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Abstract 
We found in 2016 a few results on the conformal Killing operator in dimen-
sion n, in particular the changes of the orders of the successive compatibility 
conditions for 3,4n =  or 5n ≥ . They were so striking that we did not dare 
to publish them before our former PhD student A. Quadrat (INRIA) could 
confirm them through computer algebra. Then, we found in 2017 that the 
gravitationl waves operator was the adjoint of the Ricci operator which is only 
depending on the n nonlinear elations of the conformal group of transforma-
tions, a result justifying the doubts we had since a long time on the mathe-
matical foundations of General Relativity, in particular on the origin and ex-
istence of gravitational waves. These results led us to revisit the work of C. 
Lanczos and successors on the existence of a parametrization for the Riemann 
and Weyl operators and their respective adjoint operators. Comparing the 
last invited lecture given by Lanczos in 1962 with our work, we suddenly un-
derstood the confusion made by Lanczos between Hodge duality and diffe-
rential duality. Our purpose is thus to revisit the mathematical framework of 
Lanczos potential theory in the light of this comment, getting closer to the 
formal theory of Lie pseudogroups through differential double duality and 
the construction of finite length differential sequences for Lie operators and 
their adjoint sequences. We also explain why these results are depending on 
the structure constants appearing in the Vessiot structure equations (1903), 
still not acknowledged after more than one century, though they generalize 
the constant Riemannian curvature integrability condition of L.P. Eisenhart 
(1926) for the Killing equations. 
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1. Introduction 

Let us recall a few facts from Riemannian geometry that are not so well known. 
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Starting with a metric ( ) *
2ij S Tω ω= ∈  with ( ) 0det ω ≠ , we may introduce 

the Christoffel symbols ( )1
2

k kr
ij i rj j ri r ijγ γ ω ω ω ω = = ∂ + ∂ − ∂ 

 
 as second order  

geometric objects according to the forgotten work of E. Vessiot in 1903 ([1]). Now, 
for any vector field Tξ ∈ , introducing the Lie derivatives ( ) *

2S Tξ ωΩ = ∈  
and ( ) *

2S T Tξ γΓ = ∈ ⊗ , we may consider the Killing operator  
( ) *

2 0: S T Fξ ξ ω→ =Ω∈ =  . Accordingly, it is a Lie operator with  
[ ]0, 0 , 0ξ η ξ η= = ⇒ =    for the standard bracket on vector fields and we 

denote simply by TΘ⊂  the set of solutions with [ ],Θ Θ ⊂Θ . Now, as we have 
explained many times, the main problem is to describe the CC of 0Fξ = Ω∈  
in the form 1 0Ω =  by introducing the so-called Riemann operator  

1 0 1: F F→ , using the standard notations that can be found at length in our 
many books ([2]-[8]) or papers ([9] [10] [11] [12]). We advise the reader to fol-
low closely the next lines and to imagine why it will not be possible to repeat 
them for studying the conformal situation leading to the Ricci and Weyl tensors. 
Introducing the Levi-Civita isomorphism ( ) ( ) ( )1 , ,xj ω ω ω ω γ= ∂   and the 
Christoffel symbols as above, we get the first order Killing system ( )1 1R J T⊂  
and the prolonged system ( )2 2R J T⊂  as follows:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

r r r
ij rj i ir j r ij

k k k r k r k r r k r k
ij ij rj i ir j ir j ij r r ij

x x x

x x x x x

ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ + + ∂ =

Γ ≡ + + + − + ∂ =

 

if we use sections ( ) ( ) ( )( ): , , ,k k k
q i ijx x x xξ ξ ξ ξ→   of the jet bundle ( )qJ T  

transforming like the sections ( ) ( ) ( ) ( )( ): , , ,k k k
q i ijj x x x xξ ξ ξ ξ→ ∂ ∂  . The 

symbol *
1g T T⊂ ⊗  of 1R  is only depending on ω  with  

( ) ( )1 1 2dim g n n= −  and is finite type because its first prolongation is 2 0g = .  
The Riemann tensor 2 * 2 * *

, 1
k
l ij T g T T Tρ ∈∧ ⊗ ⊂ ∧ ⊗ ⊗  is a section of the 

Spencer δ -cohomology vector bundle ( )2
1 1 1F H g=  because it is also killed by 

the Spencer surjective map 2 * 3 * *
1: T g T T Tδ ∧ ⊗ →∧ ⊗ ⊗  in the following 

short exact sequence (See next sections for more details):  

( )2 2 * 3 *
1 1 10 0H g T g T T

δ
→ →∧ ⊗ →∧ ⊗ →  

It has thus ( ) ( )( ) ( )22 2 2 21 4 1 2 6 1 12n n n n n n n− − − − = −  components be-
cause ( ) ( )1 1 2dim g n n= −  and 2 0g = . Needless to say that these definitions 
are far from the ones that can be found in any place (books or papers) dealing 
with GR ([13]).  

Now, the linearization ( ) *
2ij S TΩ = Ω ∈  of ω  induces a linearization  

*
2

k
ij S T TΓ = Γ ∈ ⊗  and a linearization ( ) 2 * *

,
k
l ijR R T T T= ∈∧ ⊗ ⊗ . With ∂  for 

objects and d for their linearization, we have:  

,
k k k r k r k
l ij i lj j li lj ri li rjρ γ γ γ γ γ γ= ∂ − ∂ + −  

and thus, because *
2S T TΓ∈ ⊗  is a tensor:  

( ) ( )
,
k k k r k r k k r k r
l ij i lj j li lj ri li rj ri lj rj li

k r k k r k r k k r
i lj li rj ri lj j li lj ri rj li

k k
i lj j li

R d d
d d

γ γ γ γ

γ γ γ γ

= Γ − Γ + Γ − Γ + Γ − Γ

= Γ − Γ + Γ − Γ − Γ + Γ

= ∇ Γ −∇ Γ
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by introducing the covariant derivative ∇ . We recall that 0, , ,r ij r i jω∇ = ∀  or, 
equivalently, that ( ) ( ) 1, : ,k k k r

i irid T Rγ ξ ξ ξ γ ξ− ∈ → = − ∈  is a 1R -connection with 
s s

sj ir is jr r ijω γ ω γ ω+ = ∂ , a result allowing to move down the index k in the previous 
formulas (See [12] for more details).  

We may thus take into account the Bianchi identities implied by the cyclic 
sums on (ijr)  

( ), , , , 0 0kl ijr r kl ij i kl jr j kl ri cycl
β ρ ρ ρ β ρ γρ≡ ∇ +∇ +∇ = ⇔ ≡ Σ ∂ − =  

and their respective linearizations , 0kl ijrB =  as described below. Both β  and 
B are sections of the Spencer cohomology vector bundle ( )3

2 1 1F H g=  defined 
by the short exact sequence:  

( )3 3 * 4 *
1 1 10 0H g T g T T

δ
→ →∧ ⊗ →∧ ⊗ →  

( )( ) ( )( )( ) ( )( ) ( )( )( )( )
( )( )

3
1 1

2 2

1 2 6 1 2 1 2 3 24

1 2 24

dim H g n n n n n n n n n n

n n n

= − − − − − − −

= − −
 

that is 20 when 4n =  because ( ) ( )1 1 2dim g n n= −  and the coboundary 
bundle is ( )3

1 1 0B g = .  
Such results cannot be imagined by somebody not aware of the δ-acyclicity 

and the situation will be worst in the conformal case as we shall see in section 3 
([7] [14]).  

We have the linearized cyclic sums of covariant derivatives both with their 
respective symbolic descriptions, not to be confused with the non-linear corres-
ponding ones:  

( )
( )

( ) ( )

, , , , 0

0
kl rij r kl ij i kl jr j kl ri

cycl

cycl cycl

B R R R mod

dR R

B R

γ ρ

ρ

≡ ∇ +∇ +∇ = Γ

⇔ Σ − − Γ =

⇔ ≡ Σ ∇ = Σ Γ

 

We have thus ω γ ρ β→ → →  and the respective linearizations  
R BΩ→Γ→ → .  

Let , ,M M M′ ′′  be modules over a integral domain A, that is a ring such that 
0 0ab a= ⇒ =  or 0b = , and consider the short exact sequence  

0 0
f g

M M M′ ′′→ → → →  where f is a monomorphism, g is an epimorphism,  
0g f =  and ( ) ( )im f ker g=  with standard notations. We say that such a 

sequence splits if and only if M M M′ ′′⊕  or, equivalently, if and only if there 
exists an epimorphism :u M M ′→  such that Mu f id ′=  or a monomor-
phism :v M M′′→  such that Mg v id ′′   ([15], p. 33).  

In Riemannian geometry, we have the classical formula relating the Riemann 
4-tensor ρ  and the Weyl 4-tensor τ  in arbitrary dimension 3n ≥ :  

( )

( )( ) ( )

, ,
1

2
1

1 2

k k k k ks ks
l ij l ij i lj j li lj si li sj

k k
i lj j li

n

n n

τ ρ δ ρ δ ρ ω ω ρ ω ω ρ

δ ω δ ω ρ

= − − + −
−

+ −
− −
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When ω  is a non-degenerate metric with vanishing Riemannian curvature, 
for example the Minkowski metric, the linearization becomes:  

( )

( )( ) ( )

, ,
1

2
1

1 2

kl ij kl ij ki lj kj li lj ki li kj

ki lj kj li

W R R R R R
n

R
n n

ω ω ω ω

ω ω ω ω

= − − + −
−

+ −
− −

 

We have proved in ([8] [12]) the existence of an intrinsic splitting of the short  

exact sequence of tensor bundles 0 0
f g

Ricci Riemann Weyl→ → → →  where f is  

defined by equating the right member to zero while defining u to be  

( ) ( ), ,
k r
l ij i rj ij jiR R R R→ = =  in order to obtain an isomorphism  

Riemann Ricci Weyl⊕  that cannot be understood without the use of the 
Spencer δ-cohomology. This result, that will be revisited through the next sec-
tions, is coherent with the formulas (15) and (16) of ([16]) when 4n =  if we 
notice that 2U V R+ =  and set 2V W= . 

Introducing the Lanczos potential ( ),ij kL L=  as a 3-covariant tensor satisfy-
ing the algebraic relations (that will be shown to be only valid when 4n = ):  

, , , , ,0, 0ij k ji k ij k jk i ki jL L L L L+ = + + =  

Lanczos claimed in the formula (III.5) of ([11]) or (17) of ([16]) to have pa-
rametrized the Riemann tensor through the relation:  

, , , , ,kl ij j kl i i kl j l ij k k ij lR L L L L= ∇ −∇ +∇ −∇  

where ∇  is the covariant derivative. However, even if we can easily verify the 
algebraic conditions that must be satisfied by a Riemann candidate with 4 indic-
es, namely:  

, , , , , , ,, 0kl ij lk ij kl ji ij kl kl ij ki jl kj liR R R R R R R= − = − = + + =  

the generating compatibility conditions (CC) of the underlying operator for the 
left member cannot be the Bianchi identities:  

, , , , 0k k k k
l ijr r l ij i l jr j l riB R R R≡ ∇ +∇ +∇ =  

which are produced by the well known parametrization described by the Rie-
mann operator acting on a perturbation *

2S TΩ∈  of the background metric 
ω , that is, when ω  is the Minkowski metric:  

( ) ( ), , , ,2 0k k k
kl ij li kj lj ki ki lj kj li r l ij i l jr j l riR d d d d d R d R d R= Ω − Ω − Ω − Ω ⇒ + + =  

This contradiction can also been checked directy by substitution because we 
have:  

, , , , , , , , 0k k k
kl ij j kl i i kl j l ij k k ij l r l ij i l jr j l riR d L d L d L d L d R d R d R= − + − ⇒ + + ≠  

Setting now ( ), ,
1
2

r r
ik ki r i k r k iA A L L= = ∇ +∇ , we obtain the so-called  

Weyl-Lanczos equations given in ([16], formula (17)):  

, , , , ,kl ij j kl i i kl j l ij k k ij l li jk jl ik jk il ik jlW L L L L A A A Aω ω ω ω=∇ −∇ +∇ −∇ + − + −  

but it is now known that Lanczos was not even aware of the Weyl tensor at that 
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time, only knowing the algebraic conditions that must be fulfilled by W, namely:  

, , , , , , , ,, 0, 0r
kl ij lk ij kl ji ij kl kl ij ki jl kj li i rjW W W W W W W W= − = − = + + = =  

the last condition reducing the number of linearly independent components 
from 20 to 10 for space-time, that is when the dimension is 4n = . As a bypro-
duct, the previous contradiction still holds.  

In order to recapitulate the above procedure while setting *
0 2F S T= , we have 

the differential sequence in which we indicate the orders of an operator under its 
arrow:  

0 1 21 2 1
0

Killing Riemann Bianchi
T F F F→Θ→ → → → →  

( ) ( ) ( )( )2 2 2 20 1 2 1 12 1 2 24n n n n n n n n→Θ→ → + → − → − − →  

where Θ  is the sheaf of Killing vector fields for the Minkowski metric.  
For historical reasons, defining the operators ( )Cauchy ad Killing= ,  

( )Beltrami ad Riemann=  and ( )Lanczos ad Bianchi= , we obtain the adjoint 
sequence:  

( ) ( ) ( )0 1 21 2 1
0 ( )

Cauchy Beltrami Lanczos
ad T ad F ad F ad F← ← ← ← ←  

where ( ) * *nad E T E= ∧ ⊗  for any vector bundle E with *E  obtained from E 
by inverting the transition rules when changing local coordinates, exactly like 

( )* *T T T→ = . Accordingly, all the problem will be to prove that each operator 
is indeed parametrized by the preceding one. As a byproduct, most people still 
believe that the conformal situation could be treated similarly while starting with 
the conformal Killing operator followed by the Weyl operator and replacing 
each classical vector bundle F by the corresponding conformal bundle F̂ . 
However, such a point of view is leading to a true nonsense because we shall 
discover that the analogue of the Bianchi operator has order 2, …just when 

4n =  as we said in the Abstract. This striking result has been confirmed by 
computer algebra ([14]) and the reader can even find the details in book form 
([7]). It follows that the Riemann and Weyl frameworks of the Lanczos potential 
theory must be entirely revisited because, as we shall see at the end of this paper, 
the previous splitting only depends on the second order jets of the conformal 
group.  

C. Lanczos (1893-1974) wrote a book on variational calculus ([17]) and three 
main papers (1939, 1949, 1962) on the potential theory in physics, mostly by 
comparing the case of electromagnetism (Maxwell equations) with the search for 
parametrizing the Riemann and Weyl tensors ([17] [18] [19] [20]) and we refer 
the reader to the nice historical survey ([21]) for more details. However, Lanczos 
has been invited in 1962 by Prof. A. Lichnerowicz to lecture in France and this 
lecture has been published in french ([16]). He got inspiration from what hap-
pens in electromagnetism (EM) where the first set of Maxwell equations 0dF =  
is saying that the EM field 2 *F T∈∧  is a closed 2-form that can be parame-
trized by dA F=  for an arbitrary EM potential *A T∈ . Accordingly, Lanczos 
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created the concept of “candidate” while noticing that the Riemann and Weyl 
4-tensors must “a priori” satisfy algebraic relations reducing the number of their 
components ,kl ijR  and ,kl ijW  respectively to 20 and 10 when 4n =  as we saw. 
Now, we have proved in many books ([2]-[8]) or papers that it is not possible to 
understand the mathematical structure of the Riemann and Weyl tensors, both 
with their splitting link, without the following four important comments:  
• The clever results discovered by E. Vessiot as early as in 1903 ([1]) are still 

neither known nor acknowledged today, though they generalize the constant 
Riemaniann curvature integrability condition discovered 25 years later by L. 
P. Eisenhart ([22] [23]). They also allow to understand the direct link existing 
separately between the Riemann tensor and the Lie group of isometries (con-
sidered as a Lie pseudogroup) of a non-degenerate metric on one side or be-
tween the Weyl tensor and the Lie group of conformal isometries (considered 
again as a Lie pseudogroup) of this metric on another side. With more de-
tails, Vessiot proved that, for any Lie pseudogroup ( )aut XΓ∈  one can find 
a geometric object ω , may be of a high order q and not of a tensorial nature, 
which is characterizing Γ  as the group of local diffeomorphisms preserving 
ω , namely:  

( ) ( )( ) ( ) ( ){ }1| q qf aut X j f j fω ω ω−Γ = ∈ Φ = =  

where ω  must satisfy certain (non-linear in general) integrability conditions of 
the form:  

( )( ) ( )1I j cω ω=  

when q is large enough, called Vessiot structure equations, locally depending on 
a certain number of constants, now called Vessiot structure constants, and we let 
the reader compare this situation to the Riemann case ([23]). These structure 
equations were perfectly known by E. Cartan (1869-1951) who never said that 
they were at least competing with or even superseding the corresponding Cartan 
structure equations that he developed about at the same time for similar pur-
poses. The underlying reason is of a purely personal origin related to the origin 
of “differential Galois Theory” within a kind of “mathematical affair” involving 
the best french mathematicians of that time (H. Poincaré, E. Picard, G. Darboux, 
P. Painlevé, E. Borel, …). The main original letters, given to the author of this 
paper by M. Janet, have been published in ([4]) and can now be examined in the 
main library of Ecole Normale Supérieure in Paris where they have been depo-
sited.  
• We have shown in many books already quoted that, if   is a Lie operator, 

that is [ ],Θ Θ ∈Θ  with bracket induced by the ordinary bracket of vector 
fields, then the system ξ = Ω  is the linearization of a non-linear version 
when Ω  is a perturbation of ω  (twice the infinitesimal deformation ten-
sor in elasticity) along the Medolaghi formula:  

( ) ( )( ) ( )( )1

0

d exp
d q

t

j t
t

ξ ξ ω ξ ω
−

=

= =   
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Similarly, we can choose for the corresponding generating CC 1  the linea-
rization of a non-linear version described by the Vessiot structure equations:  

( ) ( )( ) ( ) ( )1 1
1

I cj j
j

ω ω
ω ω

∂ ∂
Ω = Ω

∂ ∂
 

that is exactly what we did for the flat Minkowski metric. The simplest example 
provided by Vessiot himself in ([1]) when 2n =  is ( ) * 2 *, XT Tω α β= ∈ × ∧  with  
d cα β=  providing the Lie pseudogroup ( ) ( ){ }1 1 2 2 1,y g x y x g xΓ = = = ∂ ∂   

when 2 1x dxα =  and 1 2dx dxβ = ∧ , leading to 1c = − . The finite Lie equations  

are 2 1 2
1y y x= , 2 1

2 0y y = , 
( )
( )

1 2

1 2

,
1

,

y y

x x

∂
=

∂
 while the infinitesimal Lie equations  

are thus ( ) ( ) 0r r
r r i r iA x xα ξ ξ α≡ + ∂ = , ( ) ( ) 0r r

r rB x xβ ξ ξ β≡ + ∂ =  with jet 
notation and linearization ( ) 1 2 2 1,A B d A d A cBΩ = ⇒ − =  (See [7] for many 
other tricky examples).  

However, Lanczos has been studying the CC 2  of 1 , ignoring that, con-
trary to the previous situation, 2  almost never comes from a linearization. It 
is therefore quite strange to discover that Lanczos never discovered that what he 
was doing with 1  and 2  while using quadratic Lagrangians in R along 
([16]-[20]), was exactly what is done in any textbook of elasticity (EL) or conti-
nuum mechanics with   and 1  while using quadratic Lagrangians in Ω . 
We do believe that Lanczos was too much obsessed by comparing R in general 
relativity (GR) to F in electromagnetism (EM) and we shall provide more details 
in Section 2.  
• We finally present the main origin of the troubles met by Lanczos and fol-

lowers. With only a few words, we may say that most physicists and even 
many mathematicians are not familiar with the modern developments of dif-
ferential homological algebra, in the sense that they do believe, starting from 
a linear differential operator 0: :E F F ξ η→ = →  between (the sections 
of) two given vector bundles, one may construct (at least) the generating CC 
as an operator 1 0 1: :F F η ζ→ →  and so on. Knowing only this “step by 
step” procedure, they are thus largely unaware of the existence of a “global” 
procedure, apart from the very specific case of the Poincaré sequence for the 
exterior derivative * 1 *: r rd T T+∧ → ∧ . Accordingly, E and 0F  being given, 
they are loosing any relationship that could exist with 1 2, , , nF F F  as in 
(See [2], p 185 and 391 for details). For example, the author of this paper 
perfectly remembers that, when he was a student of Prof. A. Lichnerowicz 
around 1980, he was hardly able to know about the number ( )2 2 1 12n n −  
of components of the Riemann tensor found by E. Cartan with tedious com-
binatorics but totally unable to know the number ( )( )2 2 1 2 24n n n− −  of 
Bianchi identities. We find therefore useful to recall a few historical facts be-
cause this last number, namely 20 24 4= − , is exactly the number of La-
grange multipliers used by Lanczos in his variational approach to Rieman-
niann geometry ([16]). The first finite length differential sequence (now 
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called Janet sequence) has been exhibited as a footnote by M. Janet in 1920 
([2] [24]) with only 0 1, , , , nE F F F  when   is involutive and n is the 
number of independent variables. It must be noticed that the exterior calcu-
lus of E. Cartan, mixing up the dependent and independent variables, has put 
a shadow on this point of view, also combined with the non-intrinsic ap-
proach for finding Gröbner bases along similar methods. It is only during the 
period 1960-1970 that D.C. Spencer and coworkers brought new differential 
homological algebraic intrinsic methods for studying such sequences ([25]). 
Then, analysis became such a fashionable subject that almost nobody took 
the risk to use these difficult new methods in physics, even though they are 
largely superseding the previous ones. In order to convince the reader about 
the problems that could be met, we end this comment with two unusual ex-
amples.  

EXAMPLE 1.1: Using standard notations from jet theory, let us consider the 
trivially involutive operator ( ) ( ) ( ): : , , ,k k k k

q q i ijj E J E ξ ξ ξ ξ→ → ∂ ∂   with ze-
ro symbol at order q. Setting ( ) ( )0qJ E C E=  and exhibiting the Spencer bun-
dles ( )rC E  by the short exact sequences:  

( ) ( ) ( )1 * *
10 0r r

q q rS T E T J E C Eδ −
+→ ∧ ⊗ ⊗ →∧ ⊗ → →  

with the Spencer operator ( ) ( )1 1:r r rD C E C E+ +→  induced by the Spencer op-
erator d:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

*
1: : , , ,

, ,

k k k
q q i ij

k k k k
i i i j ij

d J E T J E x x x

x x x x

ξ ξ ξ

ξ ξ ξ ξ

+ → ⊗

→ ∂ − ∂ −





 

( ) ( ) ( )( )
( ) ( )( )

* 1 *
1 ,

, 1 ,

: :

i

r r k I
q q I

k k i I
i I I

d T J E T J E x dx

x x dx dx

µ

µ µ

ξ

ξ ξ

+
+

+

∧ ⊗ →∧ ⊗

→ ∂ − ∧
 

with standard multi-index notations for exterior forms. We have  

10 0r rd d D D+= ⇒ =   and should obtain the finite length second Spencer 
sequence which is also a Janet sequence for qj :  

( ) ( ) ( )
1 2

0 10 0
q nj DD D

nE C E C E C E→ → → → → →  

In actual practice, it is difficult to compute ( )rC E  even when 3, 1,n m= =
2q = .  

Let qD j= Φ   be an involutive operator and set ( )qR ker= Φ ,  
( )0 q qF J E R= . We may define the Janet bundles rF  and the Spencer bundles 

rC  by the short exact sequences:  

( ) ( )* 1 * * *
10 0r r r

q q q rT R T S T E T J E Fδ −
+→ ∧ ⊗ + ∧ ⊗ ⊗ →∧ ⊗ → →  

( )1 * *
10 0r r

q q rT g T R Cδ −
+→ ∧ ⊗ →∧ ⊗ → →  

and we have the short exact sequences: ( )0 0
r

r r rC C E F
Φ

→ → → →  by using  
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inductively a snake chase in the following commutative and exact diagram, 
starting with 0Φ =Φ :  

( )

( ) ( )( ) ( )
( )

( ) ( )

1 1 1

1 1 1

1 0 1

1 1 1 0 1

0 0

0 0

0 0

0 0

0 0 0

q q

q q

q q

R J R C

J E J J E C E

J
R J E J F F

+

+

+ +

↓ ↓

→ → → →

↓ ↓

→ → → →

↓ Φ ↓Φ
→ → → → →

↓ ↓ ↓



 

The Janet and Spencer sequences are thus in general two completely different 
differential sequences. It is also largely unknown that the Spencer sequence is 
nothing else than the Janet sequence:  

1 2

0 10 0
n

nE F F F→Θ→ → → → → →

 
 

for the first order involutive system ( )1 1q qR J R+ ⊂  as proved by the previous 
diagram ([2], p. 109). For a later use, we notice that any inclusion ˆ

q qR R⊂  of 
involutive systems provides canonical monomorphisms ˆ0 r rC C→ →  both 
with canonical epimorphisms ˆ 0r rF F→ → , a result showing that the Janet and 
Spencer sequences cannot be used equivalently in physics, even if they can be 
used equivalently in mathematics for computing differential extension modules 
(See [10] [11] [26] for the best examples we know concerning elasticity, general 
relativity and gauge theory).  

EXAMPLE 1.2: In Riemannian geometry, the situation is even more tricky, a 
fact explaining why all the tentatives made by the various authors ([27] [28] [29] 
[30]) in order to use either Cartan or Janet or Gröbner are never appealing to 
differential sequences. They could not therefore describe any link between the 
work of Lanczos and the construction of differential sequences, in particular the 
close relationship existing between Lanczos/Lagrange multipliers and Spencer 
δ-cohomology that we shall exhibit in Sections 2 and 3. Moreover, as any action 
of a Lie group has a finite number of infinitesimal generators { }τθ  providing a 
Lie algebra  , we have * *r r

r qC T R T= ∧ ⊗ ∧ ⊗   when q is large enough. In 
the particular case of isometries and conformal isometries, we have 1q =  or 

2q =  and this number is respectively equal to ( )1 2n n +  and ( )( )1 2 2n n+ +  
([31]). However, the corresponding canonical Janet and Spencer sequences can-
not be constructed for 1R  or 1R̂  which are not involutive but must be con-
structed for 2R  or 3R̂  (care) which are involutive ([32]). In the case of the 
Killing operator for the Kerr metric, the Spence sequence is isomorphic to the 
tensor product of the Poincaré sequence for the exterior derivative, namely:  

0 * 1 * 2 * *0 0
d d d d

nT T T T→Θ→∧ →∧ →∧ → →∧ →  

by a 2 dimensional Lie algebra of translations along coordinates ( ),t φ  in Boy-
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er-Lindquist coordinates and we do claim that the works quoted in the above 
reference are leading to a dead end because the Kerr parameters ( ),m a  just 
disappear. It will follow that the Janet and Spencer sequences are completely dif-
ferent and must be therefore carefully distinguished as we shall discover that the 
step by step construction of generating CC will bring a lot of surprises for the 
successive operators 1 2, ,    or 1 2

ˆ ˆ, ,   .  
• Last but not least, we explain the way towards the solution of the parametri-

zation problem by means of differential double duality. The starting point 
has been a challenge proposed in 1970 by J. Wheeler to find out a parametri-
zation of Einstein equations in vacuum, at the time the author of this paper 
was a student of D.C. Spencer in Princeton university. Later on, discovering 
by chance while teaching elasticity, that the parametrization of Cauchy equa-
tions in dimension 2 by the Airy function was nothing else than the formal 
adjoint of the Riemann operator, this result allowed him to give a negative 
answer to the challenge in 1995 and we point out that not a single step ahead 
had been produced during the previous 25 years ([33]). Then, again by 
chance, we discovered in 1995 the english translation of a thesis by M. Ka-
shiwara (See [6] for a more accessible version). This has been the starting 
point of the use of differential modules and differential homological algebra 
for applications ([34] [35]), thanks to the pioneering work of U.Oberst in 
1990 on control theory where a control system is controllable if and only if it 
is parametrizable ([36]).  

The present paper, which is difficult though it is rather self-contained and il-
lustrated by many explicit examples, is written from a lecture given at the twenty 
fourth Conference on Applications of Computer Algebra (ACA 2018) held in 
Santiago de Compostela, Spain (June 18-22, 2018) and aims to provide new do-
mains of research for computer algebra. It may thus be considered as a useful 
complement while using the same standard notations. We may finally say that in 
the next sections we shall simply provide an explicit description of the potentials 
allowing to parametrize successively the Riemann and the Weyl operators in ar-
bitrary dimension, both with their respective adjoint operators.  

2. Riemann/Lanczos Potential  

Having in mind the variational procedure used in optimal control theory when 
1n =  and in EM when 4n = , let us assume that the differential sequence:  

1

ξ η ζ→ →


 

is formally exact, that is 1  generates the CC of   and thus ξ  is a potential 
for 1 . We may consider a variational problem for a cost function or lagran-
gian ( )ϕ η  under the linear OD or PD constraint described by 1 0Dη = .  
• Introducing convenient Lagrange multipliers λ  while setting  

1 ndx dx dx= ∧ ∧  for simplicity, we must vary the integral:  

( ) ( )( )1 1d dx D xϕ η λ η δ ϕ η η δη λ δη  Φ = − ⇒ Φ = ∂ ∂ −   ∫ ∫  
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Integrating by parts, we obtain the Euler-Lagrange (EL) equations:  

( ) ( )1adϕ η η λ∂ ∂ =   

to which we have to add the constraint 1 0η =  obtained by varying λ  inde-
pendently. If ( )1ad   is an injective operator, in particular if 1  is formally 
surjective (no CC) while 1n =  as in OD optimal control and the differential 
module defined by 1  is torsion-free, thus free ([6] [15] [34]) or 1n ≥  and 
this module is projective, then one can obtain λ  explicitly and eliminate it by 
substitution. Otherwise, using the generating CC ′  of ( )1ad  , we have to 
study the formal integrability of the combined system:  

( ) 10, 0ϕ η η η′∂ ∂ = =   

which may be a difficult task as can be seen in the examples of the Introduction 
of ([6]).  
• However, we may also transform the given variational problem with con-

straint into a variational problem without any constraint if and only if the 
differential constraint can be parametrized.  

Indeed, using the parametrization of 1  by  , we may vary the integral:  

( ) ( )( )d = dx xϕ ξ δ ϕ η η δξΦ = ⇒ Φ ∂ ∂∫ ∫   

whenever η ξ=  and integrate by parts for arbitrary δξ  in order to obtain 
the EL equations:  

( ) ( ) 0,ad ϕ η η η ξ∂ ∂ = =   

in a way which is coherent with the previous approach if and only if ( )ad   
generates the CC of ( )1ad  , a condition rarely satisfied in general.  

Accordingly, even if 1  generates the CC of  , in general ( )ad   may 
not generate all the CC of ( )1ad   in the adjoint differential sequence:  

( ) ( )1ad ad

ν µ λ← ←
 

 

Such a striking “gap”, namely the lack of formal exactness of the adjoint se-
quence when the initial sequence is formally exact, led to introduce the differen-
tial extension modules. Roughly, we shall use the fact that a differential module 
M defined by an operator   with coefficients in a differential field K has va-
nishing first extension module ( ) ( )1 1,Dext M D ext M=  if the operator ( )ad   
generates the compatibility conditions (CC) of ( )1ad   when 1  generates 
the CC of  . Constructing successively the CC i  of 1i−  for 1i ≥ , the ex-
tension module ( )iext M  is vanishing if the operator ( )1iad −  generates the 
CC of ( )iad  . One finally defines ( ) ( )0 hom ,Dext M M D=  which is vanish-
ing when M is a torsion module or, equivalently, when ( )ad   is a (formally) 
surjective operator. For simplicity, we ask the reader to refer to the  
( ), ,grad curl div  operators of vector geometry.  

We have the following (difficult) theorems (See [6] [15] or [10] [12] [37] [38] 
for more details):  

THEOREM 2.1: If M is the differential module defined by  , the extension 
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modules ( )iext M  do not depend on the sequence used for their computation 
and are torsion modules for 1i ≥ , that is to say ( )( ) 0, 1i

Drk ext M i= ∀ ≥ .  
With the same notations, let us introduce the differential module ( )N ad M=  

defined by the adjoint operator ( )ad  .  
THEOREM 2.2: When DM M=  is a (left) differential module, then  

( ),Dhom M D  is a right differential module because D is a bimodule over itself 
and ( )( )*, ,n

D K DN N hom T hom M D= = ∧  is again a (left) differential module.  
COROLLARY 2.3: A differential module is torsion-free if and only if it can be 

embedded into a free differential module.  
COROLLARY 2.4: The differential module M is such that ( )1 0ext M = , 
( )2 0ext M =  if and only if the differential module N is reflexive, that is ( )ad   

can be parametrized by ( )1ad   which can be itself parametrized by ( )2ad  . 
When 3n = , the simplest example is the div operator that can be parametrized 
by the curl operator which can be parametrized by the grad operator.  

THEOREM 2.5: The Spencer sequence for any Lie operator   which is 
coming from a Lie group of transformations, with a Lie group G acting on X, is 
(locally) isomorphic to the tensor product of the Poincaré sequence by the Lie 
algebra   of G.  

Proof: If M is the differential module defined by  , we want to prove that 
the extension modules ( )1ext M  and ( )2ext M  vanish, that is, if 1  gene-
rates the CC of   but also 2  generates the CC of 1 , then ( )ad   gene-
rates the CC of ( )1ad   and ( )1ad   generates the CC of ( )2ad  . We also 
remind the reader that we have shown in ([12]) that it is not easy to exhibit the 
CC of the Maxwell or Morera parametrizations when 3n =  and that a direct 
checking for 4n =  should be strictly impossible. It has been proved by L. P. 
Eisenhart in 1926 ([22]) that the solution space Θ  of the Killing system has 
( )1 2n n +  infinitesimal generators { }τθ  linearly independent over the con-

stants if and only if ω  had constant Riemannian curvature, namely zero in our 
case. As we have a transitive Lie group of transformations preserving the metric 
considered as a transitive Lie pseudogroup, the three classical theorems of So-
phus Lie assert than , cτρ σ ρσ τθ θ θ  =   where the structure constants c define a 
Lie algebra  . We have therefore { }| cstτ τ

τξ ξ λ θ λ∈Θ⇔ = = . Hence, we may 
replace locally the Killing system by the system ( ) 0i xτλ∂ = , getting therefore 
the differential sequence:  

0 * 1 * *0 0
d d d

nT T T→Θ→∧ ⊗ →∧ ⊗ → →∧ ⊗ →    

which is the tensor product of the Poincaré sequence by  . Finally, it follows 
from the above Theorem that the extension modules considered do not depend 
on the resolution used and thus vanish because the Poincaré sequence is self ad-
joint (up to sign), that is ( )ad d  generates the CC of ( )ad d  at any position, 
exactly like d generates the CC of d at any position. This (difficult) result ex-
plains why the adjoint differential modules we shall meet will be torsion-free or 
even reflexive. We invite the reader to compare with the situation of the Maxwell 
equations in electromagnetism (See [4], pp. 492-494 for more details). However, 
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we have explained in ([7] [8] [9]) why neither the Janet sequence nor the Poin-
caré sequence can be used in physics and must be replaced by the Spencer se-
quence which is another resolution of Θ  ([3] [5]). Though this is out of the 
scope of this paper, we shall nevertheless shortly describe the relation existing 
between the above results and the Spencer operator, thus the Spencer sequence. 
For this, let us define for any 0q ≥  the section ( ) ( )( )q qx j xτ

τξ λ θ= =  
( ) ( ) ( )( )k k

qx x x Rτ
µ µ τξ λ θ= ∂ ∈ . With the standard notations of ([2]-[6]) and 

0 qµ≤ ≤ , the components of the Spencer operator become:  

( ) ( ) ( )( ) ( )( ) ( )( ) *
1 1 1 1i

k k k
q q q i i qd j x x x x T Rτ

µ µ µ τξ ξ ξ ξ ξ λ θ ξ+ + += − = ∂ − = ∂ ∂ ∈ ⊗  

When q is large enough, that is 1q =  for the Killing and conformal Killing 
systems, we obtain the desired identification justifying our claim.  

□ 
COROLLARY 2.6: When   is the Killing operator, then ( )1 0ext M = ,  
( )2 0ext M =  and there is no gap. The situation is similar if we start with the 

conformal Killing operator ̂ .  
REMARK 2.7: If the differential module M defined by   is a torsion mod-

ule as in the Theorem, then we have ( ) ( )0 , 0Dext M hom M D= =  in any case.  
REMARK 2.8: Lanczos has been trying in vain to do for the Bianchi operator 

what he did for the Riemann operator, a useless but possible “shift by one step to 
the right” and to do for the Weyl operator what he did for the Riemann opera-
tor. However, we shall discover that the dimension 4n = , which is quite “fine” 
for the classical Killing sequence, is quite “bad” for the conformal Killing se-
quence, a result not known after one century because it cannot be understood 
without using the Spencer δ-cohomology in the following commutative diagram 
which is explaining therefore what we shall call the “Lanczos secret”. Following 
([2]) and the fact that the two central vertical δ-sequences are exact, this diagram 
allows to construct the Bianchi operator 2 1 2: F F→  as generating CC for the 
Riemann operator *

1 0 2 1: F S T F= →  defined by a similar diagram and thus 
only depends on the symbol 1g . We have the following commutative diagram 
allowing to define 1F , where all the rows are exact and the columns are exact 
but eventually the left one:  

* *
3 3 2 0 1

* * * * *
2 2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

0 0

0 0

0 0

0 0

0 0

g S T T S T F F

T g T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓
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When 4n = , we provide the respective fiber dimensions in the next diagram:  

0 0

0 80 100 20 0

0 160 160 0

0 36 96 60 0

0 16 16 0

0 0

↓ ↓
→ → → →

↓ ↓
→ → →

↓ ↓
→ → → →

↓ ↓ ↓
→ = →

↓ ↓

 

Using the Spencer cohomology at 2 *
1T g∧ ⊗  and a snake-type chase ([15], p 

174), the Riemann vector bundle ( )2
1 1 1F H g=  in this diagram or Riemann 

candidate in the language of Lanczos, is defined by the short exact sequence:  

2 * 3 *
1 10 0

0 20 36 16 0

F T g T T
δ

δ

→ → ∧ ⊗ → ∧ ⊗ →

→ → → →
 

All the vertical down arrows are δ-maps of Spencer and all the vertical col-
umns are exact but the first, which may not be exact only at 3 *

1T g∧ ⊗  with 
cohomology equal to ( )3

1 1H g  because we have:  

{ }
( )

* 2 * *
1

0

2 3 4

| 0

0 0 0

k r r
i rj i ir j

det

g T T T T T

g g g
ω

ξ ω ξ ω ξ
≠

= ∈ ⊗ + = ∧ ⊂ ⊗

⇒ = ⇒ = ⇒ =



 

Similarly, we obtain the following commutative diagram allowing to define 

2F , with analogous comments:  

* * *
4 4 3 0 1 2

* * * * * *
3 3 2 0 1

2 * 2 * * 2 * *
2 2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0 0

0 0

0 0

0 0

0 0

0 = 0

0 0

g S T T S T F T F F

T g T S T T T S T F T F

T g T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗ → →

↓ ↓ ↓

→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ ∧ ⊗ →

↓ ↓



 

When 4n = , we provide the fiber dimensions in the next diagram:  
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0 0 0

0 140 200 80 20 0

0 320 400 80 0

0 240 240 0

0 24 64 40 0

0 4 4 0

0 0

↓ ↓ ↓
→ → → → →

↓ ↓
→ → → →

↓ ↓ ↓
→ → →

↓ ↓
→ → → →

↓ ↓ ↓
→ = →

↓ ↓



 

A snake-type chase similarly provides the identification ( )3
2 1 1F H g=  while 

using again the Spencer cohomology at 3 *
1T g∧ ⊗ . The Bianchi vector bundle 

2F  providing the Bianchi identities is thus defined by the exactness of the top 
row of the preceding diagram or, equivalently, using the left column, by the 
short exact sequence:  

3 * 4 *
2 10 0

0 20 24 4 0

F T g T T
δ

δ

→ → ∧ ⊗ → ∧ ⊗ →

→ → → →
 

When 4n = , using the duality with respect to the volume form  
1 2 3 4dx dx dx dx∧ ∧ ∧  in order to change the indices, we obtain successively 

(care to the signs):  

1,234 2,341 3,412 4,123

1,1 2,2 3,3 4,4

41,1 42,2 43,3

23,1 31,2 12,3

0
0

4
0

0

i i i i

i i i i

B B B B
B B B B

i
B B B
L L L

− + − =
− + − =

= ⇒
− + =
+ + =

 

and finally exhibit the Lanczos potential 2 * *L T T∈∧ ⊗  as a 3-tensor satisfying: 

, , , , ,0, 0ij k ji k ij k jk i ki jL L L L L+ = + + =  ( )24 4 20− =   

However, this result is only valid in this specific situation with 4n =  and 
does not provide any potential because the adjoint sequence is going … back-
wards (!).  

Starting with the (classical) Killing operator *
2:K T S T→  defined by  

( )Lξ ξ ω→ , we may obtain successively the following differential sequences for 
various useful dimensions:  

1 2

1 2 1

1 2 1 1

1 2 1 1 1

2 2 3 1 0

3 3 6 6 3 0

4 4 10 20 20 6 0

5 5 15 50 75 45 10 0

K R

K R B

K R B

K R B

n

n

n

n

= → → →

= → → → →

= → → → → →

= → → → → → →
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For example, we have the Euler-Poincaré characteristic:  
( ) 4 10 20 20 6 0Drk M = − + − + =  when 4n =  or  
( ) 5 15 50 75 45 10 0Drk M = − + − + − =  when 5n =  and M is a torsion module. 

Setting successively Killing= , 1 Riemann= , 2 Bianchi=  and so on, it 
follows from the previous study that each operator is parametrizing the follow-
ing one. Applying double duality while introducing the respective adjoint oper-
ators, then ( )2ad   is thus parametrizing the Beltrami operator  

( ) ( )1ad Riemann ad=   with (canonical) potentials called Lanczos only when 
4n =  while ( )1ad   is parametrizing the Cauchy operator ( )ad   with (ca-

nonical) potentials called Airy when 2n = , Beltrami when 3n =  and so on 
([12]). It must be finally noticed that ( )ad Ricci  is also parametrizing the 
Cauchy operator while the Einstein operator is useless ([37] and the other chap-
ter of this book).  

With more details, we now provide the explicit potentials and parametriza-
tions of the adjoint sequence. In fact and up to our knowledge after more than 
twenty years of teaching continuum mechanics and elasticity ([35]), even the 
adjoint of the Killing operator is never presented within the differential duality 
and it is not completely evident that ( )ad Killing Cauchy= , independently of 
any EL constitutive relations, that is to say without referring to a Lagrangian. For 
this purpose, we recall that the standard infinitesimal deformation tensor is  

*
2

1
2

S Tε = Ω∈ , that is 1
2ij ijε = Ω . Accordingly, the stress tensor density is  

( )* *
2 2

nT S T ad S Tσ ∈∧ ⊗ = , a result leading most textbooks to conclude that the 
stress can be written as a symmetric matrix, contrary to its classical “experimen-
tal” presentation through the well known Cauchy tetrahedral that is never mak-
ing any assumption on the symmetry of the underlying matrix. It is this result 
that pushed the brothers Cosserat to revisit the mathematical foundations of 
elasticity theory and to introduce a non-symmetrical stress that could not have 
any relation with the above definition. In actual practice, let us consider for sim-
plicity the case 2n =  with Euclidean metric. Then we have only 3 (care) inde-
pendent components of ε , namely ( )11 12 21 22, ,ε ε ε ε= , that we should dualize 
with ( )11 12 22, ,σ σ σ  and students know that the completion with 21 12σ σ= , 
automatically done in EL… and thus also GR, depends on a delicate proof in-
volving equilibrium of torsors, a quite useful mechanical concept having no link 
with the previous procedure ([9] [26]).  

The “only” technical purpose is to arrive to a “nice” summation with factors 2:  
11 12 21 22

11 12 21 22

11 12 22
11 12 222

ij
ijσ ε σ ε σ ε σ ε σ ε

σ ε σ ε σ ε

= + + + +

= + + +





 

contrary to the “pure” duality sum:  
11 12 22

11 12 22σ ε σ ε σ ε+ + +  

This apparently naive comment is in fact the deep reason for which the Rie-
mann or Beltrami operators are self-adjoint 6 × 6 operator matrices when 3n =  
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while the Einstein operator is a self-adjoint 10 × 10 operator matrix when 
4n = , contrary to the Ricci operator matrix.  

Multiplying 0FΩ∈  on the left by ( )0ad Fσ ∈  and integrating by parts the 
n-form, we get:  

( )

( )

( )

1 1
2 2

1
2

ij ij r r r
ij rj i ir j r ij

ri ij r
i i rj j ir r ij

ri r ij
i ij r

ri
i r

σ σ ω ξ ω ξ ξ ω

σ ω ω ω σ ξ

σ γ σ ξ

σ ξ

Ω = ∂ + ∂ + ∂

 = − ∂ + ∂ + ∂ − ∂ + 
 

= − ∂ + +

= −∇ +







 

where the covariant derivative takes into account the tensorial density nature of 
σ . This operator is reducing locally to the classical Cauchy equations  

ir i
r fσ∂ =  by introducing the force density ( )* *nf T T ad T∈∧ ⊗ =  in the 

right member and lowering the index by means of ω  as usual.  
Exactly the same procedure can be applied to EM while starting with the field 

equations (first set of Maxwell equations) 0dF =  where 2 *F T∈∧  and  
2 * 3 *:d T T∧ →∧  is the standard exterior derivative. Using the local exactness of 

the Poincaré sequence, we may find a parametrization dA F=  with *A T∈ . 
The induction equations (second set of Maxwell equations) are described, in-
dpendently of any Lagrangian or EM Minkowski constitutive relations, by (See 
[35] for details):  

( ) 4 * 2 4 *: : ir i
rad d T T T T∧ ⊗∧ →∧ ⊗ → ⇔ ∂ =     

Both sets of Maxwell equations are invariant by any local diffeomorphism and 
the conformal group of space-time is only the biggest group of invariance of the 
Minkowski constitutive laws in vacuum ([4]). Of course, this result is showing 
that, contrary to the existence of the well known EL/EM couplings (Piezoelec-
tricity, Photoelasticity, streaming birefringence,…) where Ω  and F should ap-
pear equally in Lagrangians and constitutive relations, there is no room for the 
EM field F in the Janet sequence and no room for the EL field Ω  in the Spencer 
sequence. It follows that there cannot be any relation existing between the EM 
field F and the Riemann tensor R, contrary to what Lanczos was believing.  

Coming back to the initial resolution of Killing vector fields and its adjoint, 
we must push by one step to the right in order to study the Riemann operator 
and its adjoint, the Beltrami operator. Of course, from its definition, the Rie-
mann operator is parametrized… by the Killing operator. As the sequence can 
only be constructed for metrics with constant curvature, thus for flat metrics, we 
assume that we deal with Euclidean metric for EL when 2n ≥  or with the 
Minkowski metric for GR when 4n =  as a way to simplify the formulas (See 
[32] otherwise). In order to correct the formula (III.6) of ([17]) with no mathe-
matical meaning, we may linearize (ω , γ , ρ ) and obtain successively:  

( ) ,2 ,k kr k k k
ij i rj j ir r ij l ij i lj j lid d d R d dωΓ = Ω + Ω − Ω = Γ − Γ  
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( ) ( ),2 kl ij li kj lj ki ki lj kj liR d d d d⇒ = Ω − Ω − Ω − Ω  

Then we check, like in the Introduction, that such an R is a section of the 
Riemann candidate 1F . In order to understand the underlying confusion, we let 
the reader prove as an exercise that the number of CC of the second order sys-
tem k k

ij ijd ξ = Γ , namely 0, 1 , ,k k
i lj j lid d i j l nΓ − Γ = ∀ ≤ ≤ , is equal to ( )2 2 1 3n n − , 

that is… 80 when 4n =  and not 20 (See [23] for the diagram when 2n = ).  
We shall use the dual notations:  

R B
f
ξ

σ α λ
→ Ω → →
← ← ←

 

Multiplying 1R F∈  on the left by ( )1ad Fα ∈  and integrating by parts the 
n-form, we get:  

( )
( ) ( ) ( ) ( )
( )
( )

,

, , , ,

, , , ,

,

2

4

kl ij
li kj ki lj kj li lj ki

kl ij kl ij kl ij kl ij
li kj ki lj kj li lj ki

ir sj ri sj ri js ir js
rs rs rs rs ij

ir sj
rs ij

R d d d d

d d d d

d d d d

d

α α

α α α α

α α α α

α

= Ω − Ω + Ω − Ω

= Ω − Ω + Ω − Ω +

= − + − Ω +

= Ω +







 

and the striking parametrization , 0ir sj ij ji ij
rs jd dα σ σ σ= = ⇒ = . When 2n = , 

setting 12,12α φ= − , we get the Airy parametrization 11
22dσ φ= , 12 21σ σ= =

12d φ− , 22
11dσ φ=  ([23]).  

Finally, we shall construct the Lanczos operator as the adjoint of the Bianchi 
operator when 4n = :  

( ) 3 * 3 * 2 *
, , 1r kl ij i kljr j klri kl ijrd R d R d R B T g T T+ + = ∈∧ ⊗ ∧ ⊗∧  

Multiplying 2B F∈  on the left by ( )2ad Fλ∈  and integrating by parts the 
n-form, we get:  

( )
( ) ( ) ( )( )
( )

,
,

, , ,
, , ,

,
,3

kl ijr
r kl ij i kljr j klri

kl ijr kl ijr kl ijr
r kl ij i kl jr j kl ri

kl ijr
r kl ij

B d R d R d R

d R d R d R

d R

λ λ

λ λ λ

λ

= + +

= − + + +

= − +





 

and the striking parametrization , , , , 0kl ijr kl ij kl ij kl ijr
r li rlid d dλ α α λ= ⇒ = =  up to 

sign. This is the main result explaining the confusion done by Lanczos between 
Hodge duality and differential duality, that is between the Killing sequence and 
its adjoint which is going… backwards!  

We have thus confirmed the fact that the differential module defined by the 
Killing operator   has vanishing first and second differential extension mod-
ules while its adjoint differential module defined by ( )ad Killing Cauchy=  is a 
reflexive differential module. The reader will have noticed that not a single of the 
previous computations could be even imagined without these new tools which 
are at the same time explicit and intrinsic.  

3. Weyl/Lanczos Potential  

Starting now afresh with the conformal Killing operator CK such that  
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( ) ( )A xξ ω ω=  or, equivalently, introducing the metric density  

( )
1

ˆ n
ij ij detω ω ω

−
= , we have a new operator  

( ){ }*
2: | 0ij

ijCK T S T tr ω→ Ω∈ Ω = Ω =  defined by ( ) ˆξ ξ ω→ . Using the 
formal Lie derivative for a geometric object of order q in such a way that 
( ) ( )( )qL jξ ξ= , we obtain ([39]):  

( )( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2

r r r
ij rj i ir j r ij ijij

kk k k r k r r k r k
ij ij rj i ir j ij r r ijij

k k kr
i j j i ij r

L x x x A x x

L x x x x

A x A x x x A x

ξ ω ω ξ ω ξ ξ ω ω

ξ γ ξ γ ξ γ ξ γ ξ ξ γ

δ δ ω ω

Ω ≡ ≡ + + ∂ =

Γ ≡ ≡ + + − + ∂

= + −

 

Eliminating ( )A x , the symbol 1 1
ˆĝ R⊂  is defined by the (linear) equations:  

( ) ( ) ( )2 0r r r
rj i ir j ij rx x x

n
ω ξ ω ξ ω ξ+ − =  

Similarly, eliminating ( )iA x , the symbol 2 2
ˆĝ R⊂  is defined by the linear 

equations:  

( ) ( )( )1 0k k r k r ks r
ij i rj j ri ij rsx x

n
ξ δ ξ δ ξ ω ω ξ− + − =  

and both symbols do not depend on any conformal factor. The Weyl group is 
defined by the system 2R  obtained by setting ( ) 0iA x =  and we have the strict 
inclusions ( )2 2 2 2

ˆR R R J T⊂ ⊂ ⊂ .  
The second and third of the three following quite technical results have never 

been acknowledged though they will be needed in a crucial way ([3] p. 627, [31] 
[39] p. 26, 27):  

LEMMA 3.1: 1ĝ  is finite type with 3ˆ 0, 3g n= ∀ ≥ .  
LEMMA 3.2: 2ĝ  is 2-acyclic when 4n ≥ .  
LEMMA 3.3: 2ĝ  is 3-acyclic when 5n ≥ .  
We obtain successively the following differential sequences for various useful 

dimensions: 
? ?

1 3 1

1 2 2 1

1 2 1 2 1

3 3 5 5 3 0

4 4 9 10 9 4 0

5 5 14 35 35 14 5 0

CK

CK W CB

CK W CB

n

n

n

= → → → →

= → → → → →

= → → → → → →

 

For example, we have the Euler-Poincaré characteristic:  
( ) 5 14 35 35 14 5 0Drk M = − + − + − = . These results have been confirmed by 

computer algebra in ([29]). They prove that the analogue of the Weyl operator is 
of order 3 when 3n =  but becomes of order 2 when 4n ≥  and that the ana-
logue of the Bianchi operator is now of order 1 when 3n = , of order 2 when 

4n =  but becomes again of order 1 when 5n ≥ , proving that all conformal 
geometry must be entirely revisited.  

Proceeding as before in order to define 2̂F , we obtain the following commut-
ative diagram where all the rows are exact and the columns are exact but even-
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tually the left one:  

* * *
5 5 4 0 2 1 2

* * * * * * *
4 4 3 0 1

2 * 2 * * 2 * * 2 *
3 3 2 0 1

3 * 3 * * 3 * *
2 2 0

4 * 4 *
1

0 0 0 0

ˆ ˆ ˆˆ0 0

ˆ ˆˆ0 0

ˆ ˆˆ0 0

ˆˆ0 0

ˆ0

g S T T S T F S T F F

T g T S T T T S T F T T F

T g T S T T T S T F T F

T g T S T T T T F

T g T

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗ → →
↓ ↓ ↓ ↓

→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ ⊗ →
↓ ↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →
↓ ↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ * 4 *
0̂ 0

0 0 0

T T T F⊗ → ∧ ⊗ →
↓ ↓ ↓

 

When 4n = , we provide the fiber dimensions in the next diagram:  

0 0 0

0 224 315 100 9 0

0 560 720 160 0

0 480 540 60 0

0 16 160 144 0

0 7 16 9 0

0 0 0

↓ ↓ ↓
→ → → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

It is much more difficult to prove that the last map  
3 * 4 *

2ˆ: :16 7T g T Tδ ∧ ⊗ →∧ ⊗ →  is an epimorphism. We let the reader man-
age as an exercise of homological algebra and diagram chasing through an up 
and down delicate circular chase in order to convince him that no classical result 
could provide such a result which is nevertheless an obligatory step for finding 
the desired ( )2̂ 16 7 9dim F = − =  (Hint: Prove first that the Weyl operator 1  
has no first order CC when 4n = , then prove that each element of  

2 * *
2 0̂T S T F∧ ⊗ ⊗  is the sum of an element in ( )* *

3 0̂T S T Fδ ⊗ ⊗  and an ele-
ment coming from 2 * *

3T S T T∧ ⊗ ⊗ ). Of course, in view of the dimensions of 
the matrices involved (up to 540 × 720), we wish good luck to anybody trying to 
use computer algebra and refer to the computations done in ([7] [14]) that have 
been done while knowing “a priori” the dimensions that should be found.  

We finally notice that the change of the successive orders is totally unusual as 
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in ([32]) and refer to ([7] [14]) for more details on the computer algebra me-
thods. In particular, when 4n = , the conformal analogue of the Bianchi opera-
tor is now of order 2, a result explaining why Lanczos and followers could not 
succeed adapting the Lanczos tensor potential L for the Weyl operator, even if it 
was already known for the Riemann operator when 4n = . In particular, thanks 
to Theorems 2.1 and Corollary 2.4, we have thus solved the Riemann-Lanczos 
and Weyl-Lanczos parametrization problems in arbitrary dimension while pro-
viding explicit computations. 

4. Riemann versus Weyl  

Using the splitting of the Riemann tensor between the Ricci or Einstein tensor 
and the Weyl tensor in the second column while taking into account the fact that 
the extension modules are torsion modules, then each component of the Weyl 
tensor is differentially dependent on the Ricci tensor and we recall the commut-
ative and exact diagram first provided in ([37] [40] [41]) when 4n = :  

0 0 0

0 10 16 6 0

10 20 20 6 0

10 10 4 0

0 0 0

Riemann Bianchi

Einstein div

↓ ↓ ↓
→ → →

↓ ↓↑ ↓

→ → → →
↓↑ ↓ ↓

→ → →
↓ ↓ ↓





 

It follows that the 10 components of the Weyl tensor must satisfy a first order 
linear system with 16 equations, having 6 generating first order CC. The diffe-
rential rank of the corresponding operator is thus equal to the differential rank 
of its image that is 16 6 10− =  and such an operator defines therefore a torsion 
module because the differential rank of its kernel is 10 10 0− = . Equivalently, 
we have to look separately for each component of the Weyl tensor in order to 
obtain the Lichnerowicz wave equations (as they are called in France!) [37]. The 
situation is similar to that of the Cauchy-Riemann equations obtained when 

2n =  by considering the conformal Killing operator. Indeed, any complex 
transformation ( )y f x=  must be solution of the (linear) first order system 

2 1
2 1 0y y− = , 1 2

2 1 0y y+ =  of finite Lie equations though we obtain 1 1
11 22 0y y+ = , 

2 2
11 22 0y y+ = , that is 1y  and 2y  are separately killed by the second order Lap-

lace operator 11 22d d∆ = + . The next striking technical lemma explains the 
so-called gauging procedure of the Lanczos potential.  

LEMMA 4.1: When 4n = , the vertical arrow 20 4→  is just described by 
the contraction:  

, ,
jk

ij k i ij kL L L Lω= → =  
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Proof: Let us write down the Bianchi operator in the form:  

, , , , ,
k k k k k
l ij r l ij i l jr j l ri l ijrR R R R B→∇ +∇ +∇ =  

Contracting with k j s= = , we obtain: , , , ,
s s s s

r l is i l sr s l ri l isrR R R B∇ +∇ +∇ = .  
Setting as usual ,

s
l sr lr rlR R R= =  with ij

ijR Rω =  and contracting with liω , 
we finally get:  

,2 s ij s
s r r i jrsR R Bω∇ −∇ =  

as the way to use a contraction in order to exhibit Einstein equations.  
With 4n = , let us write down all the terms, using the Euclidean metric for 

simplicity instead of the Minkowski metric, recalling that only this later choice 
allows to find out both the Poincaré group and the differential sequence with 
successive operators , ,K R B  according to ([32]):  

1,1 2,2 3,3 4,4,
s s s s

rs rs rs rs rB B B B C+ + + =  

that is to say with all the terms:  
1 2 3 4
1,1 1 1,1 2 1,1 3 1,1 4

1 2 3 4
2,2 1 2,2 2 2,2 3 2,2 4

1 2 3 4
3,3 1 3,3 2 3,3 3 3,3 4

1 2 3 4
4,4 1 4,4 2 4,4 3 4,4 4

r r r r

r r r r
r

r r r r

r r r r

B B B B

B B B B
C

B B B B

B B B B

 + + +

+ + + + =
+ + + +
+ + + +

 

where, in any case, we have 1 2 3 4
1,1 1 2, 2 3, 3 4, 4 0r r r rB B B B= = = = .  

If we set 1r = , the first line disappears because of the 3-form 3 *T∧  and we 
are left with:  

( ) ( ) ( )3 4 2 4 2 3
2,213 2,214 3,312 3,314 4,412 4,413 1B B B B B B C+ + + + + =  

Using Hodge duality, we get:  

( ) ( ) ( )3 4 2 4 2 3
2,4 2,3 3,4 3,2 4,3 4,2 1B B B B B B C− + + − + − + = , arriving finally to the for-

mula: ( )3 4 2
4,2 2,3 3,4 12 B B B C+ + = , that is exactly twice the trace of the Lanczos 

tensor, namely: 2 3 4
1 2 1 3 1 4 1

r
rL L L L+ + = . This result explains why the Lanczos 

tensor , ,ij k ji kL L= −  with 24 components is first reduced to 20 components 
through the condition , , , 0ij k jk i k ijL L L+ + =  and finally to 16 components as in 
the diagram through the kernel of the above trace condition. It is thus strictly 
impossible to understand this result even for 4n =  without the Spencer δ- 
cohomology and absolutely impossible to generalize this result in arbitrary di-
mension without the combination of the δ-cohomology and double duality in 
differential homological algebra.  

□ 
Using the fact that ( ) ( )( ) ( ) ( )* * *nad E T E dim ad E dim E dim E= ∧ ⊗ ⇒ = = , 

such a result explains the confusion done by Lanczos and followers between the 
Riemann candidate ( )2

2 1 1F H g=  or the Weyl candidate ( )2
2 1 1

ˆ ˆF H g=  and 
their respective formal adjoint vector bundles.  

We end this paper with the following fundamental diagram II first presented 
in 1983 (See [4], p. 430 and the reference 87 p. 560) that only depends on the 
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Spencer δ-map, explaining both the splitting vertical sequence on the right and 
the link existing between the Ricci vector bundle and the symbol bundle 

*
2ĝ T  of second order jets of conformal elations.  

( )

( )

2
1 1

* 2
2 1 1

* * * 2 *
2

0

0

0 0

ˆ ˆ0 0

0 0

0 0

Ricci

Z g Riemann

T g Z g Weyl

S T T T T

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ ⊗ → → →
↓ ↓ ↓

→ → ⊗ → ∧ →
↓ ↓

 

0

0 10

0 20 20 0

0 16 26 10 0

0 10 16 6 0

0 0

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ → → →
↓ ↓ ↓

→ → → →
↓ ↓

 

Needless to say that the diagonal chase providing the isomorphism *
2Ricci S T  

could not be even imagined by using classical methods because its involves 
Spencer δ-cohomology with the standard notations ( ) ( )s

q r qB g im δ+ = ,  
( ) ( )s

q r qZ g ker δ+ = , ( )s
q r qH g Z B+ =  for coboundary, cocycle, cohomology at 

*s
q rT g +∧ ⊗  when q rg +  is the r-prolongation of a symbol qg . We point out 

that the bundles appearing in this diagram only depend on the metric ω  but 
not on any conformal factor.  

We have explained in recent papers (See [8] and [23] for references) that the 
splitting horizontal lower sequence provides an isomorphism  

* * * * 2 *
2 2ˆT g T T S T T⊗ ⊗ ⊕∧   which can be locally described by ( ),ij ijR F  

in which ( )ijR  is the GR part and ( )ijF  the EM part as a unification of gravi-
tation and electromagnetism, only depending thus on the second order jets of 
conformal transformations. We finally notice that  

( ) ( ) ( )* * * *
2 2 2 2 2 1 1

ˆˆ ˆˆT g T R R T R T R C C⊗ = ⊗ = ⊗ ⊗ =   , a result contradicting 
the mathematical foundations of classical gauge theory while allowing to under-
stand the confusion done by E. Cartan and followers between “curvature alone” 
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( 1F ) and “curvature + torsion” ( 2C ) (See [8] [11] for more details). These re-
sults, which are already in contradiction with the foundations of general relativ-
ity, are not coherent with the origin and existence of gravitational waves ([40] 
[41]). They are also in contradiction with the foundations of gauge theory be-
cause they establish a structural link between electromagnetism and the confor-
mal group along the dream of H. Weyl ([11] [42]). 

5. Conclusion  

When there is a competition between mathematics (differential homological al-
gebra, double duality) and physics (Einstein equations, Maxwell equations), 
coming from their mixing up, sooner or later mathematics is always winning. 
This has been typically the situation met with the Lanczos potential theory 
where the motivating idea was quite clever but the final achievement has been 
contradictory with group theory through the only introduction of the Riemann 
tensor and Einstein equations, but without any reference to the conformal group 
of space-time and to the Weyl tensor that does not seem to have been known by 
Lanczos, even as late as in 1967. As we explained in the Introduction, the reader 
must nevertheless not forget that it was not possible to discover any solution of 
the parametrization problem by potentials through differential double duality 
before 1995, that is too late for the many people already engaged in this type of 
research. We have thus clarified the situation with the powerful new mathemat-
ical tools available today and pointed out the contradictory link existing with 
gravitational waves which is expanded in recent papers ([37] [40] [41]). We hope 
that computer algebra will take profit of this fact in the future ([7] [14] [23]). 
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