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Abstract 
The Hamilton principle is a variation principle describing the isolated and 
conservative systems, its Lagrange function is the difference between kinetic 
energy and potential energy. By Feynman path integration, we can obtain the 
standard Schrodinger equation. In this paper, we have given the generalized 
Hamilton principle, which can describe the heat exchange system, and the 
nonconservative force system. On this basis, we have further given their ge-
neralized Lagrange functions and Hamilton functions. With the Feynman path 
integration, we have given the generalized Schrodinger equation of noncon-
servative force system and the heat exchange system. 
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1. Introduction 

In quantum mechanics, each classical physical quantity corresponds to an oper-
ator, and the operator has a real eigenvalue, which is guaranteed by the Hermi-
tian operator. The Hermitian operator has always been generally considered to 
represent observable measurements. In fact, in quantum mechanics, it is only 
necessary to guarantee the observability of the mechanical quantity, but not to 
guarantee that its operator must be Hermitian, that is, observable measurement 
may also be non-Hermitian. In 1947, in order to solve the divergence problem in 
the field theory, Pauli used the indeterminate metric to put forward the theory of 
the non-Hermitian operator and its self-consistent inner product, which was de-
rived from a field quantization method proposed by Dirac [1] [2]. In order to 
maintain the unitary nature of the S matrix, Lee and Wick applied the non- 
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Hermitian view to quantum electrodynamics [3]. Later, in different fields, nu-
merous studies have proved that under certain conditions, the non-Hermitian 
Hamiltonian quantum has a real number energy spectrum [4] [5] [6] [7]. In 
1998, the author Bender proposed the space-time inverse symmetry (PT sym-
metry) quantum mechanics, which made the non-Hermitian quantum mechan-
ics have a great leap forward [8] [9]. The non-Hermitian PT symmetric Hamil-
ton do not violate the physical principles of quantum mechanics and have real 
eigenvalues. Over the past decade PT symmetric quantum theory has been de-
veloped into a variety of studies, including field theory and high-energy particle 
physics. Recently, preliminary studies on PT symmetric systems under optical 
structures have been carried out. 

The quantum theory of non-Hermitian is described dissipative systems and 
open systems, their unique properties have attracted fast growing interest in the 
last two decades [10] [11] [12] [13], especially those empowered by parity-time 
symmetry. While the non-Hermitian quantum theories is still under intense 
investigation, its application in different fields has led to a plethora of findings, 
ranging from nonlinear dynamics [14], atomic physics [15], photonics [16], 
acoustics [17], microwave [18], electronics [19], to quantum information science 
[20]. 

The Hamilton principle is a variation principle describing the isolated and 
conservative systems, its Lagrange function is the difference between kinetic 
energy and potential energy. By Feynman path integration, we can obtain the 
standard Schrodinger equation. In this paper, we have given the generalized 
Hamilton principle, which can describe the heat exchange system, and the non-
conservative force system. On this basis, we have further given their generalized 
Lagrange functions and Hamilton functions. With the Feynman path integration, 
we have given the generalized Schrodinger equation of nonconservative force 
system and the heat exchange system. 

2. The Hamilton Principle for the Conservative System  

In a mechanical system, the constraints that limit its position and speed can be 
written as equations  

( ) ( ), , 0, 1, 2, ,i if t i h= =r r� �                    (1) 

the number of constraints equations are h. For the mechanical system of N free 
particles, their degree of freedom is 3N, when they are restricted by h constraints 
of Equation (1), we can select 3N h−  generalized coordinates 1 2 3, , , N hq q q −� , 
the position vector ir  can be written as  

( ) ( )1 2 3, , , , , 1, 2, ,i i N hq q q t i N−= =r r � �               (2) 

the generalized coordinates iq  constitute the configuration space of 3N h−  
dimension  

[ ]1 2 3, , , ,N hq q q −=q �                       (3) 

the virtual displacement are 
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[ ]1 2 3, , , ,N hq q qδ δ δ δ −=q �                       (4) 

the generalized velocity is  

[ ]1 1 3
d , , , ,
d N hq q q

t −= =
qq� � � ��                       (5) 

where 
d
d

i
i

q
q

t
=� . 

With Equation (2), we have  

,i
i j

j j

q
q

δ δ
∂

=
∂∑

r
r                          (6) 

with Equation (6), we can calculate the virtual work of active force iF , it is  

,
N

i i
i i i j i j j j

i i j j i jj j

r q q Q q
q q

δω δ δ δ δ
 ∂ ∂

= ⋅ = ⋅ = ⋅ =  ∂ ∂ 
∑ ∑ ∑ ∑ ∑ ∑

r r
F F F    (7) 

the generalized force jQ  is  

,i
j i

i j

Q
q
∂

= ⋅
∂∑

r
F                          (8) 

if the generalized force jQ  is conservative force, the Equation (7) becomes  

,j j
j

Q q Uδω δ δ= = −∑                       (9) 

where U is the potential energy. 
In rectangular coordinates, there is  

,U= −∇F                           (10) 

and the component is  

.i
UF
x

∂
= −

∂
                          (11) 

In the following, we should study the system motion from time 1t  to 2t , the 
T is the system kinetic energy, there is  

( )2 2

1 1
d , , d ,

t t
i it t

T t T q q t t=∫ ∫ �                    (12) 

where 21
2 i iiT m= ∑ v . 

The variation of Equation (12) is  
2 2 2

1 1 1
d d d ,

t t t
i i it t t

i
T t T t m tδ δ δ= = ⋅∑∫ ∫ ∫ v v               (13) 

with 
d
d

i
i t
=

r
v , we have  

( )d
d

i
i t

δ
δ =

r
v                         (14) 

the Equation (13) becomes  

( )2 2 22

11 1 1

d
d d d

d
t t tti

i i i i i i i itt t t
i i i

T t m t m m t
t
δ

δ δ δ= ⋅ = ⋅ − ⋅∑ ∑ ∑∫ ∫ ∫
r

v v r v r�    (15) 
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i.e.,  
2 2 2

11 1
d d

t t t
i i i i i i tt t

i i
T t m t m rδ δ δ+ ⋅ = ⋅∑ ∑∫ ∫ v r v� �              (16) 

with i i im=F v�  and i ii rδω δ= ⋅∑ F , we have  
2 2 2

11 1
d d

t t t
i i i i i tt t

i i
T t t m rδ δ δ+ ⋅ = ⋅∑ ∑∫ ∫ F r v�              (17) 

and  
2 2 2

11 1
d d ,

t t t
i i i tt t

i
T t t m rδ δω δ+ = ⋅∑∫ ∫ v�                (18) 

if the variation of two endpoints are zero, there are  

1 2
0j jt t

q qδ δ= =                      (19) 

and  

1 2
0i it tδ δ= =r r                       (20) 

the Equation (18) becomes  
2 2

1 1
d d 0,

t t

t t
T t tδ δω+ =∫ ∫                    (21) 

as the kinetic energy T is determined by the speed of each moment, there is  
2 2

1 1
d d .

t t

t t
T t T tδ δ=∫ ∫                     (22) 

When the active force F is conservative force, the work it does can be ex-
pressed as potential energy U, it is  

2 2 2 2

1 1 1 1
d d d d ,

t t t t

t t t t
t t U t U tδ δω δ δ⋅ = = − = −∫ ∫ ∫ ∫F r           (23) 

the Equation (21) becomes  

( )2

1
d 0,

t

t
T U tδ − =∫                     (24) 

i.e.,  
2

1
d 0,

t

t
L tδ =∫                        (25) 

or  

0.Sδ =                          (26) 

where the Lagrange function L T V= − , and the action 2

1
d

t

t
S L t= ∫ . The Equa-

tion (25) or (26) is the Hamilton principle for the conservative system. 

3. The Generalized Hamilton Principle for the  
Nonconservative System 

When the active forces include both conservative force 1F  and nonconservative 
force 2F , we have  

1 2 1 2 ,δω δ δ δω δω= ⋅ + ⋅ = +F r F r                   (27) 

and  
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2 2 2 2

1 1 1 1
1 1d d d d ,

t t t t

t t t t
t t U t U tδ δω δ δ⋅ = = − = −∫ ∫ ∫ ∫F r             (28) 

substituting Equations (27) and (28) into (21), there are  

( )2 2

1 1
2d d 0,

t t

t t
T U t tδ δω− + =∫ ∫                    (29) 

and  

( )2 2

1 1
2d d 0,

t t

t t
T U t tδ δω− + =∫ ∫                    (30) 

or  

( )2

1
2 d 0,

t

t
T U tδ ω− + =∫                      (31) 

we define generalized Lagrange function L , it is  

2 2 ,L T U Lω ω= − + = +                     (32) 

the Equation (31) becomes  

( ) ( )2 2 2

1 1 1
2 2d d d 0.

t t t

t t t
L t L t L tδ δ ω δ δω= + = + =∫ ∫ ∫           (33) 

The Equation (33) is called the generalized Hamilton principle for the non-
conservative force system, it is different from the Hamilton principle (25) for the 
conservative force system, the Equation (33) contains the work of nonconserva-
tive force, and the variation is inside the integral sign. 

From Equation (7), we can give the work of nonconservative forces  
( )2 1, 2, ,iF i N= � , it is  

2 2 2 2
1 1

,
N N

ji
i i i j j i

i j i i jj i

q q
q q

δω δ δ δ
= =

  ∂ ∂
= ⋅ = ⋅ = ⋅    ∂ ∂  
∑ ∑ ∑ ∑ ∑

rr
F r F F     (34) 

when there is a single nonconservative force 2F , there is  

2 2 2 .i i i
i ii

q F q
q

δω δ δ∂
= ⋅ =

∂∑ ∑rF                  (35) 

So, when there are both conservative force 1F  and nonconservative force 2F  
for the system, the generalized Lagrange function is  

2 2 d ,L T U Lω= − + = + ⋅∫F r                   (36) 

the generalized action is  
2

1
d .

t

t
S L t= ∫                          (37) 

and the generalized Hamilton principle is  

( )2 2

1 1
2d d 0.

t t

t t
L t L tδ δ δω= + =∫ ∫                  (38) 

when there is only nonconservative force 2F , and there is not conservative force 

1F  for the system, the generalized Hamilton principle is  

( )2 2

1 1
2d d 0,

t t

t t
L t T tδ δ δω= + =∫ ∫                  (39) 

and the generalized Lagrange function is  
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2 2 d .L T Tω= + = + ⋅∫F r                        (40) 

4. The Generalized Hamilton Principle for the Heat  
Exchange System  

In the mechanical, the change rate of energy is  

d .
d
E
t
= ⋅F v                             (41) 

For a microcosmic particle, when it exchanges heat Q with the outside world, 
there is  

d d ,
d d
E Q
t t
=                             (42) 

and the radiant force should be produced, it is  

d ,
d
Q
t

⋅ =F v                             (43) 

when the microcosmic particle absorb heat, d 0
d
Q
t
> , the radiant force is  

k= −F v . When the microcosmic particle deliver heat, d 0
d
Q
t
< , the radiant 

force is k=F v . The Equation (43) should be changed to the following formula  

d ,
d
Q
t

⋅ = −F v                           (44) 

i.e.,  

d d d ,t Q⋅ = ⋅ = −F r F v                       (45) 

then  

d d ,Q Q⋅ = − = −∫ ∫F r                       (46) 

the radiant force is a nonconservative force, When a microcosmic particle ex-
changes heat with the outside world, its generalized Lagrange function is  

d ,L T U L Q= − + ⋅ = −∫F r                    (47) 

the generalized Hamiltonian function for the heat exchange system is  

,H pq L T U Q= − = + +�                      (48) 

and the generalized Hamilton principle for the heat exchange system is  

( )2 2

1 1
d d 0.

t t

t t
L t L Q tδ δ δ= − =∫ ∫                   (49) 

5. The Generalized Lagrange Equation and Generalized  
Hamilton Function for the Nonconservative System 

1) The generalized Lagrange equation for the nonconservative system 
For the nonconservative system, the generalized Lagrange function is  

2 2 2 d ,L T U L Lω ω= − + = + = + ⋅∫F r               (50) 
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i.e.,  

( ) ( )( )2, , , ,i i iL L q q t q tω= + r�                   (51) 

the variation of L  is  

( ) ( )( )2

2

2

2

, , ,

,

i i i

i i
i i

i i i
i i i

i i i i
i i

L L q q t q t

L Lq q
q q
L Lq q q
q q q
L Lq q F q
q q

δ δ δω

δ δ δ

δ δ δ

δ δ δ

= +

∂ ∂
= + + ⋅
∂ ∂

∂ ∂ ∂
= + + ⋅
∂ ∂ ∂

∂ ∂
= + + ⋅
∂ ∂

r

F r

rF

�

�
�

�
�

�
�

               (52) 

where 2 2δω δ= ⋅F r , i
i

q
q

δ δ∂
=
∂

rr  and 2 2i
i

F
q
∂

⋅ =
∂

rF . 

Substituting Equation (52) into the generalized Hamilton principle (38), there 
is  

2 2

1 1
2d d 0.

t t
i i i it t

i i

L LL t q q F q t
q q

δ δ δ δ
 ∂ ∂

= + + ⋅ = ∂ ∂ 
∫ ∫ �

�
          (53) 

Obviously, there is  

2 2

1 1

dd d
d

t t
i it t

i i

L Lq t q t
q t q
δ δ∂ ∂

= −
∂ ∂∫ ∫�
� �

                 (54) 

substituting Equation (54) into (53), we have  

2
d .
d i

i i

L L F
t q q
∂ ∂

− =
∂ ∂�

                      (55) 

The Equation (55) is the generalized Lagrange equation for the nonconserva-
tive system. 

2) The generalized Hamilton function for the nonconservative system 
When L and 2w  do not include time, the time derivative of L  is  

2

2

2

d
d

d
d

d ,
d

i i i
i i i

i i i
i i i

i i i
i i

i i
i i

i
i

wL L Lq q q
t q q q

L Lq q q
q q q

L LF q q
q q

L Lq q
t q q

L q
t q

∂∂ ∂ ∂
= + + ⋅
∂ ∂ ∂ ∂

∂ ∂ ∂
= + + ⋅
∂ ∂ ∂

 ∂ ∂
= + + ∂ ∂ 

∂ ∂
= +

∂ ∂

 ∂
=  ∂ 

r
r

rF

� �� �
�

� �� �
�

� ��
�

� ��
� �

�
�

                (56) 

where 2 2 dw = ⋅∫F r  and 2
2

w∂
=

∂
F

r
. 

With Equation (56), we have  
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d 0,
d i

i

L q L
t q
 ∂

− = ∂ 
�
�

                       (57) 

or  

2 ,i
i

L q L w H constant
q
∂

− − = =
∂
�

�
                  (58) 

as  

,i
i

L q L T U H
q
∂

− = + =
∂
�
�

                     (59) 

then  

2 2 .H T U w H w= + − = −                     (60) 

The H  is called the integral of generalized energy, or generalized Hamilton 
function for the nonconservative force system. 

3) The invariance of L  and the conserved quantity 
With Equations (52) and (55), we have  

2

2

d
d

d 0.
d

i i i i
i i

i i i
i i

i i
i i

i
i

L LL q q F q
q q

L LF q q
q q

L Lq q
t q q

L q
t q

δ δ δ δ

δ δ

δ δ

δ

∂ ∂
= + + ⋅
∂ ∂

 ∂ ∂
= + + ∂ ∂ 

∂ ∂
= +

∂ ∂

 ∂
= = ∂ 

�
�

�
�

� �
� �

�

                 (61) 

By the invariance of L  ( 0Lδ = ), we can obtain the conserved quantity for 
the nonconservative system  

.i
i

L q constant
q
δ∂

=
∂ �

                      (62) 

It is the same as the conservative system. 

6. The Generalized Lagrange Equation and Generalized  
Hamilton Function for the Heat Exchange System 

1) The generalized Lagrange equation for the heat exchange system 
In Equation (47), the generalized Lagrange function for the heat exchange 

system is  

,L T U Q L Q= − − = −                     (63) 

In Section 8 (Equation (91)), we have given the microcosmic heat Q TS= , the 
Equation (63) becomes  

.L L TS= −                          (64) 

i.e.,  

( ) ( ), , , , ,i i i iL L q q t ST q q t= −� �                   (65) 
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When L and T do not include time, the variation of L  is  

,i i i
i i i

L L TL q q S q
q q q

δ δ δ δ∂ ∂ ∂
= + −
∂ ∂ ∂

�
�

                 (66) 

substituting Equation (66) into the generalized Hamilton principle (38), there is  

2 2

1 1

2

1

d d

d d 0,
d

t t
i i it t

i i i

t
it

i i i

L L TL t q q S q t
q q q

L L TS q t
q t q q

δ δ δ δ

δ

 ∂ ∂ ∂
= + − ∂ ∂ ∂ 

 ∂ ∂ ∂
= − − = ∂ ∂ ∂ 

∫ ∫

∫

�
�

�

            (67) 

as the iqδ  is arbitrary, we obtain  

d 0
di i i

L L TS
q t q q
∂ ∂ ∂

− − =
∂ ∂ ∂�

                     (68) 

The Equation (68) is the generalized Lagrange equation for the heat exchange 
system. 

2) The generalized Hamilton function for the heat exchange system 
When L and T do not include time, the time derivative of L  is  

d
d

d
d

d ,
d

i i i
i i i

i i
i i i

i i
i i

i
i

L L L Tq q S q
t q q q

L T LS q q
q q q

L Lq q
t q q

L q
t q

∂ ∂ ∂
= + −
∂ ∂ ∂

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

∂ ∂
= +

∂ ∂

 ∂
=  ∂ 

� �� �
�

� ��
�

� ��
� �

�
�

                  (69) 

With Equation (69), we have  

d 0,
d i

i

L q L
t q
 ∂

− = ∂ 
�
�

                      (70) 

or  

,i
i

L q L TS H constant
q
∂

− + = =
∂
�
�

                 (71) 

as  

,i
i

L q L T U H
q
∂

− = + =
∂
�
�

                    (72) 

then  

.H T U Q H Q H TS= + + = + = +                 (73) 

The H  is called the integral of generalized energy, or generalized Hamilton 
function for the heat exchange system. 

3) The invariance of L  and the conserved quantity 
In Equations (66) and (68), we have 
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d
d

d 0.
d

i i i
i i i

i i
i i i

i i
i i

i
i

L L TL q q S q
q q q

L T LS q q
q q q

L Lq q
t q q

L q
t q

δ δ δ δ

δ δ

δ δ

δ

∂ ∂ ∂
= + −
∂ ∂ ∂

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

∂ ∂
= +

∂ ∂

 ∂
= = ∂ 

�
�

�
�

�
� �

�

                (74) 

By the invariance of L  ( 0Lδ = ), we can obtain the conserved quantity for 
the heat exchange system  

.i
i

L q constant
q
δ∂

=
∂ �

                      (75) 

It is the same as the conservative system. 
In the above, we have given the generalized Hamilton principle for the non-

conservative force and the heat exchange system. On this basis, we further given 
the generalized Lagrange function and generalized Hamilton function for the 
nonconservative force and the heat exchange system. With the results, we shall 
study the non-Hermitian quantum theory for the nonconservative force and the 
heat exchange microcosmic system. 

7. The Non-Hermitian Quantum Theory for the  
Nonconservative Force System 

With the generalized Hamilton principle and generalized Lagrange function, we 
will deduce the non-Hermitian quantum theory for the nonconservative force 
system by the approach of path integral, the path integral formula is  

( ) ( ) ( )( ) ( ) ( ), exp , , d , d ,
t

t

it L D t tτ τ τ τ
′ ′ ′ ′Ψ = Ψ    ∫ ∫r r r r r r�

�
    (76) 

In Equation (76), the generalized Lagrange function L  is  

2 2 d ,L T U L Lω ω= − + = + = + ⋅∫F r                (77) 

where the force F  is the nonconservative force, the Equation (76) gives the 
wave function at a time t′  in terms of the wave function at a time t. In order to 
obtain the differential equation, we apply this relationship in the special case that 
the time t′  differs only by an infinitesimal interval ε  from t. For a short in-
terval ε  the action is approximately ε  times the Lagrangian for this interval, 
we have  

( ) ( )3

d, exp , , , ,
2 2

i t tt L t
A

εε
ε

′ ′ ′ ′ − + +   ′Ψ + = Ψ    
∫

r r r r rr r
�

      (78) 

where A is a normalization constant. 
Substituting Equation (77) into (78), there is 

( ) ( )
2

3

d, exp , d , .
2 2 2

i m t tt V t
A

εε
ε ′

  ′ ′ ′ ′− + +    ′′ ′Ψ + = − + ⋅ Ψ            
∫ ∫

r

r

r r r r rr F r r
�

(79) 
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In macroscopic field, the frictional force and adhere force are non-conserva- 
tive force, and the non-conservative force F  is directly proportional to veloci-
ty v , their directions are opposite, i.e. k= −F v . In microcosmic field, atomic 
and molecular can also suffer the action of non-conservative force. In the expe-
riment of Bose-Einstein condensates, the atomic Rb87, Na23 and Li7 can be cooled 
in laser field, since they get the non-conservative force from the photons. 

Substituting k= −F v  into Equation (79), we get  

( )

( )

2

3

d, exp ,
2 2 2

d , .

i m t tt V
A

k t

εε
ε

ε′

 ′ ′ ′ ′− + +   Ψ + = −          
′−   ′′ ′− ⋅ Ψ 

  

∫

∫
r

r

r r r r rr

r r r r

�
     (80) 

The quantity 
( )2

ε
′−r r

 appear in the exponent of the first factor. It is clear  

that if ′r  is appreciably different from r , this quantity is very large and the 
exponential consequently oscillates very rapidly as ′r  varies, when this factor 
oscillates rapidly, the integral over ′r  gives a very small value. Only if ′r  is 
near r  do we get important contributions. For this reason we make the substi-
tution ′ = +r r η  with the expectation that appreciable contribution to the 
integral will occur only for small η , we obtain  

( ) ( )
2

3

d, exp , d ,
2 2 2

i mt V t k t
A

ε εε
ε ε′

  −    ′′Ψ + = − + + − ⋅ Ψ +            
∫ ∫

r

r
r r r r

�
η η η η η

(81) 

Now we have  
2d d cos d cosθ θ

′ ′ ′
′′ ′′ ′′⋅ = = =∫ ∫ ∫

r r r

r r r
r r rη η η η             (82) 

so that  

2 2d k kk
ε ε ε′

− ′′⋅ = − = −∫
r

r
rη η η                   (83) 

substituting Equation (83) into (81), we have 

( ) ( )

( )
2

2

2
2

3 2

,
2 22

3

d, exp , ,
2 2 2

d e e e ,
iim iV t k

i m kt V t t
A

t
A

ε ε
ε

ε εε
εε

 − + + + 
 

   Ψ + = − + + + Ψ +   
    

= Ψ +

∫

∫
r

r r r

r�� �

�
ηη η

η η η η η

η η

 (84) 

After more complex calculation, we have  

( ) ( ) ( )
2

2, 3 ˆ, , ,
2

t ki V i t H t
t m m

∂Ψ  
= − ∇ + − Ψ = Ψ ∂  

r
r r�

� �         (85) 

the Hamiltonian H is  
2

2 3ˆ .
2

kH V i
m m

= − ∇ + −
�

�                     (86) 

Obviously, the Hamiltonian H is non Hermitian. The Detailed derivation can 
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see the Ref. [21].  

8. The Non-Hermitian Quantum Theory for the  
Thermodynamics 

In classical mechanics, the energy of a macroscopic object is  

( )
2

.
2
pE V r
m

= +                         (87) 

For a microcosmic particle, when it exchanges heat Q with the outside world, 
with Equation (48) or (73), the particle total energy should be the sum of kinetic 
energy, potential energy and thermal energy, it is  

( )
2

.
2
pE V r Q
m

= + +                       (88) 

In thermodynamics, for the infinitely small processes, the entropy is defined 
as  

dd .QS
T

=                           (89) 

For the finite processes, it is  

0 0 .Q Q TS TS− = −                       (90) 

At temperature T, when a particle has the microcosmic entropy S, it should 
has the thermal potential energy Q, it is  

,Q TS=                           (91) 

the Equation (88) becomes  

( )
2

.
2
pE V r TS
m

= + +                       (92) 

the Equation (92) is the classical total energy of a microcosmic particle. In 
quantum theory, it should become operator form. it is  

( )
2ˆ ˆˆ ˆ .

2
pH V r TS
m

= + +                      (93) 

where Ĥ i
t
∂

=
∂
� , 2 2 2p̂ = − ∇�  and Ŝ  is the microcosmic entropy operator. 

At the i-th microcosmic state, the classical microcosmic entropy FiS  and 

BiS  for Fermion and Bose systems are  

( ) ( )ln 1 ln 1 ,Fi B i i i iS k n n n n = − + − −                (94) 

and  

( ) ( )ln 1 ln 1 ,Bi B i i i iS k n n n n = − − + +                (95) 

where Bk  is the Boltzmann constant, in  is the average particle numbers of 
particle in the i-th state. For the Fermion (Bose), the 1in ≤  ( 1in ≥ ). 

In quantum theory, the classical microcosmic entropy should become opera-
tor. The microcosmic entropy operator depends on temperature, but it has no 
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the dimension of temperature, and it is non-Hermitian operator because it has 
to do with heat exchange. So, the microcosmic entropy operator includes the  

temperature operator T
T
∂
∂

. Moreover, it has to do with the state distribution.  

For the Fermion and Bose systems, the microcosmic entropy operator ˆ
FiS  and 

ˆ
BiS  of a particle in the i-th state can be written as  

( ) ( )ˆ ln 1 ln 1 ,Fi B i i i i FiS k n n n n T S T
T T
∂ ∂

 = − + − − =  ∂ ∂
         (96) 

and  

( ) ( )ˆ ln 1 ln 1 .Bi B i i i i BiS k n n n n T S T
T T
∂ ∂

 = − − + + =  ∂ ∂
         (97) 

We can prove the following operator relation:  
ˆ ˆ ,T T T+ = =                          (98) 

i i
T T

+∂ ∂ − = − ∂ ∂ 
                       (99) 

ˆ, 1.T
T
∂  = − ∂ 

                       (100) 

With Equations (98) - (100), we find the operator T
T
∂
∂

 is non-Hermitian,  

the microcosmic entropy operators (96) and (97) are also non-Hermitian, it 
leads to the total Hamilton operator (93) is non-Hermitian and space-time in-
version (PT) symmetry  

( ) ( ) 1ˆ , .H H PT H PT H−+ ≠ =                 (101) 

This is because the particle (atom or molecule) exchanges energy with the ex-
ternal environment, it is an open system, its Hamiltonian operator should be 
non-Hermitian. 

9. The Schroding Equation with Temperature  

With the canonical quantization, E i
t
∂

=
∂
� , i= − ∇p � , substituting Equation 

(96) into (93), we can obtain the Schroding equation with temperature  

( ) ( ) ( )
2

2 2, , , , ,
2 Fi

i
i t T V r S T t T

t m T
ψ ψ

 ∂ ∂
= − ∇ + + ∂ ∂ 

∑r r�
�     (102) 

By separating variables  

( ) ( ) ( ), , , ,t T T f tψ = Ψr r                   (103) 

we obtain  

( ) ( )
d

,
d n

f t
i E f t

t
=�                     (104) 

( ) ( ) ( )
2

2 2 , , .
2 n Fi n n nV r f S T T E T

m T
ψ ψ

 ∂
− ∇ + + = ∂ 

r r�
     (105) 
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By separating variables ( ) ( ) ( ),n nT TφΨ = Ψr r , the Equation (105) can be 
written as  

( ) ( ) ( ) ( )
2

2
1 ,

2 n n n nV r E
m

− ∇ Ψ + Ψ = Ψr r r�            (106) 

( ) ( )2
2n Fi nf S T T E T

T
φ φ∂

=
∂

                 (107) 

where 1 2n n nE E E= + , 1nE  is the eigenenergy obtained by the Schroding Equa-
tion (106), 2nE  is the eigenenergy obtained by the temperature Equation (107), 
the n expresses the n-th energy level, in  is the average particle numbers of the 
i-th state in the n-th energy level, and nf  is the degeneracy of the n-th energy 
level. 

For Equation (107), by the dimensional analysis, the energy 2nE  can be writ-
ten as  

( ) ( )2 0 0ln 1 ln 1 ,n n Fi B n i i i iE f S T k f n n n n T = = − + − −         (108) 

and ( )Tφ  satisfies equation  

( ) ( )2
0 ,T T T T

T
φ φ∂

=
∂

                   (109) 

the temperature wave function ( )Tφ  is  

( )
0

e ,
T
TT Aφ

−
=                       (110) 

where A is the normalization constant, and 0T  must be the temperature con-
stant, because the energy 2nE  cannot be the function of variable T, such as the 
hydrogen atom level is not the function of coordinate variable r . The general 
solution of Equation (102) is  

( ) ( ) ( ), , e .n
i E t

n n n
n

t T C Tψ φ
−

= Ψ∑r r �              (111) 

For a free particle, its momentum is p , and is in the environment of temper-
ature T, because it is in the determinate state, i.e., the average particle numbers 

i ijn δ= , the free particle plane wave solution and total energy are  

( )
0

, , e ,
Ti Et i
Tt T Aψ

 ⋅ − + 
 =

p r
r

�
�                 (112) 

and  
2

.
2
pE
m

=                        (113) 

By the accurate measurement the hydrogen atom spectrum, we can determine 
the temperature constant 0T . The hydrogen atom has only one electron outside 
the nucleus, the degeneracy of the n-th energy level is 2

nf n= . 
When the electron jumps from m-th energy level to the n-th energy level  

( )m n> , the transition frequency without temperature correction (the theoreti-
cal calculation with Schroding equation) is 
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,th m n
mn

E E
h

ν
−

=                         (114) 

the transition frequency with temperature correction is  

( ) ( ) ( )
,m nexp

mn mn

E T E T
T

h
ν ν

−
= =                 (115) 

the energy levels ( )mE T  and ( )nE T  are  

( ) ( ) ( ) 0ln 1 ln 1 ,m m B m i i i iE T E k f m m m m T = − + − −          (116) 

and  

( ) ( ) ( ) 0ln 1 ln 1 .n n B n i i i iE T E k f n n n n T = − + − −           (117) 

The average particle numbers of every state in the m-th and n-th energy levels 

are 2

1
im

m
=  and 2

1
in

n
= . 

With Equations (114) and (115), we obtain the temperature constant 0T , it is  

( )
( ) ( )

0 2
2 2

2 2 2

,
1 1ln 1 ln 1 1 ln 1

exp th
mn mn

B

h
T

mk m n
n m n

ν ν−
=

    − − − + − −    
    

     (118) 

where h is the Planck constant, by measurement transition frequency exp
mnν , we 

can determine the temperature constant 0T . When the electron jumps from the 
first excited state ( 2m = ) to ground state ( 1n = ), the 0T  is  

( )
[ ]

21 21
0 .

4 ln 4 3ln 3

exp th

B

h
T

k

ν ν−
=

−
                     (119) 

The theory should be tested by the experiments. 

10. Conclusion  

The Hamilton principle is a variation principle describing the isolated and con-
servative systems, its Lagrange function is the difference between kinetic energy 
and potential energy. By Feynman path integration, we can obtain the standard 
Schrodinger equation. In this paper, we have given the generalized Hamilton 
principle, which can describe the heat exchange system, and the nonconservative 
force system. On this basis, we have further given their generalized Lagrange 
functions and Hamilton functions. With the Feynman path integration, we have 
given the generalized Schrodinger equation of nonconservative force system and 
the heat exchange system. 
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