigen-function associated with an eigenvalue ( 0 0P a ) as 
( )( )r r rφ =

 , the expectation value of dipole moment VFP  is estimated as 
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As mentioned before, ( )rφ  is actuary 
2

2
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exp r
a

β
 
− 
 

 so that VFP  becomes 

2VF beP
β

=
π

 

As shown in later, β  is expressed as 
2

2 0 0

0

2 be P a
c

β =
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. Thus, the vacuum  

permittivity at 0 0a →  case is described as 
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                        (1) 

Recalling 
2

0

be


 is related to 
2

0

e


 by renormalization, β  is dimensionless so  

that 0  is dimensionless. Equation (1) shows that 0a  dependence of the vacuum 
permittivity 0  at 0 0a →  case. Equation (1) shows that 0  goes to infinity as  

0 0a → . Therefore the quantity 
2

0

be


 is meaningful.  

In previous article [6], we introduced a charge matrix state as  

( ) ( ) ( ) ( )†, 0 , , charge statet r e q t r q t rλη λ ηρ = −
    

where ,λ η  are Dirac indices. This kind of charge matrix (only operator part) is 
also used by Karnieli [5] as mentioned in Ref. [6]. For considering an initial state 
of electron case, we use the same charge matrix state except using charge be  
(bare charge) instead of e. 

To obtain the equation of motion for an initial state of electron case, we use 
same argument as Ref. [6]. However, recalling that ( ) ( )( )0, e iP tt r r r rρ ρ−= =

  , 
we have to change the following two points. 

First: Gauss’ law becomes 0

0

divE ρ
=



 vacuum permittivity is changed from  

normal 0  to 0  for which we described before. 
Second: necessary condition of ( )0 rρ  becomes 

( )2
00

4 d brr r eρ
∞

π = −∫  and taking ( ) ( )0 0br e rρ ρ= −  

( )2
00

4 d 1rr rρ
∞

π =∫                         (2) 

Decomposing ( ),t rρ   as  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3ˆ ˆ, 1 , , , ,t r t r i r t r t r i r t rρ ρ α ρ βρ β α ρ= + − ⋅ + + ⋅
       
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as shown in Ref. [6], we obtain the equation for eigen value 0P  as follows. 
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These form of equations are obtained in Ref. [6] except that charge part 
2

0

e


 

is changed to 
2

0

be


. Recalling that we are considering an initial state of electron  

and that its quantity we know is only charge quantity-e after being renormalized. 
Thus we have to construct the equation of motion for eigen value of [ ]0P r  be-
cause dimension of 2e  is [energy × length]. To do this, we multiply r for both 
side of Equation (3). Then Equation (3) becomes as 

( ) ( )
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0
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From Equation (4) 1ρ  is described as 0
1

0

c
P r

ρ
ρ

∂
=

∂
 , then we substitute this 

1ρ  into Equation (5). Then, taking new variable as 
0

rr
a

=  and after using  

some manipulation, we obtain the following equation for ( )0 rρ . 
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∫
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
   (6) 

Note that a charge distribution function must satisfy Equation (2), and for  

( )0 rρ  case, Equation (2) is described as ( )2
0 30

0

1d
4

r r r
a

ρ
∞

=
π∫ . Thus, ( )0 rρ  

can be expressed as ( ) ( )0 3
0

1r k r
a

ρ =  and ( )k r  is dimensionless some function  

of r . Thus, Equation (6) is consistent for dimensional argument. 
Because r  is dimensionless, we can use Tayler expansion for integral parts 

as shown in Ref. [6]. Then, Equation (6) becomes 

( )
( )

( )
( )

22 2 2
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 
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where ( )3
1 0 00

dC a r r rρ
∞

′ ′ ′= ∫  

Note that because ( )0 rρ  is described as ( ) ( )0 3
0

1r k r
a

ρ =  as mentioned  
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before, 1C  is dimensionless. 
We can deal with Equation (7) as an equation for new eigenvalue 

0 0 0aV P a= . 
Since we cannot find exact solution of Equation (7), we set following condi-

tion similar to that as shown in Ref. [6].  

( ) ( )3 2 3
0 0 0 0a r a f rρ ρ= +                       (8) 

Using the Condition (8), Equation (7) becomes 

( ) ( )
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=
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       (9) 

Equation (9) is an inhomogeneous second order differential equation. Thus, 
to find this solution, we first solve homogeneous equation, then we use Wrons-
kian way to construct this solution as shown in Ref. [6]. As we mentioned in Ref. 
[6], this way of construction of solution is well known and we cite Ince’s book 
[8] as an example of reference. 

Homogeneous part of Equation (9) is expressed as 

( ) ( )
0 0 0
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Taking ( ) ( )0
1r W r
r

ρ =  and after some manipulation, we obtain the following  

equation for ( )W r . 
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Changing variable as 2r z=  and recalling that 
2 2

2 24 2z
zr z

∂ ∂ ∂
= +
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, Equation  

(10) becomes as 
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Taking ( ) ( )
1
4W z z W z

−
=  and after some manipulation, we obtain the fol-

lowing equation for ( )W z  as 
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Changing variable as z zβ= , Equation (13) becomes 
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Taking 
( )

0
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2
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1 1
8 4
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c

β =
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
, this determines β  as 
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Inserting this β  into Equation (14), we obtain the following equation. 
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Denoting as 
( ) ( )

0 0 0

1
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 
 and recalling Equa-

tion (15) is a standard form of Whittaker’s differential equation [9]. We obtain  
basis solutions of Equation (15) as 

( ) ( ), ,andz zM Mκ µ κ µ−  

We do not use ( ),W zκ µ  and ( ),W zκ µ−  type solutions because we are seek-
ing eigen values corresponded to Equation (15). 

Standard form of 2
1
z

 term is expressed as 

2

2

1
4
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, thus µ  value of the 

solution of Equation (15) is 1
4
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where ( ), ;F zσ γ  is Kummer’s hyper geometric series defined as [9] 
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Thus, when z  becomes sufficiently large, ( ),M zκ µ  behaves as 2e
z

z κ− .  

However, electron charge must be zero at r goes to ∞ so that its series have to be 
terminated. This gives the following condition equation. 

1 0
2

nµ κ− + + =                         (18) 

For electron, we take n = 0 as in Ref. [6]. Recalling that κ  denotes as  
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we obtain the determining equation of 
0aV  as 

0 0
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1
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, Equation (19) becomes  
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Equation (20) shows that X has a definite positive solution and we know that  
2

0

be


 is related to 
2

0

e


 after being renormalized. Then we can set the following  

condition as  
2 2

0 0

be eζ=
 

 where ζ  is some constant              (21) 

Note that this condition becomes meaningful only when 0a  approach 0. 

Because electron charge is appeared as a quantity as 
2

04
e
π

 in quantum  

electrodynamics (QED), we seek to find the corresponding eigenvalue as  

0

2

04a
eV cα= =
π




. 

Then, substituting 
0aV cα=   into Equation (19) and using condition Equa-

tion (21), we obtain the equation for ζ  as follows. 

1
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Taking ζ ζ= , Equation (22) becomes 
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Because ζ  must be positive, we obtain 
1
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. 

First, we construct a corresponding eigen-function using Wroskian method. 
However, we have to remind that this eigen-function is only formal one and be-
comes meaningful only after taking limitation of 0 0a →  because of our defini-
tion of vacuum permittivity 0 . 

To find a function ( )f r , we use Equation (8) and this gives  

( ) ( )( )6
0 03

0

1 1 1 4
2

r a f r
a

ρ = ± +  

Because we are seeking a useful solution when 0a  goes to zero, we take 
( )3

0 0~ a f rρ −  
Substituting this form of 0ρ  into Equation (9), we obtain the following equ-

ation for ( )f r  as 
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= , equation for ( )f r  is obtained as 
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Usual solution of Equation (25) is ( )sin rδ  where  

( )
0 0

2 2

12
0

0a ab
V Ve C

c c
δ

 
= − > 

 




 under our required 

0aV  value. However, we are  
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(28) is expressed as 

20

2 1d exp
u iF u

u u
δ 

=   
 

∫                    (29) 

Thus, a solution of Equation (26) is  

( ) 20

1 2exp d exp
u if u i u

u uu
δ δ   

′= −      ′′   
∫              (30) 

Because we are interested in the behavior of a particular solution when 0a  
approach 0, we check that the behavior of ( )f u  when u approach 0 recalling  

that 01 au
r r

= = . 

To do this, changing variable as ( )u i z iε= − + , integral part of Equation (30) 
becomes 

( )
( )20

1 2lim d exp
z

i
i z

z iz iεε

δ
εε−→

  
′ − −  ′ +′ − +   

∫  
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When z goes to –iε , this obviously goes to 0 because its integrand is well  

defined in the integral region. In addition, magnitude of exp i
u
δ 

−  
 

 is less  

and equal to 1. Thus, ( )f u  approaches 0 when 0a  goes to 0.  

Recalling a solution of Equation (15) with 1
4

µ =  is ( )
3
4

3 1,
4 4

exp
2
zz zM  = − 

 
,  

the other solution is ( )3 1,
4 4

M z
−

 and its series part is not terminated so that at  

sufficiently large z , ( )3 1,
4 4

M z
−

 becomes as 
1
2 exp

2
zz

−  
 
 

. Then, basis solu-

tions for ( )0 rρ  are 
2

exp
2
r
β

 
− 
 

 and 
5 2
2 exp

2
rr
β

−  
 
 

 (this form represents for 

sufficiently large r  case) 
Then Wronskian is expressed as 

2 2

2 2

2 2

3 7
2 23

5 7 2
2 22 2

e e
2 5Wroskian

25e e
2 2

r r

r r

r

r r
rr r

β β

β β

β

β

β

− −

− −

−
− −− −

−

= = − 
 − + 
 
 

       (31) 

A particular solution of Equation (9) without coefficient term ( )S r  is writ-
ten as  

( ) ( ) ( )
2 2

2 2
5

2 22 25 2
2 22

3 7 3 7
2 2 2 2

e e
d e d e

2 5 2 5
2 2

r r
r r

r rr f r r f r r
S r r r r

r r r r

β β
β β

β β

′ ′
− −

−−

∞ ∞− − − −

   
   ′ ′ ′ ′ ′   ′ ′= −
   

′ ′ ′ ′− −   
   

∫ ∫     (32) 

Considering that r′  is large to evaluate integral parts, Equation (32) be-
comes  

( ) ( )
2 2 2 27 5

2 2 2 22 2d e e d e e
r r r r

r r
r r f r r r r f rς β β β

′ ′
− −−

∞ ∞

   
   ′ ′ ′ ′ ′ ′−
      
∫ ∫            (33) 

Taking 1u
r

= , Equation (33) is rewritten as 

( ) ( )2 2 2 2
1 1 1 1 1 1 1 19 5

32 2 2 22 2
0 0

d e e d e e
u uu u u uu u f u u u u f uβ β β β

− −− −′ ′
   

′ ′ ′ ′ ′ ′− − −   
      
∫ ∫     (34) 

Because that our concern is only how the particular solution behaves when u 
goes to 0 ( 0 0a → ), we consider the following two quantities as 

( ) ( )2

2

1 19
22

0
1 1 0 05 222

d e
05 1

e 2

u u

u u
u

u u f u uf u

uu

β

β
β

−−
′

→ →
−−

′ ′ ′
→ →

− −

∫           (35) 

To obtain the result of Equation (35), we use Roll’s theory under the condition 
u approaches 0. For the second term of Equation (34), using the same method 
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we obtain this term also becomes zero under 0u → . This means that our par-
ticular solution goes to zero when 0a  goes to zero. 

Denoting the particular solution ( )T r  as 

( )
( )

( )0
2

3
02

0

1
2

ab
VeT r a S r
c

=



 

A general solution of Equation (9) is formally written as follows. 

( ) ( )
2 2 2

0 3
0

1 1 1 1exp exp , ;
2 4 2 2 2
r r rr T r A B F

ra
ρ

β β β
      

= + − + − −      
      

   (36) 

where A and B are arbitrary constants  

The term of 3
0

1
a

 comes from the condition Equation (2) as mentioned before. 

Because A and B are arbitrary constants and recalling the fact that formal so-
lution of Equation (36) becomes meaningful only when 0a  approaches 0 as 
mentioned before, we can choose A = 1 and B = 0. Then our solution of Equa-
tion (9) becomes  

( ) ( )
0

2

0 30
0

1lim exp
2a

rr T r
a

ρ
β→

  
= + −  

  
               (37) 

Then, we obtain ( )0 rρ  as follows. 

( )
0

2

0 30
0

1lim exp
2a

rr
a

ρ
β→

 
= − 

 
                   (38) 

To obtain above form, we use the property that the first term of Equation (37)  

goes to zero when 0a  approaches 0 because ( ) ( )3
0

1 T r constantS r
a

=  and  

( )S r  goes to zero when 0a  goes to zero as shown before. 

Recalling 
0

rr
a

= , Equation (38) becomes  

( )
0

2

0 3 20
0 0

1 1lim exp
2a

rr
a a

ρ
β→

 
= − 

 
                 (39) 

Recalling 2 2 2 2r x y z= + +  and the fact that usual definition of one dimen-
sional delta function is  

( )
0

2

20
0 0

1 1lim exp
a

xx
a a

δ
→

 
= − 

π 
                 (40) 

we can express Equation (39) as follows. 

( )

( )

0

3 3

2 2 2

1
2

x y zr constant

constant r constant r

ρ δ δ δ
β β β

δ δ
β

     
=           

     
 

= =  
 

 

          (41) 

where ( )3 rδ   denotes three dimensional delta function 
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To obtain the final form of Equation (41), we use the fact that ( ) ( )1x xδ γ δ
γ

=  

Note that this eigen-function is corresponded to eigenvalue 
0

2

04a
eV =
π

 under  

choosing certain ζ  value determined by Equation (23). 
To determine 1C , recalling that meaningful eigen-function can be obtained  

when 0a  goes to 0, the characteristic eigen-function is only 
2

exp
2
r
β

 
− 
 

 and we  

also use this consideration to satisfy charge condition Equation (2). Then from  

Equation (2), we can represent ( )0 rρ  as ( )
2

0 3
0

8 1 exp
24
rr

a
ρ

β β
 

= − π π  
. Then 

we can determine 1C  as 1
1 8

4
C β

=
π π

. However, we have to insist that these  

value is only formal one. We show these values because we need to show that 
our argument is closed within our framework. 

Thus, we can insist that an initial state of electron before absorbing infinite 
number of photons is described as three dimensional delta-function. 

3. Results 

Introducing vacuum permittivity at 0 0a →  and bare charge, we construct a 
second ordereigen value differential equation for 

0 0 0aV P a= . Recalling this dif-
ferential equation is meaningful only when 0a  approaches 0, we obtain an  

eigen-function corresponded to eigenvalue 
2

04
e
π

 as three dimensional delta  

function. This is clearly corresponding to Weinberg’s initial state of electron that 
is a massless point-like charge. This completes our claim that our methods to 
find both electron charge distribution functions at an initial state (massless) and 
at normal state (massive) by considering that these functions are corresponded 
eigen-functions to eigenvalues the former for charge and the latter for mass, re-
spectively, are reasonable one so that the obtained results in Ref. [6] may reflect 
Weinberg’s description of electron. As a final comment, we want to insist that 
charge distribution functions for an initial state (massless) and for normal state 
(massive) can be described as eigen-functions corresponding to each eigenvalue 
the former for charge and the latter for mass, respectively. 

4. Discussion 
To obtain the final three dimensional delta function, we choose Gaussian func-

tion ( 1
4

µ = ) for Equation (15). This is consistent to basic solution of a charge  

distribution function in Ref. [6] because basic solution of ref. [6] is ( )21 exp r
r

σ−   

type solution. This is corresponded to eigenvalue 0P . In this paper, we search a 
solution corresponded to eigenvalue 0 0 0P r P a r= . Thus,  
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( ) ( ) ( ) ( )0

2 2 2
0 0 0 0

1 exp exp expaP a r r P a r V r
r

σ σ σ− = − = − . This shows that  

Gaussian type solution is consistent to that in Ref. [6]. This property is another 
reason why we consider that the obtained results in Ref. [6] may reflect Wein-
berg’s description of electron. 
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