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Abstract 
A photon structure is advanced based on the experimental evidence and the 
vector potential quantization at a single photon level. It is shown that the 
photon is neither a point particle nor an infinite wave but behaves rather like 
a local “wave-corpuscle” extended over a wavelength, occupying a minimum 
quantization volume and guided by a non-local vector potential real wave 
function. The quantized vector potential oscillates over a wavelength with 
circular left or right polarization giving birth to orthogonal magnetic and 
electric fields whose amplitudes are proportional to the square of the fre-
quency. The energy ω  and momentum k



  are carried by the local wave- 
corpuscle guided by the non-local vector potential wave function suitably 
normalized. 
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1. Introduction 

A single photon is a particular relativistic massless wave-particle for which 
scientists have still major difficulties to attribute a clear physical representation. 
Historically, the scientific understanding of light’s properties, guided each time 
by the interpretation of the experiments, was a continuous balancing between 
the wave and particle natures. Before going ahead to the quantum description of 
the photons and the possible associated wave functions it is of crucial impor-
tance to understand the historical evolution of our concepts about the nature of 
light. 

In the seventeenth century, reviving the ideas of ancient Greeks on light’s na-
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ture, Newton advanced that light is composed of individual corpuscles which 
travel rectilinearly in a homogeneous medium [1] [2]. On the other side, Huy-
gens developed a refined theory of light [3] [4] based on the wave representation 
and refuted Newton’s corpuscular theory. Almost two centuries later, Young 
obtained experimentally interference patterns using different light sources. He 
also went further by explaining some polarization experiments assuming that 
light oscillations take particular orientations with respect to the propagation axis 
[4] [5]. By that time it was impossible to explain the experimental diffraction 
patterns using Newton’s corpuscular theory, while Euler and Fresnel advanced 
easily precise interpretations applying the wave representation. James Clerk 
Maxwell published his remarkable theory on the electromagnetic waves in 1865. 
He established, for the first time, the relations between the electric and magnetic 
fields and advanced that light is composed of electromagnetic waves [4] [6]. 
Hertz confirmed this experimentally by discovering the long wavelength elec-
tromagnetic radiation. Thus, by the end of the nineteenth century, the scientific 
community replaced Newton’s corpuscular representation by the wave theory of 
light. However, that was not for a long time. 

In the beginning of the twentieth century, in order to explain the spectral 
energy density emitted by a black body, Max Planck reintroduced the notion of 
the particle nature of light with a particular sense. In fact, he assumed that bo-
dies are composed of “oscillators” having the particularity to emit electromag-
netic “packets” each with energy hν, where ν is the frequency and h Planck’s 
constant [7] [8]. A few years later, based on Planck’s works, Einstein proposed 
an interpretation of the photoelectric effect, first observed by Hertz [9], assum-
ing that the electromagnetic radiation itself is composed of quanta with energy 
hν [10]. Furthermore, in 1923 Compton advanced that only the light quanta 
could explain the experimental observations of the X-rays scattering on free 
electrons [11]. Hence, the photoelectric effect and Compton X-rays scattering 
have been always considered as the strongest arguments in favor of the particle 
nature of light and Quantum Electrodynamics (QED) theory was developed dur-
ing the years of thirties to sixties based on the point photon model. 

However, it is scarcely quoted in the literature that some important studies in 
favor of the electromagnetic wave theory have been totally disregarded and fell 
into oblivion. In fact, Wentzel in 1926 [12] and Beck in 1927 [13], as well as 
Lamb and Scully in the 1960s [14], demonstrated that the photoelectric effect 
can be interpreted directly by considering only the electromagnetic wave nature 
of light and without referring to photons at all. Furthermore, Klein and Nishina 
in 1929 [15] interpreted fully Compton’s scattering by also considering the wave 
nature of light and without invoking the photon concept. So, still after the 
second world war, although the majority of scientists joined Bohr’s complemen-
tarity principle according to which light exhibits both wave and particle natures 
appearing mutually exclusively in each experiment, a significant part of the 
scientific community still had the conviction that the electromagnetic wave re-
presentation was sufficient to understand light’s nature. 
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Things radically changed in the years of fifties and sixties. Robinson in 1953 
[16] and Hadlock in 1958 [17] carried out systematic experiments using micro-
waves crossing rectangular or circular apertures with variable dimensions and 
deduced that no energy is transmitted when the apertures dimensions are small-
er than approximately the quarter of the wavelength ( ~ 4κλ ). This was also 
confirmed later by Hunter and Wadlinger [18] [19] using X-band microwaves. 
On the other hand, Mandel’s experiments in the sixties [20] [21], employing the 
recently discovered laser technics, concluded that a single photon has circular 
polarization and cannot be localized in a length shorter than its wavelength κλ  
[22] and more generally it cannot be better localized than within a volume of the 
order of the cube of its wavelength ( 3

κλ ) [23] [24]. Consequently, the experi-
mental evidence conflicts with both the point photon model, upon which QED 
has been developed, and the classical continuous electromagnetic wave theory, 
showing that light must be composed of localized “wave packets” traveling in 
vacuum at the universal velocity c [25] carrying energy hν and momentum hν/c. 
In reality, the point photon concept has permitted to establish an extremely effi-
cient mathematical approach in QED for describing states before and after an 
interaction processes [26] [27] [28]. However, it is obvious that it is inappro-
priate for the description of the real nature of a single photon state. 

The development of the revolutionary parametric down converters techniques 
[29] [30] in the seventies permitted to realize conditions in which, with an ex-
cellent statistical confidence, only a single photon is present in the experimental 
device. Employing these techniques, the double prism experiment [31] carried 
out in the nineties contradicted Bohr’s mutual exclusiveness principle showing 
that a single photon exhibits both the wave and particle natures in the same ex-
periment. Furthermore, Grangier et al. demonstrated experimentally the indivi-
sibility of photons [28] [32] while the entangled states experiments, first ob-
served by Kosher and Commins [33] and further investigated in the eighties [34] 
[35], have shown that the photon should be locally an integral entity during the 
detection procedure but with a real non-local wave function. 

Finally, a synthesis of the experimental studies shows that a single k-mode 
photon is a local, indivisible segment of the electromagnetic field with circular 
left or right polarization corresponding to spin 2h± π  respectively. It carries a 
quantum of energy hν and has a momentum hν/c. Its intrinsic spatial length ex-
tends over a wavelength kλ  and can only be detected within a volume 3~ kλ , 
yielding that its radial expansion should be proportional to a fraction of its wa-
velength. Consequently, it seems to be a local “wave-corpuscle” absorbed and 
emitted as a whole and guided by a non-local wave function.  

All these physical characteristics yield particular difficulties for the description 
of a real single photon state and consequently for the definition of an appropri-
ate wave function within the quantum mechanics concepts. 

In what follows we take into account all the above experimental and theoreti-
cal facts in order to obtain a physical picture of the single photon and establish 
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its wave function. We first give a brief presentation of the link between the clas-
sical and quantum theory through the vector potential and then we analyze the 
second quantization process resulting to a quantum description of the electro-
magnetic field. Then, we consider the spatial properties of a single photon state 
and enhance the quantization of the vector potential amplitude to a single pho-
ton level getting a physical representation conform to the experimental evidence. 
Next, we advance a photon wave function based on the vector potential quanti-
zation satisfying the wave propagation equation, Schrodinger’s equation with the 
relativistic massless particle Hamiltonian and an equivalent equation for the 
vector potential. Finally, we discuss the characteristic properties as well as the 
normalization of the established photon wave-function. 

2. The Electromagnetic Field Vector Potential in Classical  
and Quantum Theories 

2.1. The Vector Potential: Classical to Quantum Link 

Experiments have shown that the vector potential is not a mathematical artefact 
but a real physical field exerting a direct influence on charges [36] [37] [38] [39]. 
As that, it represents the fundamental link between the classical electromagnetic 
wave theory issued from Maxwell’s equations and QED [8] [22] [28] [40] [41]. 
In the classical theory [3] [4] [5] [6] the energy density of a mode k of the elec-
tromagnetic wave depends on the square of the modulus of the electric field 

( ),kE r t


  and the magnetic induction ( ),kB r t


  and writes 

( ) ( ) ( )
2 2

0
0

1 1, , ,
2k k kW r t E r t B r tε

µ
 

= + 
 

 

               (1)  

with 0ε  and 0µ  being the electric permittivity and magnetic permeability of 
the vacuum respectively satisfying the relation 2

0 0 1cε µ = , where c is the speed 
of light in vacuum. 

For a monochromatic plane wave mode k with angular frequency kω  and 
vector potential amplitude ( )0k ka ω  we have 

  ( ) ( ) ( )0 ˆ, 2 sink k k k kE r t a k r tω ω ε ω= − ⋅ −




               (2)  

  ( ) ( )( ) ( )0
1 ˆ ˆ, 2 sink k k k kB r t a k k r t
c

ω ω ε ω= − × ⋅ −




            (3) 

with ε̂  the unit vector perpendicular to the propagation axis, 2 kk λ= π


 the 
wave-vector along the propagation axis and kλ  the wavelength of the mode k. 

Using (2) and (3) in (1), the energy density writes as a function depending 
uniquely on the square of the vector potential amplitude and on the angular fre-
quency 

( ) ( ) ( )22 2
0 0, 4 sink k k k kW r t a k r tε ω ω ω= ⋅ −



              (4) 

The mean value of the last expression over a period, that is over a wavelength, is 

( ) 22
0 02k k k kW aε ω ω=                    (5) 
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It is important noting that the mean energy density kW  is independent on 
any external volume parameter. Hence, in the classical theory a free of cavity 
electromagnetic radiation mode occupies naturally a minimum volume while in 
a resonant cavity this volume corresponds roughly to that imposed by the boun-
dary conditions and the cut-off wave vectors for the mode [4] [42]. 

Now, in the quantum description the energy density in a given volume V for a 
number ( )kn ω  of k-mode photons, each with angular frequency kω  and ener-
gy kω  is simply  

( )k k
k

n
W

V
ω ω

=


                          (6) 

The link between the classical and the quantum theories is established by im-
posing the classical mean energy density over a period (5) to be equal to that of 
the quantum description (6). Thus, considering ( ) 1kn ω =  we get the vector 
potential amplitude for a single k-mode photon 

( )0
02k k

k

a
V

ω
ε ω

=
                        (7) 

The last relation constitutes the fundamental link between the classical and 
quantum theories of light and it is applied in QED in order to define the vector 
potential amplitude operators for a single photon [23] [27] [28] 

  
02k k

k

a a
Vλ λε ω

=


 , *

02k k
k

a a
Vλ λε ω

+=


              (8) 

where ka λ  and ka λ
+  are respectively the annihilation and creation non-Hermitian 

operators for a single k-mode and λ-polarization photon. 
Obviously, this procedure introduces an external volume parameter V in the 

definitions of the single photon vector potential amplitude operators. Conse-
quently, one could draw out that single photons in free space, in other words in 
a cavity with infinite dimensions, should have zero vector potential amplitudes 
and thus zero energy. This ambiguity, which is scarcely quoted in the literature, 
automatically implies that for a single photon the volume V in (8) cannot be an 
arbitrary external parameter but corresponds roughly to that defined by the 
boundary conditions in a cavity for the single radiation mode k. 

2.2. The Electromagnetic Field Vector Potential in QED  

In quantum field theory [23] [28] [40] the radiation vector potential writes 

  ( )
( )

( ) ( )
3 2

*

10
3 2

d ˆ ˆ, e e
22

ik r ik r
k k k k

k

kA r t t tλ λ λ λ
λ

α ε α ε
ε ω

⋅ + − ⋅

=

 = + π
∑∫

 

 


    (9)  

where the discrete summation runs over two polarizations λ, circular left and 
right, and ˆkλε  is the polarization complex unit vector. 

According to the density of states theory the continuous summation over the 
modes k in (9) can be transformed to a discrete one over the k-mode photons by 
considering the electromagnetic field in a cavity of volume V so that we can put 
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( )3 2

3d 1
2 k

k
V

→
π

∑∫                        (10) 

Therein, it is extremely important to note that the last relation is only valid for 
an ensemble of k-mode photons whose wavelengths kλ  are much shorter than 
the characteristic dimensions of the volume V 

( )1 3
k V kλ ∀                         (11) 

Adopting now Heisenberg’s representation, 

( ) ( )e ; ek ki t i t
k k k kt tω ω
λ λ λ λα α α α− + += =                  (12) 

and using the transformation relation (10) the vector potential of the electro-
magnetic field writes in QED [23] [28] 

 ( ) ( ) ( )2
*

10

ˆ ˆ, e e
2

k ki k r t i k r t
k k k k

k k

A r t
V

ω ω
λ λ λ λ

λ
α ε α ε

ε ω
⋅ − − ⋅ −+

=

 = +  ∑ ∑
 

 



      (13)  

where we note that the vector potential amplitude for each mode k is defined 
exactly as in (7). 

Considering the scalar potential of the electromagnetic field to be constant in 
space then the electric field writes 

( ) ( ) ( ) ( )2
*

10

ˆ ˆ, , e e
2

k ki k r t i k r tk
k k k k

k
E r t A r t t i

V
ω ω

λ λ λ λ
λ

ω
α ε α ε

ε
⋅ − − ⋅ −+

=

 = −∂ ∂ = −  ∑ ∑
 

 




   (14) 

The amplitudes in (13) and (14) have been obtained using the density of states 
theory and are valid only on the condition (11). 

Now, the boundary conditions in cavities and waveguides impose the wave- 
vectors k of the modes to be higher than a characteristic cut-off value cut-offk k>  
( cut-offkλ λ< ) depending on the dimensions as well as on the shape of the volume 
V containing the radiation field [42]. Consequently, for a volume V with finite 
dimensions the summation in (13) and (14) runs only over the modes k with 
wave-vectors higher than the minimum cut-off value ( )cut-offk V  corresponding 
to the shape and dimensions of V so that we can write more precisely 

 ( ) ( ) ( )
( )cut-off

2
*

10

ˆ ˆ, e e
2

k ki k r t i k r t
k k k k

k k V k

A r t
V

ω ω
λ λ λ λ

λ
α ε α ε

ε ω
⋅ − − ⋅ −+

> =

 = +  ∑ ∑
 

 



    (15) 

( ) ( ) ( )
( )cut-off

2
*

10

ˆ ˆ, e e
2

k ki k r t i k r tk
k k k k

k k V
E r t i

V
ω ω

λ λ λ λ
λ

ω
α ε α ε

ε
⋅ − − ⋅ −+

> =

 = −  ∑ ∑
 

 




     (16) 

The last equations represent the vector potential and the electric field of a large 
number of k-mode photons in a finite volume V with ( )1 3

k V kλ ∀ . 
Following the last relations, we can now draw the amplitude of the electric 

field kε
  and magnetic field kβ



 of a single k-mode photon 

02
k

k V
ω

ε
ε

=
 ; 0

2
k

k V
µ ω

β =




                  (17) 

These expressions are often used in the literature for the free single photon elec-
tric and magnetic fields amplitudes. However, as mentioned above, the expres-
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sions (15) and (16) are only valid for a large number of photons in a cavity V 
under the condition (11) and consequently the attribution of the amplitudes (17) 
to free of cavity single photons has to be considered with caution. 

3. Photon Wave Function from the Electric and Magnetic  
Fields 

In quantum theory, a wave function ( ),r tΨ
 , depending on space and time, 

characterizes precisely the quantum state of a given particle. It satisfies Schrödin-
ger’s equation with eigenvalue the corresponding energy of the quantum state. 
However, in the case of the single photon, which is a relativistic massless “par-
ticle”, the wave functions that have been proposed until now are not in general 
satisfactory. Nevertheless, some very fruitful studies have already been carried 
out in order to establish a photon wave function and they are given here in the 
bibliography [43]-[48] and commented extensively [49] [50] [51] [52] [53]. The 
most pertinent theoretical developments are based on the complex vector func-
tion ( ),F r t



  initially introduced by Riemann 

   ( ) ( ) ( )
0 0

1 1, , ,
2 2

F r t D r t i B r t
ε µ

= +
  

                 (18) 

where the electric displacement flux density ( ),D r t


  and the magnetic field flux 
density ( ),B r t



  are defined respectively through the electric and magnetic fields 
intensities ( ),E r t



  and ( ),H r t


  following the expressions 

  ( ) ( ) ( ) ( )ˆ ˆ;D t E t B t H tαβ αβ αβ αβ αβ αβε µ= ⋅ = ⋅
   

          (19) 

with the electric permittivity α̂βε  and magnetic permeability ˆαβµ  being ten-
sors ( , ,x y zα =  and , ,x y zβ = ) characterizing the intrinsic electric and mag-
netic nature of the medium in which the electric and magnetic fields propa-
gate. 

At that point it is important to mention that the electric field ( ),E r t


  and the 
magnetic induction ( ),B r t



  are fundamental fields while ( ),D r t


  and ( ),H r t


  
are fields that include macroscopically the response of the medium. In the case 
of an isotropic medium, in which the electric and magnetic properties are the 
same in all directions, the electric field is parallel to the electric displacement 
while the magnetic field is parallel to the magnetic field flux intensity 

  ( ) ( ) ( ) ( )1, , ; , ,D r t E r t H r t B r tε
µ

= =
   

   

             (20) 

Using the complex function ( ),F r t


  Maxwell’s equations in an homogeneous 
medium become 

( ) ( ), ,i F r t c F r t
t
∂

= ∇×
∂

  

                      (21) 

( ), 0F r t∇⋅ =
 

                         (22) 

In this way, a suggested photon wave function was defined as 
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( )
( ) ( )

( ) ( )

0 0

0 0

1 1, ,
2 2

,
1 1, ,

2 2

D r t i B r t

r t
D r t i B r t

ε µ

ε µ

 + 
 Ψ =  

−  
 

 

 



 

 

            (23) 

which is a six component vector satisfying Schrödinger’s equation  

( ) ( )
0

, ,
0

i S
i r t c r t

t i S

 − ∇ ⋅∂
Ψ = Ψ  ∂ ∇ ⋅ 





 







           (24) 

where S


 is the spin matrix for a spin 1 particle with the Cartesian components 

 
0 0 0
0 0
0 0

xS i
i

 
 = − 
 
 

, 
0 0
0 0 0

0 0
y

i
S

i

 
 =  
 − 

, 
0 0

0 0
0 0 0

z

i
S i

− 
 =  
 
 

     (25) 

The square modulus of the above defined photon wave function ( ),r tΨ
  

provides the classical electromagnetic field energy density (1) at an instant t and 
at a given coordinate r  on the propagation axis 

 ( ) ( ) ( ) ( )
2 22

0
0

1 1, , , ,
2

r t W r t E r t B r tε
µ

 
Ψ = = + 

 

 

          (26) 

The energy is obtained directly by integrating in space the bilinear form of the 
complex vector function ( ),F r t



   

( ) ( )* 3, , dE F r t F r t r= ⋅∫
 

                    (27) 

However, the relations (26) and (27) give respectively the energy density and 
the energy of the electromagnetic field but not precisely those of a single photon 
state. Furthermore, in quantum mechanics, the integration in space of the square 
modulus of the normalized photon wave function, given by (26), should corres-
pond to the probability of localizing a photon and not to the energy of the clas-
sical electromagnetic field representation. In a characteristic single photon quan-
tization volume on the propagation axis this quantity should be equal to unity 
and this is not really the case here for ( ),r tΨ

 . 
Finally, some different versions from the one described above have been ad-

vanced [43]-[48] for the photon wave function but without introducing a real 
progress in the whole problematics. 

4. Spatial Properties of a Single Photon and the Vector  
Potential Quantization 

4.1. Lateral Expansion of a Single Photon, Theoretical and  
Experimental Facts 

The moment of inertia Ik that may be attributed to a single k-mode photon with 
angular frequency kω  and wavelength kλ  writes 

k
k

I
ω

=
                            (28) 

From the mass-energy equivalence the mass km , which is not a rest mass, that 
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may be attributed to a k-mode photon is 

2
k

km
c
ω

=
                           (29) 

In order to estimate the radial expansion of the photon we may assume here a 
homogeneous distribution of the field in the single photon state quantization 
volume and consider the mechanical analogue in two simple cases, that of a cy-
linder whose axis is along the propagation axis and that of a sphere. 

For a cylinder we have 

2 2
cylinder cylinder cylinder2

1 1
2 2

k
k

k

I m r r
c
ω

ω
= = =


              (30) 

and consequently 

2

cylinder 2

1 2
2 ~

4.42
k k

k

cr
λ λ

ω
 

= = 
 π

                 (31) 

In the case of a spherical distribution of the field inside the photon quantization 
volume we have 

2 2
sphere sphere sphere2

2 2
5 5

k
k

k

I m r r
c
ω

ω
= = =


              (32) 

so that the sphere radius is 
1 2

sphere
5 ~
2 3.98 5

k k

k

cr
λ λ

ω
 = = 
  π

               (33) 

Consequently, from the above simple theoretical calculations we may presume 
that the radius of a single k-mode photon should be a fraction of its wavelength, 
roughly ~ 4kλ . 

From the experimental point of view, the fact that a single mode plane elec-
tromagnetic wave should have a minimum radius was already suspected since 
the very first applications of the Faraday grid shielding. As mentioned in the in-
troduction, various experiments carried out by Robinson, Hadlock, Hunter and 
Wadlingler [16] [17] [18] [19] using microwaves and measuring the transmitted 
power through rectangular or circular apertures concluded that the photons lat-
eral expansion should be indeed close to the quarter of its wavelength ~ 4kλ , 
confirming the above simple calculations based on the moment of inertia. 

On the other hand, it is well established [20] [21] [22] that a single photon 
cannot be conceived in a length shorter than its wavelength and it cannot be lo-
calized within a volume less than 3~ kλ  [21] [23] entailing that the single pho-
ton quantization volume should be proportional to 3

kλ , that is proportional to 
3

kω
− . 

4.2. Single Photon Quantization Volume 
4.2.1. The Single Photon Quantization Volume from the Density of States  

Theory  
According to the density of states theory, taking into account the two spin values 
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± , corresponding to circular left and right polarization, as well as the two 
possible directions z±  along the same propagation axis z, the number of k-mode 
photons ( )d kn ω  in the quantization volume V in the frequency interval be-
tween kω  and dk kω ω+  writes [23] [27] 

( )
2

2 3d 4 dk
k kn V

c
ω

ω ω
π

=                       (34) 

where we have also considered that all the possible states in the volume V are 
occupied. 

Thus, 

( )
3

2 34
3

k
kn V

c
ω

ω =
π

                        (35) 

Considering now ( ) 1kn ω =  the corresponding quantization volume that could 
be attributed to a single photon is 

2 3 33
4k kV c ω− 

 
 

π=                         (36) 

The last expression is in agreement with the experimental evidence that the sin-
gle photon quantization volume is proportional to 3

kω
− , getting 

3 33 0.029
32k k kV λ λ
π

= 
                     (37) 

Thus, the minimum quantization volume corresponding to a single photon with 
a wavelength kλ  is roughly 3% of the volume 3

kλ . 

4.2.2. The Single Photon Quantization Volume from the Energy  
Normalization 

We can also obtain the single photon quantization volume in a different way by 
normalizing the electromagnetic energy of a plane-wave mode to that of a single 
photon 

( ) ( ) ( ) 2
2 2 * 3

0 0 ˆ ˆe e dk ki k r t i k r t
k k k k k k kE rω φ ω φ

λ λε ω α ω ε ε ω⋅ − + − ⋅ − + = + =  ∫
 

 

    (38) 

where ( )0k kα ω  represents the single k-mode photon vector potential ampli-
tude and ˆkλε  the polarization complex unit vector. 

The last equation holds at any instant t if the k-mode photon polarization unit 
vector ˆkλε  has two orthogonal components 1̂e  and 2ê  such as 1 2ˆ ˆ 0e e⋅ =  and 

1 1 2 2ˆ ˆ ˆk k ke eλε σ σ= +  with 2 2
1 2 1k kσ σ+ = . Obviously, these conditions are sa-

tisfied naturally by circular left (L) and right (R) polarization unit vectors  

( ), 1 2
1ˆ ˆ ˆ
2L R e ieε = ± , so that we have [49] 

( )2 2 3
0 02 dk k k k kE rε ω α ω ω= =∫                   (39) 

Now, the dimension analysis of the vector potential issued from the general so-
lution of Maxwell’s equations yields that it is proportional to an angular fre-
quency [3] [4] [5] [6] 
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( ) ( ) 3,
, d

4 '
J r t r r c

A r t r
r r

µ ω
′ ′− −

=
π

∝
−∫



  





 

             (40) 

where μ is the magnetic permeability and J is the current density (C·m−2·s−1). 
Thus, considering in (5) that the vector potential amplitude is proportional to 

ω  then kW  is proportional to 4ω  which is confirmed experimentally for 
the energy density radiated by a dipole [5] [6]. The concluded property for the 
vector potential amplitude is related to its natural units and consequently is 
gauge independent.  

Hence, we may consider that the vector potential amplitude ( )0k kα ω  of a 
single k-mode photon can be expressed as follows [49] [50] [51] 

( )0k k kα ω ξω=                          (41) 

where ξ is a constant to be determined through the normalization procedure. 
Obviously, when introducing (41) in (39) an appropriate volume Vk has to be 

considered for the single k-mode photon for the equation to hold 
2 4

02k k k kE Vε ξ ω ω= =                       (42) 

From the last relation we draw that the energy density of a single photon state is 
2 4

02k kW ε ξ ω=                         (43) 

It is worth noticing that the last expression depends on the fourth power of the 
angular frequency as in the case of the energy density radiated by a dipole [5] 
[6].  

We now deduce from (42) that the characteristic volume of a cavity-free single 
photon writes [51] [53] [54] 

3
2

02k kV ω
ε ξ

− 
=  
 

                       (44) 

which is in agreement with the experimental evidence regarding the frequency 
dependence. 

Hence, in order to estimate ξ we can integrate (39) by using some experimen-
tal facts. Considering the propagation along the z axis, with ρ the lateral coordi-
nate, and respecting the experimental results by imposing the limits 0 kz λ≤ ≤  
and 0 kρ ηλ≤ ≤  [49] where η  characterizes the radial extension, (39) gives 

( )32 2 4 3 2 2
0 02k k k kcε ξ η ω λ ε ξ η ω ωπ= =               (45) 

Hence, 

( )3 2 3
0

1
2 c

ηξ
ε

=
π

±
                     (46) 

Instead of using the approximate experimental value of 4~ 1η  in (46) in order 
to fix ξ we can try to get a more precise result. In fact, Equation (45) writes with 
a slight rearrangement 

  ( ) ( ) ( )2 2 3
0 0 0 0

14 4
4 k k k k k k k k kc cQ

c
ε ω η α ω λ α ω α ω ω  = = 


π


π

π
    (47) 
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where Q has charge units. Using (41) and (46) we get 

( )2 2 3
0 0 0

1
4 2k k kQ hc

c
ηε ω η α ω λ ε=

π
= ±                (48) 

with h being Planck’s constant. 
It is of high importance to underline here that when introducing in (48) the 

approximate experimental value for η ~1/4 we get 
191.6 10 CQ −± ×                         (49) 

which is the electron-positron charge, a physical constant appearing naturally 
[51] in the normalization process. 

We draw that the physical origin of the elementary charge is strongly related 
to the photon vector potential [51] [53] [54]. Now, we can define more precisely 
η and ξ by replacing Q in (48) by the elementary charge e and using the fine 
structure constant 2

04 1 137e cα ε =π=  , we get 

8η α=                            (50) 

Introducing (50) in (46) we obtain the vector potential amplitude normalization 
constant [50] [51] [53] [54] 

( )
25 1

3 2
2

3
0

1 1.747 10 Volt m s
482 e cc

ξ
αε

− −= ± = ± = ± × ⋅
ππ

⋅
     (51) 

Using (51) in (44) the single k-mode photon quantization volume writes now 
2

3 3 3 3
2

0

4 0.029
22k k k k kV ηω λ αλ λ

ε ξ
− 

= = = 
 



           (52) 

which is equivalent to (37). 
Consequently, the helicoidally distributed vector potential field of a single 

photon state over a wavelength occupies roughly 3% of the 3
kλ  volume, as we 

have seen before, and has a wave front section [54] 
2 28 0.18k k kS αλ λπ=                       (53) 

The last relations are useful for technological applications like wave-guides and 
fiber optics transmissions or Faraday grid shielding…etc. 

Thus, the fundamental properties of the photon, energy kE , momentum kp  
and wave-vector k



, are complemented by the vector potential amplitude 0kα  
expressing its intrinsic electromagnetic nature 

0k k k kE p c k c α ξ ω= = = =




                (54) 

From the relation (54) and Heisenberg’s energy-time uncertainty a vector poten-
tial-time uncertainty is drawn 

0k kE t tδ δ δα δ ξ≥ → ≥                   (55) 

showing that the particle (energy) and the wave (vector potential) are intrinsic 
properties of the single photon nature. 
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5. Single Photon Wave-Particle (Classical-Quantum)  
Physical Properties 

Following the above considerations, the vector potential for a free single k-mode 
photon with λ-polarization (circular left or right) writes in both classical and 
quantum formalism respectively [53] 

  
( ) ( ) ( )

( ) ( ) ( )

*

*

ˆ ˆ, e e

ˆ ˆ, e e

k k

k k

i k r t i k r t
k k k k k k

i k r t i k r t
k k k k

r t

r t

ω ω
λ λ λ λ λ

ω ω
λ λ λ

α ξ ω ε α ε α

α ξ ω ε ε

⋅ − − ⋅ −+

⋅ − − ⋅ −

 = +  
 = +  

 

 

 

 





 

         (56) 

For a free k-mode photon, the volume Vk expressed by (37) and (52) corres-
ponds to the space in which the quantized vector potential rotates around the 
propagation axis at the angular frequency kω  over a period (that is over a wa-
velength kλ ). This precession generates orthogonal electric and magnetic fields 
whose amplitudes are  

( ) 2 2
0 0, ;k k k k kr t tλε α ξ ω β ε µ ξ ω= −∂ ∂ ∝ ∝



           (57) 

It is important to note that last expressions are directly proportional to the 
square of the angular frequency and do not depend on any external volume pa-
rameter [53] [54] [55]. 

The quantum properties of a single photon, energy, momentum and spin re-
sult readily from the integration of the classical electromagnetic expressions over 
the quantization volume kV , linking by this way the classical (wave) to the 
quantum (particle) representations [51] [53] [54]. Indeed, using (41) and (52) 
the energy writes 

2 2 3 2 4 3 2 4
0 0 0 02 d 2 d 2

k k
k k k k k k kV V

E r r Vε α ω ε ξ ω ε ξ ω ω= = = =∫ ∫       (58) 

Considering circular polarizations for the electric and magnetic fields com-
ponents and using (57) the momentum is obtained directly 

 ( )( )3
0 0 0 0d 2 2

k
k k k k k k k kV

p r c V k k kλ λε ε β ε ω α ω α= × = =∫
  



    (59) 

According to the classical electromagnetic theory the spin writes through the 
electric and magnetic fields components, hence, using again the circular polari-
zation we get 

 ( ) ( )( )( )3
0 0 0 0d 2 2

k
k k k k k k k kV

S r r c c Vλ λε ε β ε ω ω α ω α= × × = ± = ±∫
 



 (60) 

where we have considered the mean value of the distance [56] for a single pho-
ton state kk

r c ω=
  

The last relations show that the quantum properties of the single photon can 
be obtained from the classical electromagnetic field considered in the quantiza-
tion volume Vk entailing that the photon has naturally a three dimensional ex-
tension and consequently the term “wave-corpuscle” should be more appropri-
ate. 

Thus, a photon is not a point particle and Heisenberg’s uncertainty relation 
for the position and momentum is precisely due to its spatial properties and 
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more precisely to the quantization volume Vk. Indeed, replacing V in (8) by Vk 
we get the single photon vector potential amplitude operators expressed through 
the annihilation and creation operators [51] [53] 

*
0 0;k k k k k kλ λ λ λα ξω α α ξω α+= =                   (61) 

The corresponding position kQ λ
  and momentum kP λ

  Hermitian operators [23] 
[27] [28] write 

  ( ) ( )* *
0 0 0 0 0 0;k k k k k k k k kQ V P i Vλ λ λ λ λ λε α α ω ε α α= + = − − 

         (62) 

Thus, introducing (61) in (62) and using (52) Heisenberg’s commutation rela-
tion, a fundamental concept in quantum theory, results directly [51] [53] [54] 

( ) ( )2
0, ,k k k k k k k k k k kkQ P i V V a a a a iλ λ λ λ λ λ λλε ω ω ξ ξ ξ ξ δ δ+ +

′ ′ ′ ′ ′ ′ ′ ′ ′ ′
   = − + − =   

 

 (63) 

The position-momentum uncertainty, as well as the energy and vector potential 
uncertainties with respect to time are intrinsic physical properties of the nature 
of the photon. 

By this way, the general equation for the vector potential of the electromag-
netic wave considered as a superposition of plane wave modes writes 

( ) ( ) ( )*

,

ˆ ˆ, e ek ki k r t i k r t
k k k

k
A r t ω φ ω φ

λ λ
λ
ξω ε ε⋅ − + − ⋅ − + = +  ∑

 

 





         (64) 

and the vector potential operator for a large number of cavity free photons in 
quantum electrodynamics is 

( ) ( )*

,

ˆ ˆe ek ki k r t i k r t
k k k k k

k
A a aω φ ω φ

λ λ λ λ
λ
ξω ε ε⋅ − + − ⋅ − ++ = +  ∑

 

 

         (65) 

In what follows, the photon wave-particle equation is introduced showing that 
the vector potential with the quantized amplitude can be naturally a wave func-
tion for the photon. 

6. Wave-Particle Equation for the Photon and the Vector  
Potential Wave Function  

It can be readily demonstrated that the vector potential ( ),k r tλα   with the 
quantized amplitude kξω  expressed by (41) satisfies Maxwell’s wave propaga-
tion  

( ) ( )
2

2
2 2

1, , 0k k kr t r t
c tλ λα α∂

∇ − =
∂



  

                (66) 

and the photon vector potential – energy (wave – particle) equation [51] [53] 
[54]  

( ) ( )0, ,k
k k

k

i r t r t
Ht λ λ

αξ
α α

   ∂
=    ∂   



  





               (67) 

where the operator k∇


 acts upon the mode k. 
Equation (67) expresses both the first (energy) and second (vector potential) 

quantization of the electromagnetic field. 
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Obviously, the relativistic Hamiltonian for a massless particle k kH i c= − ∇




  
as well as the vector potential amplitude operator 0k ki cα ξ= − ∇



  have the ei-
genvalues kω  and kξω  respectively [51] [53] [54] [55] [57] [58] [59]. It is 
worth noting the symmetry between { },kE   and { }0 ,kα ξ  characterizing re-
spectively the particle (energy) and electromagnetic wave (vector potential) in-
trinsic natures of a single photon. 

Consider now the emission in vacuum of a single k-mode photon at the coor-
dinate r  at an instant t. The probability to be localized at the instant t' at the 
coordinate ( ) ˆr r c t t r′ ′= + −

   can be obtained by the square of the modulus of 
the vector potential function ( ),k r tλα   

( ) 2 2 2 2,k k kz tλα ξ ω λ−= ∝
                     (68) 

It is evident that the higher the frequency, the shorter the photon wavelength 
and the higher the localization probability. This is in agreement with Heisen-
berg’s uncertainty principle as well as with the experimental evidence and con-
sequently the vector potential function ( ),k r tλα   can be considered as a real 
wave function for the photon that can be suitably normalized. 

The photon momentum according to (59) is ( ) ˆ
k kp k h kλ= =





  and consi-
dering the propagation along the z-axis Heisenberg’s position-momentum un-
certainty, expressed by (63), writes now simply 

( )1 1
zk kz p h zδ δ δ δ λ≥ → ≥                  (69) 

The physical meaning of the last relation is that the localization uncertainty of 
a single photon on the propagation axis is of the order of the wavelength kλ . 
Furthermore, as already mentioned, a single photon is localizable only within a 
volume proportional to 3

kλ .  
Now, taking into account the above considerations and weighting the vector 

potential function ( ),k r tλα   by the factor ( ) 2
0

1
kε ω   a general wave function 

for the photon can be defined  

 ( ) ( ) ( ) ( )
( )

( )
( )( )*0

0, , , , ,

1 2

ˆ ˆ, e ek ki k r t i k r tk
k kk L R k L R k L Rr t ω ωε ω

α ω ε ε⋅ − − ⋅ −   Φ = +     

 

 





 (70) 

where the polarization can be either left (L) or right (R) circular. 
It can be readily demonstrated that ( ) ( ), , ,k L R r tΦ



 satisfies the wave propaga-
tion equation (66) and the vector potential – energy equation (67).  

In addition, whatever the circular polarization, the square of the modulus of 
the normalized general wave function (70) gives the inverse of the single photon 
quantization volume (52) 

( ) ( ) ( ) ( )

2 32 2 22 2 *0 0
, , , , , ,

2 1ˆ ˆ, k k
kk L R k L R k L R

k

r t
V

ε ω ε ξ ω
ξ ω ε ε  Φ = + = =    



 

 (71) 

so that 

( ) ( )
2 3

, , , d 1
k

k L RV
r t rΦ =∫
                      (72) 

The probability to find the photon in the volume Vk around the coordinate r  
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on the propagation axis equals one.  
Consequently, the photon wave function defined in (70) obtained from the 

vector potential quantization at a single photon level, satisfies the propagation 
equation (66), the vector potential – energy equation (67), the normalization 
probability condition (72). 

7. Epilogue  

Based on the experimental confirmation that the vector potential is a real physi-
cal entity we advanced theoretical developments complementing the standard 
formalism for the description of a single photon and the definition of a wave 
function. 

The quantization of the vector potential amplitude of a cavity free k-mode 
photon with angular frequency kω  is 0k kα ξω= , where 4 ecξ = π , and 
yields naturally a vector potential-energy (electromagnetic wave-particle) equa-
tion expressing the simultaneous wave-particle nature of the photon. A single 
photon is a local indivisible part of the electromagnetic field extending over a 
wavelength kλ  and composed of the quantized vector potential rotating at the 
angular frequency kω  with circular left or right polarization corresponding re-
spectively to spin ± . The precession of the vector potential gives birth to or-
thogonally oscillating electric and magnetic fields whose amplitudes are propor-
tional to the square of the angular frequency 2

kξ ω . The lateral expansion of the 
photon has been estimated experimentally yielding a photon quantization vo-
lume kV  proportional to 3

kλ . The energy and momentum of the photon as well 
as the spin are obtained from the classical electromagnetic expressions inte-
grated over the volume kV  showing that the photon is not a point particle but 
rather a “wave-corpuscle”. Indeed, it is readily demonstrated that the origin of 
Heisenberg’s uncertainty lays precisely on the photon spatial properties. 

The quantized vector potential ( ) ( ), , ,k L R r tΦ


, with circular left (L) or right (R) 
polarization, defined in Equation (70) satisfies both the propagation equation 
and the vector potential-energy equation behaving as a natural wave function for 
the photon. In fact, the square modulus of its amplitude is proportional to the 
square of the angular frequency and consequently can be employed for defining 
a localization probability yielding that the higher the frequency the better the 
localization in agreement with the experiments. Furthermore, the normalization 
factor ( ) 2

0
1

kε ω   ensures that the summation of ( ) ( )
2

, , ,k L R r tΦ
  over the quan-

tization volume kV  equals unity. 
Thus, a photon appears to be a local three-dimensional electromagnetic “wave- 

corpuscle” carrying the energy quantum kω  and the momentum k


 , guided 
by the non-local vector potential function ( ) ( ), , ,k L R r tΦ



 with circular polariza-
tion corresponding to spin ± . 
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