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Abstract 
The algebraic derivation of the numerical limits of Bell inequalities in either 
three or four random variables is independent of the assumption of random-
ness. The limits of the inequalities follow as mathematical consequences of 
their created algebraic structures independently of application to random or 
deterministic variables. The inequalities should be called identity-inequalities. 
A final correlation re-uses data from the previous correlations and thus leads 
to the inequality limits. It generally has a different functional form from the 
previous correlations, whether derived as a counterfactual mathematical re-
sult, or in a way enabling comparison with experiment. These algebraic facts 
and their consequences are central to understanding the inequalities’ use, but 
have not been widely recognized. Logically consistent application of the in-
equalities to Bell experiments is challenging, given that the number of ma-
thematically assumed random variables is greater than the number of physi-
cal variables produced per experimental realization. Given Bell’s rejection of 
the use of sequential, alternative paths, three experimental runs are here con-
sidered to enable acquisition of data to be rearranged for computation of sta-
tistical cross-correlations. Predicted quantum mechanical correlations then 
satisfy the inequality. Since mathematically inconsistent use is sufficient to 
cause inequality violation, the conclusion that violation implies the nonexis-
tence of underlying variables in the entanglement process does not follow. 
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1. Introduction 

The four variable inequality will be treated here because it is the one most com-
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monly used by experimentalists whose careful diligence has shown that the inte-
ractions in the two photon sources used result in cosine correlated counts from 
any single pair of settings on opposite sides of a Bell experiment [1] [2] [3] [4]. 
The four variable version of the inequality may be thought to be more applicable 
to experiments than the three variable inequality because measurements at each 
of the two setting pairs used in the derivation occur on opposite sides of the ap-
paratus. It was originated by Clauser, Horn, Shimony, and Holt, (CHSH) [1], 
and discussed at length by Bell [5]. It is also considerably more complex to ana-
lyze in application than the three variable case treated in [6]. Unfortunately, 
while the Bell inequality and its experimental violation are widely recognized, 
the true reason for this violation is only understood by a small but growing 
number of workers. The basic fact is that Bell inequalities in either three or four 
variables share an in-obvious logical characteristic: they are founded on alge-
braic identity-inequalities that cannot be violated by either three or four data 
sets, respectively, of ±1’s. Only the form of the correlations among the variables 
may vary for random or deterministic variables but not their satisfaction of the 
appropriate inequality if used with logical consistency under the imposed con-
straints. The reason for this (surprising to many) claim, is that in each case a fi-
nal correlation that appears to be independently determined in the final expres-
sion of the derivation, results from the products of the data-pairs that produced 
the previous correlations [7]-[11]. This results in correlation functions having 
new forms except in the special case of spatial stationarity.  

In experimental application of the inequality, some of the correlated variables 
must be obtained in independent runs. They become correlated through a cor-
relation to other correlated variables by what is defined as conditional indepen-
dence [12] in probability theory. The fact that the variables in question are re-
stricted to ±1 values leads to these overlooked relations. The unexpected correla-
tions that result from conditional independence in the four-variable inequality 
are a major result of this paper and are analyzed below.  

The four-variable inequality will first be derived as a statistics result using 
Bell’s notation assuming random hidden variables and their associated probabil-
ity density. The algebraic construction using four cross-correlations leads to lim-
its of ±2. The result will then be twice re-derived: first based on a joint probabil-
ity density without hidden variables, and second, from the assumption of non- 
random data sets. This will show surprisingly, that the inequality cannot be vi-
olated by experimental data used consistently with its structure based on cross- 
correlation. A further problem then immerges along with a solution: how to ap-
ply the four variable inequality to Bell experiments producing only two random 
variables per realization. 

2. Inequality Derivation with and without Bell Hidden  
Variables 

Bell, following CHSH, defined variables ( ) ( ) ( ), , , , ,λ λ λ′ ′A a A a B b  and  

https://doi.org/10.4236/jmp.2023.148069


L. Sica 
 

 

DOI: 10.4236/jmp.2023.148069 1230 Journal of Modern Physics 
 

( ),λ′ ′B b , each equal to ±1, where a, a', b, and b' designate instrument setting 
angles in a Bell-experiment apparatus (see Figure 1). Labels A, and a, indicate a 
readout and corresponding angular setting, respectively, on one side of the ap-
paratus while labels B and b indicate a readout and angular setting on the other 
side. If a = b, = −A B  to make the mathematical construction consistent with 
requirements of entanglement. The λ  symbol designates random variables that 
are the same for all instrument settings for each two-photon event, and produces 
the Bell inequality as a statistical result.  

The purpose of Bell’s construction followed by its violation (due to mathe-
matically inconsistent use) was to investigate the implication of assuming hidden 
variables λ  unknown to quantum mechanics to account for predicted entan-
glement-based statistical correlations. Correlations among multiple measure-
ments at alternative instrument settings on two particles were assumed. The 
four-variable Bell inequality originated by CHSH [1] [5] is: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 , , d , , d

, , d , , d 2,

λ λ ρ λ λ λ λ ρ λ λ

λ λ ρ λ λ λ λ ρ λ λ

′− ≤ +

′ ′ ′+ − ≤

∫ ∫
∫ ∫

A a B b A a B b

A a B b A a B b
     (2.1) 

with the explanation of its limits equal to ±2 to follow. Given that the values of 
λ  are the same for each pair of functions in the four integrals, (2.1) may be 
written 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 , , , , , , d 2λ λ λ λ λ λ ρ λ λ′ ′ ′   − ≤ + + − ≤   ∫ A a B b B b A a B b B b .  

(2.2) 

The integrand factor in curved parentheses equals + or −2 for each λ -value 
since one expression in rectangular brackets must equal ±2 and the other zero, 
depending on whether ( ),λiB b  and ( ),λ′ iB b  have the same or opposite signs 
at a given value λi , Thus, 

( ) ( ) ( ) ( ) ( ) ( )2 , , , , , , 2λ λ λ λ λ λ′ ′ ′   − ≤ + + − ≤   i i i i i iA a B b B b A a B b B b .  (2.3a) 

 

 
Figure 1. Schematic of Bell experiment in which a source sends two particles (photons 
most often used) to two detectors having angular settings θA  and θB , (denoted as a 
and b in Bell’s notation) and alternative settings θ ′A  and θ ′B . While one measurement 
operation on the A-side, e.g. at setting θA , commutes with one on the B-side at θB , any 
additional measurements at either θ ′A  or θ ′B  are non-commutative with prior mea-
surements at θA  and θB , respectively. The figure, drawn by the author, has been mod-
ified for use in various papers. 
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The integral (2.2) would be maximized or minimized if the integrand factor in 
(2.3a) remained a constant of either plus or minus 2 for all λ . The value of (2.2) 
would then depend only on the probability integral equal to 1: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 , , , , , , d 2λ λ λ λ λ λ ρ λ λ′ ′ ′   − ≤ + + − ≤    ∫i i i i i iA a B b B b A a B b B b   

(2.3b) 

However, the same limits are obtained if the random variable readouts are 
predicted by a joint probability density ( ), , ,ρ ′ ′A B A B , yielding the integral 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , d d d dρ ′ ′ ′ ′ ′ ′ ′   + + −    ∫ A a B b B b A a B b B b A B A B A B B A . (2.3c) 

This has the same numerical limits as (2.1) without the assumption of hidden 
variables λ . The form of ( ), , ,ρ ′ ′A B A B  depends on the experimental proce-
dure used to obtain the four variables in the integrand. Since, in the quantum 
mechanical case, the alternative measurements at b and b', and a and a', do not 
commute and cannot physically exist simultaneously in the experiments under 
consideration, a special procedure for obtaining data to which (2.3c) is applica-
ble is developed below. Neither relation (2.1) or (2.3c) generally applies to mea-
surements obtained in four independent realizations as have been used in prac-
tice.  

A crucial, almost obvious, but little known result further emphasizes the 
purely algebraic nature of the inequality independently of both the assumptions 
of hidden variables and randomness. Consider the inequality 

( ) ( )2 2′ ′ ′− ≤ + + − ≤i i i i i ia b b a b b ,                (2.3d) 

where the subscripted variables are defined to have specific values of ±1 corres-
ponding to different variables’ instrument settings , , ,′ ′a a b b . Upon inspection, 
it is seen to hold for both deterministic variables and random variables. It 
emerges that the basic relation underlying the Bell inequality is an identi-
ty-inequality that must be satisfied by any four variables, random, deterministic, 
local, or nonlocal, i.e., variables that may even be functions of each other (as 
long as they are employed algebraically as in (2.3d)). The variables can be gener-
ated from unrelated physical or mathematical processes as well as made up non-
sense, and (2.3d) will be satisfied as long as the four variables used each equal 
±1. If more than four variables are used, ignoring the basic algebraic structure, 
the inequality may be violated, just as a trig-function identity in the difference of 
two angles may be violated if six angles are inserted into the equality. 

What makes these facts even more central to critical examination of the Bell 
theorem is that in experiments, the correlations in (2.1) are not physically meas-
ured or observable, only finite sets of random counts are observed, and com-
pared with predicted results to which they are assumed to statistically converge. 
From a number N of counts for each variable in (2.3d) one obtains 

( ) ( )2 2′ ′ ′− ≤ + + − ≤∑
N

i i i i i i
i

N a b b a b b N ,            (2.3e) 

or after dividing by N: 
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( ) ( )12 2′ ′ ′ − ≤ + + − ≤ ∑
N

i i i i i i
i

a b b a b b
N

.            (2.4) 

For very large numbers of counts [5] in the random case, the average correla-
tions occurring in (2.4) are assumed to statistically converge to functions that 
may be computed from random variable probabilities. 

It follows that while (2.1) is derived on the assumption of four variables using 
random inputs from the same probability density ( )ρ λ , and (2.3c) is derived 
assuming random variables and probabilities without hidden variables, (2.4) is a 
purely algebraic result that holds without the assumption that the variables are 
even random. If they are all ±1’s, then (2.4) must hold. Thus, result (2.4) is the 
most important of the above inequalities, as it is the basis of the others. One ar-
rives at the conclusion that neither the Bell inequality nor its satisfaction de-
pends logically on the existence of hidden variables. The basis of the Bell theo-
rem is an unrecognized inequality-identity that has not yet been included in 
standard math tables.  

The inequality imposes an algebraic constraint on the correlations leading to 
its satisfaction. The first three variable pairs occurring in (2.4) determine the 
fourth variable pair (the third pair is determined by the first two in the three va-
riable case [6]): 

′ ′ ′ ′=i i i i i i i ia b a b a b a b                      (2.5) 

This purely algebraic result has been noted previously by Redhead [7], but 
without appreciating its significance. Hess found it previously discovered by 
Vorobov [8] [9] in the context of random variables. It has been extensively dis-
cussed by Lad [10] who pointed out that four such relations can be obtained 
from the inequality since each one can be generated from the other three. (De-
pending only on basic algebra, consequences following from this were given 
in [13]). Thus, while one may determine the first three correlations in the 
four-variable Bell inequality by choosing to measure the specified pairs in a con-
sistent manner to be shown, the fourth correlation is determined from the data 
pairs in (2.5), and leads to satisfaction of the inequality with limits ±2. In general 
from (2.5), one would expect that if the first three correlations originated from 
one source of interaction, the fourth correlation would in general have a differ-
ent functional form since it is created by a different mechanism. In the random 
case to be shown, the variables are conditionally correlated to each other due to 
their correlations with variables previously observed. Only in the special case of 
spatial stationarity would the constraint (2.5) result in a correlation having the 
same form as the previous correlations. However, spatial stationarity is incon-
sistent with the non-commutation that applies in the Bell case. 

From the above analysis of the algebraic basis for the Bell inequality in the 
four variable CHSH form, it should be clear that if statistically predicted correla-
tions of laboratory data violate it, an error is implied. Given that for any four fi-
nite data sets, (2.4) must be identically satisfied, no predicted correlations that 
violate the inequality can correspond to four actually existing data sets. Further, 
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it cannot matter whether the data are measured or mathematically created, vi-
olation of (2.4) would imply violation of basic principles of mathematics. It must 
be noted that it is (2.4) that is directly related to physical experiments and not 
the theoretical counterparts (2.2) and (2.3c). How the necessary correlations may 
be computed to enable application of the Bell inequality is described next. It is 
an extended version of that given for the three-variable case [14]. 

3. How Can a Four Variable Inequality Be Applied to a  
Random Process Yielding Only Two  
Outputs per Realization? 

3.1. Logically Consistent Bell Counterfactuals Must Still  
Satisfy the Bell Inequality 

The Bell inequality, assuming the Bell hidden variable notation of (2.2), cannot 
be applied to experimental results. This follows from the fact that the same hid-
den variable values determine each correlation. If the outputs at a given pair of 
settings are observed, no observation at alternative settings with the same hidden 
variables is possible. One cannot undue an experimental observation at a given 
setting and repeat the observation at a different setting assuming that the ran-
dom processes leading to the first readout repeat with infinite precision.  

It has sometimes been assumed that all correlations contributing to the Bell 
inequality have the same form because any one of them if observed, has that 
form. However, (2.5) must still hold and determines that the final pair of outputs 
leading to inequality limits is identically equal to the product of the first three. 
Thus, if the first three correlations are mathematically constructed and have the 
Bell cosine form when averaging over multiple hidden variable sets, the final 
correlation would be expected to have a different form as it results from prod-
ucts of previously generated variable pairs. Hence, the purely algebraic require-
ments (2.4, 2.5) underlying the Bell inequality cannot be avoided by using a 
counterfactual-mathematical interpretation based on hidden variables. These 
considerations imply that although any one observed correlation has a Bell co-
sine form, the four taken together must have at least one different functional 
form for the Bell inequality to be applicable.  

An alternative mis-interpretation of the physical situation is that all the corre-
lations have the same form because the process is spatially stationary. In that 
case, (2.5) would lead to the same correlation function as resulted from the pre-
vious measured output pairs. Spatial stationarity has been used as a simplifying 
idealization in some areas of optics and implies that any number of measure-
ment pairs may be obtained in any order since all correlations are the same. 
However, in the Bell case the measurements involved are non-commutative, 
with each measurement in a sequence probabilistically conditional on the one 
before. This has been shown to produce different correlational forms among the 
variables in the sequence [15]. If assumed to hold in the Bell case, spatial statio-
narity leads to the insertion of four independent pairs, or eight variables, into a 
four variable identity-inequality so as to cause its violation. The resulting viola-
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tion has then been attributed to a construction based on the assumption of hid-
den variables as in (2.2), followed by the conclusion that therefore such variables 
cannot exist. This reasoning is now seen to be incorrect. 

Note that a computer model calculation of a Bell cosine correlation has been 
reported in [6] [15] where common information is given to two independent 
computers. Other examples probably exist in a literature of thousands of papers. 

3.2. Operational Procedure for Application of the  
Inequality to an Experiment in the Four Variable  
Case, and Its Satisfaction by Quantum Correlations 

In view of the mathematical facts presented in Section 2, it is necessary to recon-
sider the conditions under which the Bell inequality has been violated in expe-
rimental practice. How can a four variable expression shown to be an identi-
ty-inequality be violated? It must be assumed that results (2.4) and (2.5) demon-
strated above, are known to very few researchers. Since, the inequality is com-
monly thought to result specifically from the Bell assumptions and notation spe-
cifying hidden variables in (2.1), all the correlations whether observed or not, 
have been assumed to have the same functional form. But as noted, (2.5) must 
hold even for four mathematically constructed unobserved counterfactual cor-
relations. The final correlation would then have a different functional form from 
the preceding ones.  

The Bell inequalities are algebraic identities constructed from three or four 
variables, respectively, all present at the time of computation so as to enable cal-
culation of cross-correlations. Given that (2.4) holds as a fact of algebra inde-
pendently of assumptions of hidden variables, a procedure for its application 
using quantum correlations consistent with its structure will now be described. 
It is an extended version of that used in the three variable case [14] and ulti-
mately must be devised to be consistent with (2.4) and (2.5), the basis for all in-
equality derivations. Rewriting the variables to be averaged in the Bell inequality 
in terms of an implied joint probability that must ultimately be specified by 
quantum mechanics, 

( ) ( )

( ) ( ) ( )
( )

, ,
, , ,

, , , , , , , , ,

, , , .

′ ′

′ ′ ′ ′ ′ ′+ + −

′ ′ ′ ′ ′ ′ ′ ′= + +

′ ′ ′ ′−

∑

∑

i i i i i i i i i i i i i i i i
a b b a

i i i i i i i i i i i i i i i i i i

i i i i i i i i i i

a b a b a b a b a b a b P a b a b

a b P a b a b a b P a b a b a b P a b a b

a b a b a b P a b a b

     (3.1) 

The first three terms produce Bell correlations (in the optical case) in the form 
( )cos2− −a b  with a' and b' substituted for a and b as appropriate. For an in-

equality structure depending on the simultaneous existence of the four variables 
at the time of evaluation of the inequality, all the variables in probability 
( ), , ,′ ′P a b a b  must be summed over. The last term average is  

( ) ( )
( ) ( )
( ) ( ) ( )

, , , , , ,

, | , ,

| | ,

′ ′ ′ ′ ′ ′ ′ ′=

′ ′ ′ ′=

′ ′ ′ ′=

∑ ∑
∑
∑

abab a bP a b a b a b P a b a b

a b P a b a b P a b

a b P a b P b a P a b

       (3.2) 
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after using the fact that the correlation of a' and b' must be conditional on a 
and b individually (discussed in the Appendix) with which they will have been 
measured and correlated. The evaluation of (3.2) after some computation out-
lined in the Appendix is found to be 

( ) ( ) ( ) ( ), cos2 cos2 cos2′ ′ ′ ′= − − − −C a b b a a b a b .         (3.3) 

The procedure for obtaining the data follows from the mathematical form of 
the Bell inequality and is similar to that used in the three variable case. First 
measurements of the pair (a, b) must be obtained in a conventional Bell experi-
ment and arranged in an (infinite) list of pairs. Theoretically, the probability of 
observing ±1 for each variable alone is 1/2 as will be assumed to hold here. The 
same is true for pairs ( ),′a b  and ( ),′b a . Now under the assumption of ideal 
measurements (for which all single variables have average zero), experimental 
data pairs ( ),′a b  can be rearranged so that the b-output values match those in 
data pair list ( ),a b . Similarly, the data pair list for ( ),′b a  can be rearranged so 
that a-values match those of the list for (a, b). The positional shifts in the lists are 
not expected to be large since the probability of occurrence of ±1 for each varia-
ble is the same and equal to 1/2. The result is that three lists of data pairs are 
now arranged so that the a-values and b-values in the three paired lists are the 
same, though measured in three individual (ideal) experiments. The correlations 
( ), ′C a b  and ( ), ′C b a  may now be computed from their conditional depen-

dence on ( ),C a b  leading to the result (3.3) as shown in more detail in the Ap-
pendix.  

4. ( ),′ ′C a b  and the Other Correlations Satisfy the  
Bell Inequality 

The Bell inequality may now be written: 

1 2 3 1 2 3cos2 cos2 cos2 cos2 cos2 cos2 2θ θ θ θ θ θ− − − + ≤ ,         (4.1) 

where the theta values equal differences of polarization beam splitter settings in 
a Bell experiment. The cosine terms are each equal to: 2cos2 1 2sinθ θ= − . Re-
placing 2sin θ  by x in (4.1) yields 

( ) ( ) ( ) ( )( )( )1 2 3 1 2 31 2 1 2 1 2 1 2 1 2 1 2 2− − − − − − − − − − ≤x x x x x x      (4.2) 

that after some algebra and rearrangement becomes 

1 2 1 3 2 3 1 2 32 1+ + − ≤x x s x x x x x x .                 (4.3) 

Since 0 1≤ ≤ix , (i = 1, 2, 3) the x’s may be replaced with ∈ ’s with each ∈  
specified by 1= −∈i ix  where 0 1≤∈≤ . Then (4.3) becomes 

1 2 1 3 2 3 1 2 32 0−∈∈ −∈∈ −∈ ∈ + ∈∈ ∈ ≤ ,              (4.4) 

that in turn may be rewritten 

( ) ( ) [ ]1 2 3 1 3 2 2 31 1 0   − ∈∈ −∈ − ∈∈ −∈ − ∈ ∈ ≤   .         (4.5) 

Each of the three bracketed terms in (4.5) is positive with a minus sign before 
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it so that the inequality is satisfied. 

5. Conclusions 

The Bell inequalities in three and four variables were created using a hidden va-
riables notation to prove that their satisfaction was incompatible with correla-
tions resulting from entanglement. However, in both the three and four variables 
cases the final expressions derived are found to be algebraic identity-inequalities 
that if used consistently with their derivations cannot be violated. This is true 
regardless of whether the variables to which they are applied are random or de-
terministic. The fact that the inequalities must be identically satisfied if used 
with mathematical consistency has not been widely recognized, due to the statis-
tical formalism from which they have been derived. However, the inequalities’ 
numerical limits result from algebraic facts that are independent of whether the 
variables are random or deterministic. The logical reasoning relevant to the 
possible existence of hidden variables is completely changed as a result of this 
fact.  

In practice, the Bell inequalities have been violated due to mathematical 
inconsistencies in their use. Eight variables have been inserted into identi-
ty-inequalities derived from four variables. Common trig identities could be vi-
olated under analogous conditions of use. The underlying misconception re-
sponsible is that a pair of measurements at any pair of variable settings in the 
inequality would yield a Bell correlation, indicating that all correlations are the 
same regardless of how or whether they are measured. This reasoning is fatally 
flawed since even a purely mathematical construction of the measurements im-
plies that the fourth correlation depends on products of data pairs obtained in 
previous constructions so as to generally yield a different correlational form.  

A suggested way to make experimental measurements consistent with the 
structure of the four variable inequality requires three experimental runs to ob-
tain correlations using different setting pairs. Data pairs may then be rearranged 
so that variables at the same settings have random but equal values as required 
by the inequality algebra. This is facilitated by the fact that all individual va-
riables have zero mean. Each correlation retains the conditionality of its two va-
riables, and the final correlation in the inequality is determined from previously 
correlated pairs and the algebra of ±1’s. The result is tedious to compute and is 
given in the appendix. 

The evaluation of the inequalities consistent with their mathematical structure 
using quantum mechanical correlations results in inequality satisfaction inde-
pendently of the existence of hidden variables. It must be observed however, that 
if the Bell theorem is fatally flawed, its converse (that hidden variables exist), 
does not necessarily follow. Although mathematical counter-examples to the Bell 
theorem have been given that imply that the mechanism of entanglement is not 
the sole source of cosine correlations in optics, computational counter examples 
do not ultimately settle the complex issues in this case that depend on under-
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standing the nature of photons. 
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Appendix 

Relation (3.3) will now be derived. The derivation depends on a specific method 
of application of the Bell inequality to be consistent with (2.4). As shown above, 
the inequality limits in the random variables case result from either a hidden va-
riable representation or a joint probability representation of observables, since in 
either case the final correlation results from the reuse of already acquired varia-
ble pairs with all variables equal to ±1. 

To obtain four random variables for cross-correlation from a physical process 
producing only two variables per realization requires some special effort. The 
procedure uses the theoretical assumption that each variable has zero mean, 
given that the probability that any variable equals +1 or −1 equals 1/2. Thus, 
while the variables occur in correlated pairs, they are individually completely 
random. That implies that if two pairs are acquired with a setting in common, 
for example ( ),a b  and ( ), ′a b , the ( ), ′a b  pair order may be rearranged so 
that the order of ±1’s of the a-values is the same as that in the list for ( ),a b  
while keeping the companion b' value attached. The correlation ( ), |′C b b a  for 

1= +a  and 1= −a  may now be computed. The set of pairs for ( ), ′b a  may 
similarly be rearranged so that the order of b-outcomes (with each accompany-
ing a'-value remaining attached) is the same as that of list ( ),a b . The probabili-
ties characterizing the data sets are applicable and enable calculation of the 
probability ( ),′ ′P a b :  

( ) ( ) ( ) ( ) ( ) ( ), , | , , | | ,′ ′ ′ ′ ′ ′= =P a b P a b a b P a b P a b P b a P a b .      (A.1) 

Thus though a' and b' have been acquired in separate experimental realiza-
tions, they are correlated because a' is correlated to b, and b' is correlated to a, 
with a and b correlated to each other. It should be emphasized that the factoriza-
tion of ( ), | ,′ ′P a b a b  used in (A.1) is an assumption that follows from the pro-
cedure used to acquire and organize the data to enable application of the inequa-
lity, plus the physical condition of entanglement. No other physical influences 
are assumed present. The four variables necessary for application of (2.5) are 
now available for cross correlation, four-variable data-set by four-variable da-
ta-set. This data-set system now satisfies the conditions for applicability of (2.4) 
and (2.5) allowing the computation of ( ),′ ′C a b . 

The computation will now be outlined. In terms of the probability (A.1) the 
correlation ( ),′ ′C a b  is 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

,

| | , | | ,

| | , | | , .

i i
i i i i i i i i

a b

i i i i i i i i

C a b

a b P a b P b a P a b a b P a b P b a P a b

a b P a b P b a P a b a b P a b P b a P a b

+ + + + − − − −

+ − + − − + − +

′ ′

′ ′ ′ ′ ′ ′ ′ ′= +

′ ′ ′ ′ ′ ′ ′ ′ + + 

∑  (A.2) 

The contributions corresponding to each sign combination of ( ),′ ′a b  will be 
numbered (1), (2), (3), and (4). Terms (1) and (2) are equal with (1) given by 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2 2

2 2 2 2 2

11 sin sin sin cos cos
2

1 cos cos sin sin cos .
2

 ′ ′ ′ ′= − − − + − − 

 ′ ′ ′ ′ ′+ − − − + − − 

a b a b b a a b b a

a b a b b a a b b a
 (A.3) 

Term (3) is given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2 2

2 2 2 2 2

13 sin sin cos cos sin
2
1 cos cos cos sin sin ,
2

 ′ ′ ′ ′= − − − − + − − 

 ′ ′ ′ ′− − − − + − − 

a b a b b a a b b a

a b a b b a a b b a
 (A.4) 

with (4) equal to (3). The sum of terms (1) through (4) equals ( ),′ ′C a b  or 
(3.3). 
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