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Abstract 
The entropy change in a spin system coupled to a magnetic field is investi-
gated by solving an evolution equation for a quantum spin system. Entropy of 
the system is discussed and the exchange of entropy between the spins and 
field can be studied. The full quantum treatment of spins and field shows that 
the coherent nature of this field is very important for reaching the spin echo. 
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1. Introduction 

The investigation of the behavior of the entropy in a system that evolves through 
a well defined cycle can provide knowledge as to how quantum mechanics at a 
fundamental level enters into statistical physics and thermodynamics [1] [2] [3]. 
The second law of thermodynamics claims that disorder is generally as a result 
of the evolution. After its appearance, it is virtually impossible to eliminate. 
There are many systems which can be explored in terms of a mathematical mod-
el which produces predictions and also admit experimental study [4] [5]. An 
important and useful system to look at is one made up of a large number of 
spins which are initially aligned and precess in an inhomogeneous magnetic field 
until they point in various directions. The spins start in an ordered state and in 
time become disordered. The spins are subjected to a radio-frequency pulse of a 
particular frequency and direction. The subsequent evolution reverses the ac-
cumulated disorder causing the spins to return to their initial aligned state [6] 
[7]. The question of just how much disorder is created during this process and is 
this disorder effectively removed or to what extent is the original state recovered 
by the end of the process is certainly of great interest. The more general ques-
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tion, do evolutions take place at the quantum level for which the entropy does 
not change but remains constant throughout. This is the case studied here [8] 
[9] [10] [11]. It could be said that a proper thermodynamic treatment should 
take into account the correlations between the spin and translational degrees of 
freedom [12]. But it is worth proceeding as done here to provide a benchmark 
for different ways of looking at this. Also there is often a fuzzy region as to what 
is referred to as system and environment in quantum mechanics. 

Classically the physical situation is constructed by subjecting a system of spins 
to a strong, stable magnetic magnetic field B which points along the z axis. Let 
µ  be the magnetic moment of the nuclei in the macroscopic sample, then if 

BB k Tµ  , at equilibrium, all spins except a small population will point up 
along the z-axis. A pulse from a radio-frequency field B, is directed along the x 
axis and oscillates at the spins average Larmor frequency 2 Bω µ=   with 
length 12π ω , where 1 Bω µ=  . This is just the amount of time which is re-
quired for the Larmor procession around the field of the pulse to rotate all the 
spins to a common orientation perpendicular both to the z-axis and to the direc-
tion of the pulse in a co-rotating frame. The spins now precess freely about the 
z-axis. 

Initially, all the spins are aligned. However, local inhomogeneities in the 
magnetic field give a different precession rate for the spins. Inhomogeneities of 
about one percent will cause the spins to unalign completely after 1000 revolu-
tions, as an example. As long as the coupling between different spins and be-
tween spins and lattice is weak, the disorder is almost entirely due to the differ-
ent rates of the Larmor precession. Between the start of the precession at 0t =  
and the spin-spin or spin-lattice relaxation time, a second pulse can be applied, 
twice the length of the first pulse. This causes the spins to precess by an angle π  
about the rotating magnetic field of the pulse. In the co-rotating frame the effect 
of the precession is to take the i-th spin from angle iγ  to an angle iγ− . So the 
second pulse conjugates the total phase that each spin has accumulated during 
the course of the precession. 

As the spins precess, each in its own magnetic field, the precession of each 
spin undoes the phase that is accumulated before its phase was conjugated. At 
time t after the second pulse, the spins are lined up again along a direction 180 
away from the original orientation. In terms of an experiment, the realignment 
of the spins induces a signal which can be detected. This signal is the echo of the 
signal that originally aligned the spins. If the pulse that conjugates the spin 
phases shows up after the spin-spin or spin-lattice relaxation time, the spins then 
fail to realign. The spins following their conjugation must undo or reverse their 
entire previous evolution, which includes significant interactions. It is found that 
a carefully selected sequence of pulses is sufficient to reverse not only the evolu-
tion of the spins, but their interaction with the other spins as well. 

Once the system has been prepared so that there is complete knowledge of the 
state of the spins subject to the evolution, the spins precess, and knowledge 
about individual orientations is not preserved. Field inhomogeneities act in such 
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a way as to cause the spins to reach a state of seemingly maximum entropy. Ap-
plication of the second pulse causes the spins to quickly return to a state of zero en-
tropy. It is desired to find out what this says about the second law of thermody-
namics. It will be seen that, in fact, the second law of thermodynamics is preserved. 

One way to account for this is that entropy collected by the spins during the 
evolution is transferred into the quantum state of the electromagnetic field pulse 
that causes this reversal. If this happened, it could be said the second law applies 
to the whole system of spins and field. This as the following results show is not 
what actually happens. The entropy of the spins does not go into the magnetic 
field. A second possibility is that the entropy of the spins does not increase and 
they are not disordered in an absolute sense, but appear to be as suggested al-
ready. To study this, the algorithmic entropy which is the length of the shortest 
algorithm that can reproduce the spin’s configuration, is a good measure of this. 
The only difference between the algorithmic randomness of the spin-echo sys-
tem and its statistical entropy is that while the entropy remains constant, the al-
gorithmic complexity goes like ( )log t t∆ . The term that comes from specifying 
the amount of time that the system has evolved since the spins were aligned. 
This factor will be used as a benchmark later. There is a third explanation which 
is the one that does account for what is obtained by calculation and will become 
apparent in due course. 

2. A Model System and Its Solution 

The Hamiltonian for a spin-1/2 particle subject to a magnetic field with strength 

0 0B ω γ=  along the z-axis and to a radio frequency field with frequency ω  
along the x-axis is given in terms of creation and annihilation operators † ,b b  
and Pauli matrices as 

( )† † †
0

1 ˆ ˆ ˆ ˆ ˆ ˆˆ , .
2 zH b b b b b b n n nω σ η σ σ+ −= + + + Ω =         (2.1) 

In (2.1) η  and Ω  are constants. Define the set of basis for the Hilbert space 
under consideration to be 

, , , .n n n n↑ = ⊗ ↑ ↓ = ⊗ ↓               (2.2) 

Using the properties of the operators σ± , we have 0σ+ ↑ =  and 0σ− ↓ = , 
Ĥ  can be applied to the basis states defined in (2.2) 

0

0

1ˆ , = , 1 1, ,
2

1 , 1 1, ,
2

H n n n n n n

n n n n

ω η

ω η

↑ ↑ + + + ↓ + Ω ↑

 = + Ω ↑ + + + ↓ 
 

  

 

       (2.3) 

( )

( )

0

0

1ˆ 1, 1, 1 , 1 1,
2

1 1 1, 1 , .
2

H n n n n n n

n n n n

ω η

ω η

+ ↓ = − + ↓ + + ↑ + Ω + + ↓

 = − + + Ω + ↓ + + ↑ 
 

  

 

 (2.4) 

The operator Ĥ  has a 2 2×  matrix representation as 
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( )0

0

1 1 1
2ˆ

11
2

n n
H

n n

ω η

η ω

 − + + Ω + 
=  

 + + Ω 
 

               (2.5) 

It is required to diagonalize this Hamiltonian operator (2.5). First the eigen-
values are found to be 

( )
2

201 11 ,
2 2 2 nE n n n

ω
η λ±

 −Ω       = Ω + ± + + = Ω + ±             
    (2.6) 

where the quantity nλ  is defined by 

( ) ( )2 2
0

1 1 .
4n nλ ω η= −Ω + +                  (2.7) 

The actual eigenstates are determined by solving 

( )0

0

1 11 1
2 2 0

.
01 11

2 2

n

n

n n n
u
v

n n n

ω λ η

η ω λ

   − + + Ω− Ω + ± +   
        =           + + Ω− Ω + ±      

(2.8) 

For the case with the upper sign in (2.8), setting 0α ω= −Ω  the eigenvector 
is 

1
1 .
2

1

n

n

α λ

η

 
 
 +
 
 + 

                        (2.9) 

Vector (2.9) can be normalized by dividing with ( )
2

2 11
2 nnη α λ = + + + 

 
  

and the result is 

1

cos
.1 sin

2

n

nn

nη

ϑ
ϑα λ

 +
 
   

=   
+   

 
 





                   (2.10) 

For the lower sign, an eigenvector is 

1
2

.
1

1

n

n

α λ

η

 − + 
 

+ 
 
 

                      (2.11) 

It has a normalized form as 

( )

1
2 sin

.
cos1

n

n

nn

α λ
ϑ
ϑη

 + 
−  − 

=   
  +

 
 





                 (2.12) 
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The normalized eigenstates can then be put together as follows 

( )
( )

cos 1, sin , ,

sin 1, cos , .

n n

n n

n n n

n n n

ϕ ϑ ϑ

ϕ ϑ ϑ

+

−

= + ↓ + ↑

= − + ↓ + ↑
           (2.13) 

The original states can be expressed in terms of the eigenstates by solving 
(2.13), 

( ) ( )
( ) ( )

, sin cos ,

1, cos sin .

n n

n n

n n n

n n n

ϑ ϕ ϑ ϕ

ϑ ϕ ϑ ϕ

+ −

+ −

↑ = +

+ ↑ = −
           (2.14) 

This solves the Hamiltonian eigenvalue problem. 
A wave function ( ), tψ r , which at time 0t =  is a linear superposition of sta-

tionary states ( )cα αα ψ∑ r  evolves under the influence of a t-independent Ha-
miltonian as follows. If the energies of the levels are called Eα  then from li-
nearity of the Schrödinger equation, the evolution in time of this wavefunction 
follows from this 

( )e .iE tC α
α α

α
ψ−∑ r

 
Initially for the situation discussed here, the spins are lined up along the 

x-axis, and the radio frequency field is off. The initial state of a typical spin is 

( ) ( )10 0, 0, .
2

ψ = ↑ + ↓                  (2.15) 

The spin precesses around the magnetic field which is directed along the 
z-axis. Following the plan above, at time t, the state vector is given by 

( ) ( )0 02 21 e , e , .
2

i t i tt n nω ωψ −= ↑ + ↓             (2.16) 

This state can also be transformed into the eigenstate basis ϕ±  so that 
( )tψ  is expressed as 

( ) ( ) ( )( )
( ) ( )

0

0

2

2
1 1

1= e sin cos
2
e cos 1 sin 1 .

i t
n n

i t
n n

t n n

n n

ω

ω

ψ ϑ ϕ ϑ ϕ

ϑ ϕ ϑ ϕ

−
+ −

− + − −

 + 

 + − − − 





    (2.17) 

To obtain the evolution of the state ( )tψ  further along starting from 

(2.17), it should be recalled that both ( )nϕ±  are eigenstates of the total Ha-

miltonian Ĥ  which has the eigenvalues ( )( )1 2n nE n λ= Ω + ± . Therefore 

after a time tτ = ∆  further along, the state ( )tψ  evolves to a new state 

( )tψ τ+  under the influence of the evolution operator Ĥ . To obtain this fi-

nal state each of the eigenfunctions in (2.17) must be multiplied by the approx-
imate imposed phase factor of 

,e .niE τ±−                           (2.18) 

This will cause ( )tψ  to evolve to the final state ( )tψ τ+  which is 
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( ) ( )( ){
( )( ) ( )

( )( ) ( )
( )( ) ( ) }

0

0

0 1

0 1

2

2

2
1

2

1 2

1 2

1 2

1
1

2

1 e sin
2

e cos

e cos 1

e sin 1 .

n

n

n

n

i t i n
n

i t i n
n

i t i n
n

i t i n
n

t

n

n

n

ω λ τ

ω λ τ

ω λ τ

ω λ τ

ψ τ ϑ ϕ

ϑ ϕ

ϑ ϕ

ϑ ϕ

−

−

− − Ω + +
+

− − Ω + −
−

− Ω − +
− +

− Ω − −
− −

+ =

+

+ −

− −









      (2.19) 

The fact that ( )nϕ±  energy eigenstates of Ĥ  has been used. 
Suppose n is very large, then the nλ  can be approximated as follows 

( )1 21 , ,
4n nnλ η ϑ ≈
π

≈ +
 

( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

0

0

0 1

0 1

1 2

1 2

1 2

1 2

2

2

2

2

1 1e 1, ,
2 2

1e 1, ,
2
1e , 1,
2

1e , 1,
2

n

n

n

n

i t i n

i t i n

i t i n

i t i n

t n n

n n

n n

n n

ω λ τ

ω λ τ

ω λ τ

ω λ τ

ψ τ

−

−

− − Ω + +

− − Ω + −

− Ω − +

− Ω − −


+ = + ↓ + ↑



+ − + ↓ + ↑

+ ↓ + − ↑


− − ↓ + − ↑ 











    (2.20) 

( )( ) ( ){ ( )( ) ( )

( )( ) ( ) ( )( ) ( ) }

0 0

0 0

2 2
1

2

1 2 1 2

1 2 1 22
1 1

1 e sin 1, e cos ,
2

e cos , e sin 1,

i t i n i t i n
n n

i t i n i t i n
n n

n n

n n

ω τ ω τ

ω τ ω τ

λ τ λ τ

λ τ λ τ

− − Ω + − − Ω +
−

− Ω − − Ω −
− −

= − + ↓ + ↑

+ ↓ − − ↑

 

 

(2.21) 

Following the experimental procedure for the maximum spin echo, a radio fre-
quency pulse is applied for a time τ  such that 1 2n nλ τ λ τ− ≈ ≈ π , so that only 
the sine terms remain and the state vector simplifies to the form 

( ) { }

{ }

0 0

0 0

2 2 2 2

2 2 2 2

e e 1, e 1,
2

e e 1, e 1, .
2

i t i i t ii

i t i i t ii

it n n

i n n

ω τ ω ττ

ω τ ω ττ

ψ τ − − Ω + Ω− Ω

− − Ω + Ω− Ω

+ = − + ↓ − − ↑

− + ↓ + − ↑

 

 

 (2.22) 

If the radio frequency pulse is applied for an arbitrary length of time, after the 
pulse the system is in a superposition of states, namely, of a state that gives an 
echo and a state that does not. 

At the time t τ+ , the radio frequency is turned off, so the Ω  and η  terms 
drop out of the Hamiltonian and so the two states ↑ , ↓  are eigenstates of 
the remaining Hamiltonian. The evolution is then governed by multiplication 
with 

0 2e ,i tω±
 

and so at time 2t τ+ , the system’s state vector is given by 

( ) { }2 22 e e 1, e 1, .
2

i i iit n nτ τ τψ τ − Ω − Ω Ω+ = − + ↓ + − ↑     (2.23) 

This state is independent of 0ω , the radio pulse renders all the spins in the 

https://doi.org/10.4236/jmp.2023.147057


P. Bracken 
 

 

DOI: 10.4236/jmp.2023.147057 1040 Journal of Modern Physics 
 

same state at time 2t τ+  regardless of any inhomogeneities in B that would 
lead to different frequencies of precession. This is the desired result. The spins 
do not communicate their phase 0tω  to the radio frequency field at the time of 
reversal. 

This is an unexpected result. The state ( )2tψ τ+  determined in the way 
described above for a pure state does not give a spin echo. Each spin taken on its 
own is in a mixture at time 2t τ+  and so the density matrix is 

( )1 .
2spinρ = ↑ ↑ + ↓ ↓                  (2.24) 

If the radio frequency field is in a number state, then the spins fail to realign. 
Such fields in real life are generally superpositions of number states. These can 

be accurately approximated by a coherent state 

2 2e .
!

n

rf
n

n
n

α αψ −= ∑                   (2.25) 

If the radio frequency field is in a coherent state then, 

( ) ( )

( ) ( )

( )

2

2

2 2 2

1 1
2 2 2

2 2

12 e e 1, e 1,
!2

1 e e , e ,
1 ! 1 !2

1 e | e .
2

n
i i

coherent
n

n n
i i

n

i i
rf

t n n
n

n n
n n

α τ τ

α τ τ

τ τ

αψ τ

α α

ψ

− − Ω Ω

− +
− − Ω Ω

− Ω Ω

+ = − + ↓ + − ↑

 
= − ↓ + ↑  − + 

 
= − ↓〉 + ↑ 

 

∑

∑ (2.26) 

Both the radio frequency field and the spins are essentially in pure states at 
time 2t τ+ . The entropy of the spins at the time of reversal is not transferred to 
the field. Near the peak of the coherent state, n α≈ , 

( ) ( )
1 1

,
1 ! 1 !

n n

n n
α α− +

≈
− +

                     (2.27) 

Therefore, the interference necessary to bring about the spin echo happens. 
If the field is in a coherent state, the spin echo takes place as usual. It the field 

is in a squeezed state which is sufficiently close to a number eigenstate, however, 
the ↑  and ↓  states of the spin cannot interfere and so the spin echo does 
not occur. 

The situation is exactly analogous to the double-slit experiment. If the plane in 
which the slits are extracted, is in a squeezed state sufficiently close to a mo-
mentum eigenstate, then one can discover which slit a photon has gone through 
by measuring the plane’s momentum after the photon has passed through. It is 
found that no interference pattern appears on the screen. The essential features 
of the spin-echo effect are preserved by the quantum mechanical treatment. The 
spins become realigned without transferring information to the electromagnetic 
field. Since Hamiltonian systems are nondissipative, it is in principle feasible to 
follow the progress of such a system up to a substantial fraction of its Poincaré 
time. A device to extract energy must devote more and more resources to this as 
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time goes on to retrieve the same amount of work. 

3. Statistical and Physical Entropy 

That the spins become disordered and then ordered again is very interesting 
from the point of view of entropy. However, the overall disorder of spins and 
magnetic field only increases by a small amount. It is the structure of the mag-
netic field inhomogeneities which give the crucial data that allows the reversal to 
be accomplished at a relatively small cost. 

With regard to statistical entropy of this kind of system, it can be shown that 
the normal statistical mechanical entropy of the spins increases. It then decreases 
during the cycle and the echo is produced. Since the spins and magnetic field 
constitute a Hamiltonian system, neglecting spin-spin and spin-lattice interac-
tion, it must be that the overall statistical entropy of the spins and field remains 
constant, as well as the magnetic field on its own. Statistical entropy of the spins 
at time t can be determined as a function of the entropy of the field. 

Let ( )dt ip ω ω  denote the probability that the Larmor frequency of spin i 
lies in the interval [ ), di iω ω ω+ , and ( )dt ip γ γ  the probability that iγ  re-
sides in the set [ ], di iγ γ γ+  at time t. Now ( )i it tγ ω=  at time t, so  

( ) ( ) ( )( )d 1 dt i ip t p tγ γ γ γ= . The entropies 

( )( ) ( ) ( ) ( ) ( )2

0
log d , log d .i t t tS t p p S p p ωγ γ γ γ γ ω ω ω

ω
π ∞

−∞

 = − ∆ = −  ∆ ∫ ∫ (3.1) 

are related for times less than 2 δωπ  as 

( )( ) ( ) log .i i
tS t S ωγ ω
γ

 ∆
= +  ∆ 

                (3.2) 

Entropies or continuous probability distributions are used, so a normalization 
can be used so that distributions which have spread γ∆  and ω∆  have zero 
entropy. Probability distributions with smaller spreads have negative entropies. 
However, since the course graining used permits accuracy greater than ω∆ , 
γ∆ , such negative entropies never occur in practice. The orientation of the spins 

are defined 2mod π  whenever ( )( ) ( )log 2iS tγ γ> π ∆ , the two are equated. 
At 0t =  the statistical entropy of the spins is zero, and the entropy of spins 

and field taken together is just the entropy of the field. If the deviation of the 
Larmor frequency about their mean is uncorrelated, then the statistical entropy 
of all the spins is just N times the entropy for a single spin, and the mutual in-
formation between spins and field as a function of time is 

( ){ } { }( ) ( ){ }( ) { }( ) ( ){ } { }( )
{ }( )

, ,

log .

i i i i i i

i

I t S t S S t

S N t

γ ω γ ω γ ω

ωω
γ

= + −

 ∆
= +  ∆ 

     (3.3) 

Again the right-hand is set to be zero when (3.3) is negative. The statistical 
entropy of the spins rises as logN t  and is equal to the mutual information 
between spins and magnetic field. 
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After the pulse has conjugated the phases, the entropy of the spins decreases 
just as rapidly. The natural evolution of the system uses the mutual information 
between spins and field to decrease the entropy of the spins. The quantity of 
mutual information available is exactly enough to reduce the entropy of the 
spins to zero without requiring an increase of entropy somewhere else. Spin-spin 
and spin-lattice relaxation times are much smaller than the Poincaré time for a 
macroscopic spin-echo system. Also the spins become thermally randomized 
long before ( )log t t∆  is significant. 

It is significant to realize that in fact any integrable Hamiltonian system is 
analogous to the spin-echo system. The phase space of an integrable system can 
be decomposed into action variables by means of a canonical transformation. 
This is similar to frequencies of precession, and angle variables analogous to the 
angles of the spins. 

Since Hamiltonian systems are nondissipative, it is possible to follow, in prin-
ciple, the evolution of such a system up to a large part of the Poincaré time. The 
term ( )log t t∆  does make a difference in terms of the amount of energy that 
can be extracted from an integrable system as work. The device must devote 
more resources to do this as time increases in order to extract this energy and 
take out some amount of work. The physical entropy which puts limits how 
much entropy work can be extracted from a system changes as ( )log t t∆ . 

Extracting the same amount of work from an integrable system takes more 
and more resources as time goes on. To understand this, the concept of physical 
entropy mentioned previously can be used to look at the idea of fully utilizing 
the energy in the induction signal from the spin echo. This could be done by 
storing physical electrical energy in a capacitor for example. This leads to the 
idea of a Maxwell’s demon device that can capture and store it. As time goes on, 
it must either use more memory to perform the task, or dissipate more and more 
energy. The demon to be envisioned is just a device that opens a switch in the 
circuit between a coil and capacitor after the charge initiated by the pulse shows 
up. The result is that the capacitor receives the charge and stores the energy 
from the signal. To capture all of the energy in the signal, it has to hit the switch 
at precisely the right time. If it is too early charge does not build up on the capa-
citor, too late and all charge leaks away. The demon would have to know exactly 
the time of the arrival of the pulse to store all the pulses energy. Thus the appa-
ratus has to commit ( )log t t∆  of memory space. The quantity of resources 
needed to capture the pulse energy measured with respect to memory space 
grows as the logarithm of the time. In this event, the demon devotes only a small 
amount of resources to capturing the energy of the pulse. If the arrival time is 
more arbitrary, the chances of ( )S t  differing significantly from ( )log t t∆  are 
small. The requirement that the device is not triggered by a thermal fluctuation 
while waiting for the pulse puts a minimum value on the diverted energy. 

The two extreme alternatives can be summarized now. The first, due to the 
demon, states the pulse is in a very definite state, arriving at a definite time. The 
demon can take advantage of the pulse energy, but it must allocate about 
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( )~ logS t t∆  of space in memory to store the arrival time of the pulse. After 
arrival of the pulse the record is of no further use. However, there is a cost in 
terms of memory required to store the arrival time. After arrival the record is of 
no further use, but to pay for its erasure is not free. The second, the demon pos-
sesses no information about the time of arrival of the pulse. The pulse appears to 
the demon to possess an entropy ( )log t t∆ . Localizing the energy of the pulse 
to a definite state by storing it in the capacitor, entropy ( )log t t∆  must be al-
lotted somewhere, such as dissipation in the triggering mechanism. The total 
physical entropy fS H S= +  is the same for both situations behaving like the 
logarithm of the time. 

4. Conclusion 

A decrease in disorder in this spin system does not violate the second law of 
thermodynamics since the state of the system is highly correlated with the state 
of the magnetic field entropy is not an extensive variable here. The fine-grained 
entropy of spins and field remains constant. When such correlations exist, the 
entropy of the whole is significantly less than the sum of the entropies of the 
parts. The interesting fact for this kind of system is that the apparatus uses the 
mutual information between field and spins to reduce the entropy of the spins 
without decreasing the entropy of the field and spins combined. The third possi-
bility alluded to earlier is that although the entropy of the spins in fact increases 
then decreases during the spin-echo, the entropy of the total system-spins, lattice 
and magnetic field remains constant or almost so for times significantly less than 
the spin-spin, spin-lattice relaxation times. This model could lead to more in-
sights into integrable systems in general [13] [14]. Any integrable Hamiltonian 
system is analogous to the spin-echo system. Using a canonical transformation 
the phase space of an integrable system can be broken up into action angle va-
riables, similar to procession frequencies, and angle variables analogous to the 
angles of the spins. 
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