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Abstract 
The paper is devoted to a spherically symmetric problem of General Relativity 
(GR) for an elastic solid sphere. Originally developed to describe gravitation 
in continuum (vacuum, gas, fluid and solid) GR does not provide the com-
plete set of equations for solids and, in contrast to the Newton gravitation 
theory, does not allow us to study the stresses induced by gravitation in sol-
ids, because the compatibility equations which are attracted in the Euclidean 
space for this purpose do not exist in the Riemannian space. To solve the 
problem within the framework of GR, a special geometry of the Riemannian 
space induced by gravitation is proposed. According to this geometry, the 
four-dimensional Riemannian space is assumed to be Euclidean with respect 
to the space coordinates and Riemannian with respect to the time coordinate. 
Such interpretation of the Riemannian space in GR allows us to supplement 
the conservation equations for the energy-momentum tensor with compati-
bility equations of the theory of elasticity and to arrive to the complete set of 
equations for stresses. The analytical solution of the Einstein equations for 
the empty space surrounding the sphere and the numerical solution for the 
internal space inside the sphere with the proposed geometry are presented 
and discussed. 
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1. Introduction 

The paper is concerned with the symmetric GR problem for an elastic solid 
sphere. To demonstrate it, consider the traditional formulation of the problem 
in General Relativity which is a phenomenological theory based on traditional 
models of space as a homogeneous isotropic continuum (vacuum, gas, fluid or 
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solid) whose actual microstructure is ignored. The basic GR equations have the 
following form: 

1
2

j j j j
i i i iE R g R Tχ= − =                       (1) 

in which j
iR  are the components of the Ricci curvature tensor depending on 

the metric tensor of the four-dimensional Riemannian space with the line ele-
ment 

( )2d d d , 1,2,3,4i j
ijs g x x i j= =                    (2) 

j
iT  is the energy-momentum tensor and  

48 G cχ = π                            (3) 

is the relativity gravitational constant expressed in terms of the classical gravita-
tion constant G and the velocity of light c. The energy-momentum tensor must 
satisfy four conservation equations 

( )0 1,2,3,4k
k iT i∇ = =                        (4) 

For , 1,2,3i j = , the energy-momentum tensor is composed of elastic stresses 
j

iσ  and kinetic terms depending on the velocities of the continuum points. For 
static problems, j j

i iT σ=  and Equation (4) reduce to three equilibrium equa-
tions of the theory of elasticity. As known [1], these equations are not sufficient 
to determine the stresses. In the theory of elasticity, equilibrium equations are 
supplemented with compatibility equations written in terms of stresses. Classical 
compatibility equations have a simple geometric interpretation according to 
which the curvature tensor of the deformed space is zero. Such equations cannot 
exist in the Riemannian space in which Equations (1) and (4) are written. Thus, 
the General Relativity theory, in contrast to the Newton theory of gravitation, in 
principle, does not allow us to obtain the stresses induced by gravitation in sol-
ids. The solution is possible in two particular cases—for vacuum for which the 
stresses are zero and for a perfect fluid for which the stress tensor has only one 
component—the pressure that can be found from the equilibrium equation. It 
makes sense to mention that numerous existing monographs and textbooks de-
scribe the application of General Relativity to vacuum, and perfect gas or fluid, 
whereas the solid continuum is, as a rule, ignored. 

In this paper, the problem of gravitation in solids is considered on the basis of 
a special model of Riemannian space according to which the space is Euclidean 
with respect to space coordinates 1 2 3, ,x x x  and is Riemannian with respect to 
time coordinate 4x  only [2]. To support the proposed interpretation of the 
Riemannian space, first assume that we observe a massive spherical object. Sup-
pose that the level of gravitation inside this object is high enough to induce in 
accordance with GR the internal Riemannian space. In this space, the ratio of the 
big circle length to the diameter is not equal to π. However, since we observe the 
sphere in a three-dimensional space, this ratio must be equal to π. Thus, we can 
conclude that the space inside the sphere is not Riemannian. Second, consider a 
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static problem for a solid body which does not experience gravitation and is 
loaded with some surface forces. Since j j

i iT σ= , Equation (1) allows us to con-
clude that the stresses induce inside the body the Riemannian space even in the 
absence of gravitation. However, we can observe the stressed solid only if the in-
side space is Euclidean (the three-dimensional Riemannian space can be imbed-
ded into the Euclidean space with six dimensions). Thus, the space in GR must 
be Euclidean with respect to space coordinates. This allows us to supplement the 
equilibrium equations following for GR Equations (4) with compatibility equa-
tions of the theory of elasticity and to obtain the complete set of equations for 
stresses. Within the framework of the foregoing interpretation of the Rieman-
nian space, the solution of GR equations is further obtained and discussed for 
the spherically symmetric problem which reduces to ordinary differential equa-
tions that can be solved analytically or numerically. 

2. Gravitation Stresses in a Solid Elastic Sphere Following  
from the Newton Theory 

In a solid sphere with radius R, gravitation induces radial and circumferential 
stresses rσ  and θσ  which depend on the radial coordinate r and satisfy the 
following equilibrium equation [3]: 

( )
2

2
32

2
g

r r

r c
r r

Rθ

µ
σ σ σ′ + − =                      (5) 

Here, ( ) ( )d dr′⋅ = ⋅ , µ  is the material density and 
22gr Gm c=                            (6) 

is the so-called gravitation radius, depending on the sphere mass 

34
3

m Rµ= π                            (7) 

In the Euclidean space, we can introduce the radial displacement ( )ru r  and 
the strains 

,r r ru u rθε ε′= =                         (8) 

These equations are valid for any displacement and strains, i.e., Equation (8) 
can be applied for linear and nonlinear problems. Eliminating ru  from Equa-
tion (8), we arrive at the following compatibility equation: 

( ) rr θε ε′ =                            (9) 

Assume that the sphere consists of a linear elastic material with zero Poisson’s 
ratio. Then, r rEσ ε= , Eθ θσ ε= , where E is the elastic modulus, and Equation 
(9) gives 

( )r r θσ σ ϕ′ ′= =                        (10) 

Introducing dimensionless variables 

2 2, , , gr
r g

rrr r
R Rc c

θ
θ

σσ
σ σ

µ µ
= = = =               (11) 
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we can reduce Equations (5) and (10) to the following equation for the function 
ϕ : 

2
2 2 1

2 gr r
r r

ϕ ϕ ϕ′′ ′+ − =                     (12) 

The solution of this equation which satisfies the boundary conditions  
( ) ( )0 0r θσ σ=  and ( )1 0rσ =  yields the following stresses: 

( ) ( )2 23
1 , 3

20 20
g g

r

r r
r rθσ σ= − − = − −              (13) 

In terms of GR, the metric tensor corresponding to the Newton gravitation 
theory has the following components [4]: 

2
11 22 441, , 1 gn n n r

g g r g
r

= = = −                  (14) 

3. Introduction of the Special Space Geometry 

For the special geometry of the Riemannian space introduced above, Equation 
(2) for the line element becomes [2] 

2 2 2 2 2 2 2 2 2 2
14 44d d d 2 d d d , d d sin ds r r g c r t g c t θ θ ϕ= + Ω + − Ω = +    (15) 

Assume that the metric tensor depends on r and t. Then, the field equations, 
Equation (1), take the following form: 

( )1 2 1
1 44 14 44 14 14 44 12 2

1 2E g rg g rg g rg g T
r g

χ ′= − − + − =           (16) 

(

)

2 2 2 2
2 14 44 14 14 44 44 44 44 44 44 14 442

14 14 44 44 14 14 44 14 14 14 14 44 14

2
2

1 4 4 2 2 2
4

2 4 2 4 2 4

E g g g g g g g rg g rg rg g
rg

rg g g g g g g rg g g rg g rgg

Tχ

′ ′ ′ ′′ ′ ′′= − − − + −

′ ′ ′ ′ ′+ − + + + −

=

      (17) 

( )4 414
4 44 14 14 14 44 42 2 2gE rg g gg rg g T

r g
χ′ ′= + − =              (18) 

4 414
1 12

g gE T
rg

χ
′

= − =                       (19) 

( )1 1 214
4 44 14 14 44 4 44 142 2 ,gE g g g g T g g g

rg
χ= − − = = +            (20) 

Here, ( ) ( ) r′⋅ = ∂ ⋅ ∂  and ( ) c t⋅⋅ = ∂ ∂ . The energy-momentum tensor satisfies 
conservation Equation (4), i.e., 

( ) ( ) ( )1 1 2 1 4 4 1 4 444 14 44 14
1 1 2 1 4 1 4 1 1

2 0
2 2 2
g g g g gT T T T T T T T T

r g g g g
′ ′ ′′ + − + − + + + + =



   (21) 

( )1 4 4 4 1 1 1
44 14 1 4 44 1 4 4 4 14 14 4

4 4
44 14 1 14 44 1

2 ( ) 2 2

2 0

rg g T T g T g rT r T T rg g T

rg g T rg g T

   ′ ′ ′− − + + + +  
− + =



 

    (22) 

As follows from Equations (1) and (4), the Einstein tensor j
iE  expressed in 

terms of the metric tensor by Equations (16)-(20) satisfies Equations (21) and 
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(22) which means that only three of five Equations (16)-(20) are mutually inde-
pendent. 

4. Solution of the External Problem 

Consider the external space surrounding the sphere with radius R. For an empty 
space, we have 0j

iT = . Hence, Equations (16)-(20) are homogeneous and Equa-
tions (21), (22) are satisfied identically. Obtain the solution of Equations 
(16)-(20). As follows from Equation (20) in which 1

4 0T = , 14g  and 44g  do 
not depend on t. Thus, the solution of the external problem is static. This result 
is analogous to the Birkhoff theorem in the Schwarzschild solution. For a static 
problem, Equations (16)-(19) yield 

2
44 14 0rg g′ − =                          (23) 

( ) ( ) ( )2
14 44 14 14 44 44 44 44 14 44 14 444 2 2 0g g g g g g rg rg rg g g g′′ ′ ′ ′ ′′ ′ ′− − + − − =    (24) 

( )2
44 14 14 44 14 14 442 0rg g g g g rg g′ ′+ + − =              (25) 

44 14 142 0g g g′ ′+ =                        (26) 

Equation (23) gives 2
44 14g g r′ = . Then, Equation (26) reduces to  

14 142 0rg g′ + = . The solution must satisfy the asymptotic conditions and reduce 
for r →∞  to Equation (14) corresponding to the Newton theory, i.e.,  

( )14 0g r →∞ =  and ( )44 44
ng r g→∞ → . Finally, we get [2] 

14 44, 1g gr r
g g

r r
= = −                     (27) 

Substituting Equation (27) in Equations (23) and (25), we can conclude that 
these equations are satisfied identically. Thus, Equations (27) specify the GR so-
lution for the line element in Equation (15). 

The metric coefficients in Equation (27) correspond to the so-called Gullstand- 
Painlever coordinates [5] [6] proposed as a result of the coordinate transforma-
tion of the geometry corresponding to the Schwarzschild metrics with the line 
element 

2 2 2 2 2 2
11 44d d d ds ss g r r g c t= + Ω −                 (28) 

in which  

11 44, 1 gs s

g

rrg g
r r r

= = −
−

                   (29) 

is the solution of the following field equations [3]: 

( )441
1 2 2

11 44

1 1 1 0
s

s s

g
E

r g r rg

 ′
 = − + = 
 
 

               (30) 

( )114
4 2 2

11 11

1 1 1 0
s

s s

g
E

r g r rg

 ′
 = − − = 
 
 

               (31) 
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Using identical transformations, we can reduce Equation (15) for the line 
element to the following form: 

22
2 2 2 2 214 14

44
44 44

dd 1 d d d
d

g g rs r r g c t
g g t

   
= + + Ω − −   

  
          (32) 

For the metric coefficients in Equation (27), we have [2] 

d
d

g g

g

r r rr c
t r r r

−
=

+
 

Using this result in conjunction with Equation (27), we can reduce Equation 
(32) to Equation (28) in which 

( )
( )11 44 2, gs s

g g

r r rrg g
r r r r

−
= =

− +
                  (33) 

As can be seen, coefficients 11
sg  in Equations (28) and (32) are the same, 

whereas 44
sg  are different. The metric coefficients in Equation (33), in contrast 

to the Schwarzschild solution in Equation (29), do not satisfy the field Equations 
(30) and (31). The metric form in Equation (15) can be formally reduced to Eq-
uation (28) if we change dt  to the new time variable dτ  as 

d 1 dgrt
r

τ
 

= + 
 

                       (34) 

In this paper, the proposed line element in Equation (15) is not associated 
with the transformation of the Schwarzschild metrics and follows from the spe-
cial model of the Riemannian space introduced above. The obtained metric coef-
ficients in Equation (27) are not singular. The sphere with radius gR r=  is in-
visible as the black hole in the Schwarzschild solution [2]. 

5. Solution for the Internal Problem 

Consider the internal space of a solid elastic sphere for which 0j
iT ≠  in Equa-

tions (16)-(22). Full expressions which specify j
iT  for solid continuum are ra-

ther cumbersome, because they take into account the effects of Special Theory of 
Relativity [7] associated with high radial velocity of a sphere point v and the de-
pendency of density on velocity. However, if ( )2 1v c  , they can be simplified 
and presented as 

1 1 1 2 2 4 4 1 1 4 4
1 1 1 2 2 1 1 4 4 4 4, , , ,T v v T T v v T v v T v vσ µ σ µ µ µ= − = = − = − =     (35) 

where v is the 4-velosity vector which satisfies the condition 2i
iv v c= . For the 

Schwarzschild solution based on the line element in Equation (28), 14 0g =  
which means that space is “orthogonal” to time. For a static problem, we have 

1
1 0v v= =  and 4

4v v c= = . However, for the line element in Equation (15) the 
space is not “orthogonal” to time. Using the definitions of covariant and contra-
variant vector components, we can conclude that in this case 1 0v = , but 

1 0v ≠ , because the velocity 4v  directed along the time axis gives the projection 
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on the radial axis. To demonstrate this effect, consider a model space with the 
line element similar to Equation (15), i.e., 

( ) ( )2 22 1 1 4 4
14 44d d 2 d d ds x g x x g x= + −  

Introduce orthogonal coordinates 1 4
0 0,x x  applying the following transforma-

tion: 

( )1 1 4 4 1
0 0,x x x x f x= = +  

Then, the line element becomes 

( ) ( ) ( ) ( )2 222 1 1 4 4
14 44 0 14 44 0 0 44 0d 1 2 d 2 d d ds g f g f x g f g x x g x ′ ′ ′= + − + − −   

in which 1 1
0d d d df f x f x′ = = . Since coordinates 1 4

0 0,x x  are “orthogonal”, we 
must take 14 44f g g′ =  and arrive at 

( ) ( )
2 22 1 414

0 44 0
44

d 1 d dgs x g x
g

 
= + − 
 

 

Assume that the velocity vector 0v  with the following components:  
1
0 01 0v v v= =  and 4

0 04v v c= =  exists in the space with this line element. Trans-
forming these components to the velocities in the initial “oblique” coordinates 

1 4,x x  in accordance with 

0
0 0

0

,
ki

i k
i kk i

xxv v v v
x x

∂∂
= =

∂ ∂
  

we get 

1 1 14
0 0 1 01 04 0

44

4 1 4 14
0 0 0 4 04

44

, ,

,

gv v v v v v f v c
g

gv v f v v c v v c
g

′= = = − = −

′= + = + = =
 

Now assume that 0 0v =  in “orthogonal” coordinates. Then, in “oblique” 
coordinates we have 1 0v =  and 1 14 44 0v cg g= − ≠ . 

To proceed, we should take into account that the mixed stress tensor compo-
nents coincide in spherical coordinates with physical stresses. Then, we can re-
duce Equation (35) to 

1 2 4 1 4 2
1 2 1 1 4 4, , , 0,rT T T cv T T cθσ σ µ µ= = = − = =          (36) 

Consider the field equations, Equation (16)-(20). Since 1
4 0T = , Equation (20) 

allows us to conclude that 14g  and 44g  do not depend on time. But the prob-
lem is not static, because 1v  is not zero. Using Equation (36), we can present 
Equations (16)-(20) as 

( )2
14 442

1
rg rg

r g
χσ′− =                     (37) 

( ) ( ) ( ) ( )2
14 44 14 14 44 44 44 44 14 44 14 442

1 4 2 2
4

g g g g g g rg r g rg g g g
rg θχσ ′′ ′ ′ ′ ′′ ′ ′− − + − − =  

 (38) 

( ) 214
14 44 14 14 442 2 2g g g r g g g g c

r g
χµ′ ′ + − =              (39) 
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4 214
1 1 44 142 ,g g T cv g g g

rg
χµ

′
− = = − = +                 (40) 

Respectively, Equations (21) and (22) become 

( ) ( )2 444 14 44
1

2 0
2 2r r r
g g gc T

r g gθσ σ σ σ µ
′ ′

′ + − + − + =           (41) 

( )4 214
1 1

44
r

gT c cv
g

σ µ µ= − = −                    (42) 

Determine the metric coefficients. Consider Equation (39) and introduce a 
new function 

2
14

44 44

1 ggf
g g

= = +  

Then, 

( ) ( )
( )

44 44
14 44 14

44

1
1 ,

2 1

f g f g
g f g g

f g

′ ′+ −
′= − =

−
           (43) 

Substituting Equation (43) in Equation (39), we arrive at 

2 2d
d

rr c r
r f

χµ
 

− = 
 

                     (44) 

Using Equations (3), (6) and (7) for , grχ  and m, we get 
2 33 gc r Rχµ =                        (45) 

Then, the solution of Equation (44) which is regular at the sphere center be-
comes 

2 3
1

1 g

f
r r R

=
−

                       (46) 

Consider Equation (37). Substituting Equation (43), we get 

( )44

44

1 1 r
g f fr
g r

χ σ
′
= − −                     (47) 

Using Equations (43), (46) and (47) and transforming Equations (38) and (40) 
with the aid of Equations (41) and (42), we can prove that Equations (38) and 
(40) are satisfied identically. Thus, Equations (43), (46) and (47) specify the so-
lution of the field equations.  

Having the metric coefficients, we can determine the stresses induced in a 
solid sphere by gravitation. Substituting the first part of Equation (42) in Equa-
tion (41), we arrive at the following equilibrium equation: 

( ) ( )244

44

2 0
2r r r
g c

r gθσ σ σ σ µ
′

′ + − + − =              (48) 

Substitution of Equation (47) yields 

( ) ( ) ( )22 1 1 1 0
2r r r rf rf c

r rθσ σ σ χ σ σ µ ′ + − + − − − =  
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Using notations (11) and Equation (45), we can reduce this equation to the 
following form: 

( ) ( ) ( )( )2

2 1 3 1 0
2 1

g
r r r r

g

r r
r r rθσ σ σ σ σ′ ′+ − − − − =

−
          (49) 

in which ( ) ( )d dr′⋅ = ⋅ . Now recall that in accordance with the proposed model 
of the Riemannian space-time, the space is Euclidean with respect to spherical 
coordinates , ,r θ ϕ . In this space, the stresses must satisfy the compatibility Eq-
uation (10), i.e., 

( )r r θσ σ ′=  

Using this equation to eliminate rσ  from Equation (49), we arrive at 

( ) ( ) ( ) ( )
2

22 2 2

32 2
1 2 1 2 1

g g

g g g

r r r r
rr r r r r r r

ϕ ϕϕ ϕ
′

′′ ′+ − − =
− − −

        (50) 

where, as earlier, r θϕ σ=  and rσ ϕ′= . For small ratio g gr r R= , we can 
neglect the term 2

gr r  in comparison with unity. Then, omitting the nonlinear 
term, we can reduce Equation (50) to Equation (12) corresponding to the New-
ton gravitation theory. 

Equation (50) is solved numerically under the conditions ( ) ( )0 0r θσ σ=  and 
( )1 0rσ = . The dependences of stresses ( )r rσ  and ( )rθσ  for  

0.05;0.1;0.25;0.5;0.75;0.9gr =  are shown in Figures 1-3 with solid lines. Figure 
4 demonstrates the behavior of the stresses at the sphere center on the gravita-
tion radius gr . As can be seen, these stresses tend to become infinitely high for  
 

 
Figure 1. Dependences of the normalized 
stresses on the radial coordinate for 0.05gr =  

and 0.1gr = . : Numerical GR 

solution. ······: Analytical solution for small 

gr . 
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Figure 2. Dependences of the normalized 
stresses on the radial coordinate for 0.25gr =  

and 0.5gr = . 
 

 
Figure 3. Dependences of the normalized 
stresses on the radial coordinate for 0.75gr =  

and 0.9gr = . 
 

1gr → . Integration of Equation (47) under the condition ( )44 1 1 gg r= −  fol-
lowing from Equation (27) allows us to determine 44g  as 

( )3

44 2 2
1

1 dexp 3
1 1

r
g r

g g

r r rg r
r r r r

σ−  
= −  − − 

∫                (51) 

Then, 14g  can be found from Equation (43), i.e., 
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Figure 4. Dependences of the normalized 
stresses at the sphere center on the gravitation 
radius. : Numerical GR solution; ······: 
Analytical solution for small gr . 

 

44
14 21

g

g

r g
g r

r r
=

−
                        (52) 

Dependences ( )44g r  and ( )14g r  are presented in Figure 5 and Figure 6 
with solid lines. 

Finally, using Equation (42), we can obtain the velocity ( )1v r  as 

( )14
1

44

1 r
gv c
g

σ= −                        (53) 

Since 0rσ ≤  (Figures 1-3) and ( )14 0 0g =  (Figure 6), 1 0v =  at the sphere 
center and is directed along the radial coordinate. At the sphere surface, we have 

( )14 1 gg r= , ( )44 1 1 gg r= − , 0rσ =  and Equation (53) yields 

( )1 1
1

g

g

c r
v

r
=

−
 

As follows from this expression, ( )1 1v c≥  for 0.382gr ≥ . This result does 
not look correct, because Equation (35) are valid if ( )2

1 1v c  . Whether 1v  
corresponds to an actual movement or is a formal result of coordinate transfor-
mation is under question. An interesting interpretation of this velocity—the 
“river model” according to which space flows through a flat background with the 
velocity that can be higher than c is proposed by Hamilton and Lisle [8]. 

Most probably, 1v  does not have any physical meaning. This velocity is the 
projection of 4v c=  directed along the time axis on the radial axis in coordi-
nates for which 14 0g ≠ . However, 4v  is not associated with any actual move-
ment of the sphere points. Since the space in coordinates , ,r θ ϕ  is Euclidean  
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Figure 5. Dependences of g44 on the radial 
coordinate corresponding to various gr  val-

ues. : Numerical GR solution; ······: Ana-
lytical solution for small gr . 

 

 
Figure 6. Dependences of g14 on the radial 
coordinate corresponding to various gr  

values. 
 
and the stresses do not depend on time, we can find the strains and the radial 
displacement of the sphere points which does not depend on time and corres-
ponds to zero physical radial velocity. 

For relatively small ratios g gr r R= , we can obtain an approximate analytical 
solution. Consider Figure 1 in which the dotted lines correspond to the linear 
solutions in Equation (13) following from the Newton gravitation theory. As can 
be seen, for 0.5gr ≤  this solution is in fair agreement with the GR numerical 
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solution (solid lines). Thus, substituting rσ  from Equation (13) in Equation 
(51), we get for small gr  values 

( ) ( ) ( )3 322

44 2 2 2
1

1 d1 19
1

201 1 1

r
g gg

g g g

r r rr rr
g

r r r r r r

 −− −
 ≈ + ≈

− − −  
∫           (54) 

As follows from Equation (54), the radial stress does not affect 44g  for small 

gr . The results of calculation are shown in Figure 5 with dotted lines. Using 
Equations (52) and (54), we get 

3

414 2

1
1

g
g

g

r
g r r

r r
 −

=   − 
                     (55) 

Finally, neglecting rσ  in comparison with unity in Equation (53) and ap-
plying Equations (54) and (55), we arrive at 

( ) ( )
1 3 24 1 1

g

g g

cr r
v

r r r
=

− −
 

In conclusion, return to velocity 1v  and consider the static problem of the 
theory of elasticity for which 1v  cannot exist in any coordinates. Taking 

( )1
1 rT rσ= , ( )2

2T rθσ= , 4 2
4T cµ= , ( )4

1 1T cv rµ= − , ( )1 1
4T cv rµ= −  and 

( )14 14g g r= , ( )44 44g g r= , we can present Equations (21) and (22) in the fol-
lowing explicit form: 

( ) ( )2 144 14 44 14
1

2 0
2 2r r r
g g g gc cv cv

r g g gθσ σ σ σ µ µ µ
′ ′ ′

′ + − + − − − =      (56) 

( ) ( )2 1 1 1
44 14 44 1 14 142 2 2 0rrg g c g cv g c r v v rg g cvσ µ µ µ µ ′ ′ ′− + − + − =    

 (57) 

These equations have a simple physical meaning [9]—Equation (56) is the 
motion equation, whereas Equation (57) provides the matter conservation. 

Consider the static problem in “orthogonal” coordinates for which 14 0g = , 

44 1g =  and 1
1 rv v v= =  is the radial coordinate velocity. Then, Equation (56) 

reduces to the equilibrium equation of the theory of elasticity 

( )2 0r rr θσ σ σ′ + − =                         (58) 

whereas Equation (57) yields 2 0r rrv v′ + = . This result can be presented in the 
following form: 24 rr v constµπ =  which means that the matter flow through 
spherical surfaces is the same. For a static problem, 0rv =  and in the absence 
of gravitation GR problem reduces to the problem of the theory of elasticity. 

Now, assume that 14 0g ≠ . As shown above, for a static problem 1 0v =  and 

( )1 1v v r= . Then, Equations (56) and (57) become 

( ) ( )244 14 44
1

2 0
2 2r r r
g g gc cv

r g gθσ σ σ σ µ µ
′ ′

′ + − + − − =           (59) 

( )2
44 14 44 1 0rrg g c g cvσ µ µ ′ − + =                  (60) 
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In the absence of gravitation, 44 1g = , Equation (59) reduces to Equation (58) 
whereas Equation (60) is satisfied identically for any function ( )1v r . If in addi-
tion 14g  does not depend on r, Equation (19) gives 4

1 0T =  and hence, 1 0v = . 
Thus, the velocity 1v  appears only if the time metric coefficients 14g  and 44g  
depend on the radial coordinate. Traditional velocity occurs if the space coordi-
nate depends on time, whereas the velocity 1v  is associated with the dependen-
cy of the time metric coefficient on the space coordinate and appears only in 
gravitation problems described by the General Relativity Theory. 

6. Conclusion 

A spherically symmetric problem of General Relativity is considered for a solid 
elastic sphere within the framework of the special model of the Riemannian 
space-time which is Euclidean with respect to space coordinates and Rieman-
nian with respect to time. In this version of the Riemannian space, the equili-
brium equation is supplemented with the compatibility equation and the ob-
tained set of two equations allows us to determine the stresses induced by gravi-
tation in a solid elastic sphere. The numerical solution that specifies the depen-
dences of stresses and metric coefficients on the radial coordinate for various 
values of the gravitation radius are presented and discussed. Extrapolation of the 
obtained solution allows us to conclude that the stresses at the sphere center be-
come infinitely high if the sphere radius becomes close to the gravitation radius. 
The approximate analytical solution for stresses and metric coefficients is ob-
tained is the sphere radius is much less than the gravitation radius. The addi-
tional velocity directed along the time axis which appears in GR with a metric 
form with a mixed space-time coefficient is discussed. 
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