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Abstract 
Starting from the basic assumptions and equations of Big Bang theory, we 
present a simple mathematical proof that this theory implies a varying (de-
creasing) speed of light, contrary to what is generally accepted. We consider 
General Relativity, the first Friedmann equation and the Friedmann-Lemaître- 
Robertson-Walker (FLRW) metric for a Comoving Observer. It is shown ex-
plicitly that the Horizon and Flatness Problems are solved, taking away an 
important argument for the need of Cosmic Inflation. A decrease of 2.1 cm/s 
per year of the present-day speed of light is predicted. This is consistent with 
the observed acceleration of the expansion of the Universe, as determined 
from high-redshift supernova data. The calculation does not use any quan-
tum processes, and no adjustable parameters or fine tuning are introduced. It 
is argued that more precise laboratory measurements of the present-day 
speed of light (and its evolution) should be carried out. Also it is argued that 
the combination of the FLRW metric and Einstein’s field equations of Gener-
al Relativity is inconsistent, because the FLRW metric implies a variable speed 
of light, and Einstein’s field equations use a constant speed of light. If we ac-
cept standard Big Bang theory (and thus the combination of General Relativ-
ity and the FLRW metric), a variable speed of light must be allowed in the 
Friedmann equation, and therefore also, more generally, in Einstein’s field 
equations of General Relativity. The explicit form of this time dependence 
will then be determined by the specific problem. 
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1. Introduction 

At present, Big Bang theory is about one century old, and it is still our best 
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framework to describe the long term evolution of the Universe. It is considered 
the dominant theory to describe the evolution of our Universe (however dissi-
dent opinions exist). An important observation was the redshift of far-away ga-
laxies, suggesting that we live in an expanding Universe. Furthermore, 3D-space 
seems to be homogeneous and isotropic. To describe these observations, Big 
Bang Cosmology (Λ-CDM) was developed, starting from General Relativity [1]. 
The calculations are based on the Friedmann-Lemaître-Robertson-Walker (FLRW) 
metric [2]-[8], which says that the scale of space itself increases uniformly, as a 
function of time. We call Big Bang the total process (continuing today) describ-
ing the expansion of space. The physical mechanisms that started this expansion, 
and the causes of Big Bang in general, are not understood. In Big Bang theory, 
galaxies are carried away from each other by the expanding space, and the longer 
the distance, the higher the recession speed. The divergent movement is only 
observed for very large distances. Nearby galaxies will attract each other gravita-
tionally, and thus they will show motion not related to the universal expansion.  

Big Bang Cosmology describes satisfactorily a number of experimental obser-
vations, such as the age of the Universe, the observed cosmological redshifts, the 
existence of a Cosmic Microwave Background (CMB), the homogeneity and iso-
tropy of the Universe and, to a reasonable approximation, the abundance of pri-
mordial atomic nuclei. However, there are some important questions, such as 
the Horizon Problem and the Flatness Problem. In order to solve these difficul-
ties, later theoretical work suggested some new physical mechanisms. At present 
the most popular of these proposals is Cosmic Inflation [9] [10] [11] [12]. Other 
proposals are a Bouncing Universe [13], and a Conformal Cyclic Cosmology 
(CCC) [14]. Also there is the suggestion of Varying Speed of Light (VSL) [15] 
[16]. Note that at present none of these ideas are generally accepted. They all 
generate a lot of discussions and new questions. They are additions to basic Big 
Bang theory that were added later, to fix problems that were not understood 
from the elementary calculation.  

In the present calculation we will start from the standard assumptions and 
equations of basic Big Bang theory. We will then give a simple mathematical 
proof that the standard version of this theory implies a variable speed of light, 
contrary to what is generally accepted. We will show that this solves some of the 
basic problems of Big Bang Theory. Also we will point out that this has impor-
tant implications for General Relativity as a whole. 

2. General Relativity and the Expanding Universe: The FLRW  
Metric 

The aim of Big Bang theory is to describe the evolution of the Universe as a 
function of time. To do this the path is studied of light reaching us from a very 
long time ago. The propagation of this light is influenced by the distribution of 
matter and other forms of energy in the Universe. Therefore we must start from 
General Relativity. We will have to solve a differential equation, and in order to 
obtain the proper solution of this equation we will have to introduce a number 
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of experimentally measured parameters. 
In General Relativity the three spatial dimensions and time are taken together 

to describe one four-dimensional world, space-time. To calculate distances in 
this space-time we need to introduce a metric. For this purpose, the traditional 
approach is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric [2]-[8].  

The FLRW metric combines time and a homogeneous and isotropic 3D-space 
with uniform curvature. Light travels through space-time following a radial path 
along a null geodesic. In the FLRW metric we use the present day speed of light 

0c . A time-dependent scale factor ( )a t  is introduced to allow for uniform ex-
pansion (or contraction) of 3D-space. The FLRW metric postulates that the mo-
tion of light through space-time is determined by the (zero) line-element: 

( )
2

22 2 2
0 2

dd 0 d
1

rs c t a t
kr

= = −
−

                     (1) 

Here ( )a t  has the dimension of length and k  is a dimensionless constant that 
describes the overall curvature of space. It can take the values 0, +1 or −1. These 
values correspond to a flat Euclidian space, a spherical space with constant posi-
tive curvature and a hyperbolic space with constant negative curvature respec-
tively. Note that r  is a (dimensionless) comoving radial coordinate. It doesn’t 
change when the Universe expands.  

From Equation (1) it follows, for non-zero ( )a t : 

( )
0 0 0

2

d
d

1

a c a r
t

a t kr
=

−
                          (2) 

Here ( )0 0a a t= , the value of the scale factor at present time.  
The distance traveled by a light signal between time 1t  and 0t , and between 

position 1r  and 0r , can therefore be calculated as 

( ) ( )1

0 0

1

0 0 0
1 0 2

d
, d

1

tr

tr

a r a c
s t t t

a tkr
∆ = =

−
∫ ∫                  (3) 

Here proper distances are calculated. Obviously ( )1 0,s t t∆  is the distance be-
tween the starting and the end point of the light signal, measured by an observer 
at time 0t t= , using fixed (non-expanding) length units.  

In order to obtain actual distances from Equation (3), the scale factor ( )a t  
must be determined from General Relativity. This is done by calculating ( )a t  
from the (first) Friedmann equation [2] [3]. This will be illustrated in Section 4. 

Note that the FLRW metric is not part of General Relativity. It was added later, 
by imposing geometric properties on 3D-space (homogeneity and isotropy).  

3. Frame of Reference 

An important aspect of the General Relativity/FLRW calculation is the status of 
the observer. The Friedmann equation was developed for an observer on Earth. 
However every “local” motion of this observer has to be neglected. This means 
an observer moving only because he/she is carried away from distant galaxies by 
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the expansion of space, i.e. a so-called Comoving Observer.  
Also note that it is generally accepted that at present our material world is not 

expanding (and has not expanded) with the Universe, due to the forces keeping 
material objects together. Therefore we will make all calculations from the point 
of view of a Comoving Observer, and we will use nonexpanding units along the 
spatial axes. These non-expanding length units should be determined by the 
length of (non-expanding) material objects. Note that this is also the frame of 
reference used by astronomers determining the distance of far-away galaxies, 
based on the “Cosmic Distance Ladder”. 

Since 1983 the definition of the meter is based on a (constant) speed of light 

0c  [17]. Therefore, in the present calculation we will return to the old definition 
of the meter, based on the size of material objects, in order to avoid confusion. 

4. Calculation of a(t) from General Relativity 

The derivation of the FLRW metric is based on a “perfect liquid” model for the 
Universe, such that a (continuous) density and pressure can be defined for mass 
and other forms of energy. Furthermore the Universe is supposed to be homo-
geneous and isotropic. These assumptions are considered acceptable as a lowest 
order approximation. The variable t  appearing in all expressions here is simply 
the time as measured on the clock of the Comoving Observer. 

We will now recall the (first) Friedmann equation. This is a differential equa-
tion that was first derived by Alexander Friedmann [2] [3]. The equation has to 
be solved for the scale factor ( )a t , describing the expansion of the Universe: 

2 2 2
0

8  
3
Ga a kcρπ

− = −                         (4) 

Here the dot indicates the derivative with respect to time. G  is Newton’s gra-
vitational constant and 0c  is the present day speed of light. The curvature pa-
rameter k  is the same as in the FLRW metric, Equation (1). The time-depen- 
dent variable ρ  describes the average density of matter and other forms of 
energy in the Universe. Essentially, the Friedmann equation expresses energy 
(density) conservation: kinetic energy density plus potential energy density plus 
energy density related to the overall curvature of space always equals zero. 

The Friedmann equation, Equation (4), was obtained by substituting the FLRW 
metric, Equation (1), in the (0, 0) component of the standard Einstein field equ-
ations. Note that the speed of light occurs only in the rhs of the Friedmann equ-
ation, in a term proportional to the curvature factor k . 

The solution of the Friedmann equation can be found in standard cosmology 
textbooks (see also [18], where the equation is solved, not only for a constant 
speed 0c , but also for a time dependent speed of light ( )c t  in the Friedmann 
equation). We now illustrate the most elementary solution of the Friedmann 
equation. This is the basis of standard Big Bang theory. We first introduce some 
variables and constants that make the calculations more transparent. 

The (time dependent) Hubble variable is defined as: 
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( ) ( )
( )

a t
H t

a t
=


                            (5) 

At present time ( 0t t= ), this reduces to the Hubble constant H0: 

0
0

0

a
H

a
=


                              (6) 

The (time dependent) critical density cρ  is defined as: 
23

8c
H

G
ρ =

π
                             (7) 

cρ  serves to make the distinction between a positively and a negatively curved 
geometry. When the total density ρ  is exactly equal to the critical density cρ , 
the spatial geometry is flat. At present ( 0t t= ), the critical density reduces to 

2
0

,0
3
8c

H
G

ρ =
π

                            (8) 

In the Friedmann equation, the total density is written as the sum of three terms, 
describing radiation ( Rρ ), matter ( Mρ ) (normal and dark) and dark energy 
( ρΛ ). The curvature term ( Kρ ) is incorporated in the total density:  

R M Kρ ρ ρ ρ ρΛ= + + +                      (9) 

The variation of Rρ , Mρ , ρΛ , and Kρ  with ( )a t  is then described as: 
4
0

,0 4R R
a
a

ρ ρ=                          (10) 

3
0

,0 3M M
a
a

ρ ρ=                          (11) 

,0ρ ρΛ Λ=                            (12) 

2
0

,0 2K K
a
a

ρ ρ=                          (13) 

with 
2
0

,0 ,0 2 2
0 0

K c
kc

H a
ρ ρ= −                        (14) 

The Friedmann equation can then be rewritten as 

( )
2 4 3 22

2 0 0 0 0
,0 ,0 ,0 ,02 4 3 2

,0
R M K

c

H a a aaH t
a a a a

ρ ρ ρ ρ
ρ Λ

 
= = + + + 

 



         (15) 

Finally, we introduce the relative present-day densities: 

,0
,0

,0

R
R

c

ρ
ρ

Ω =                          (16) 

,0
,0

,0

M
M

c

ρ
ρ

Ω =                          (17) 

,0
,0

,0c

ρ
ρ
Λ

ΛΩ =                          (18)  
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2
,0 0

,0 2 2
,0 0 0

K
K

c

kc
H a

ρ
ρ

Ω = = −                       (19) 

The Friedmann equation can then be rewritten as: 

( )
4 3 22

2 2 0 0 0
0 ,0 ,0 ,0 ,02 4 3 2R M K

a a aaH t H
a a a aΛ

 
= = Ω +Ω +Ω +Ω 

 



         (20) 

The standard method to solve the Friedmann equation from Equation (20) is 
then to calculate t  as a function of a  by integration (the normalized integra-
tion variable 0a a a′ =  has been introduced): 

( ) 0
0 4 2

0 ,0 ,0 ,0 ,0

1 da
a

R M K

a at a
H a a aΛ

′ ′
=

′ ′ ′Ω +Ω +Ω +Ω
∫            (21) 

The Friedmann equation, Equation (20), must hold at all times, including 0t t= : 
2 2
0 0 ,0 ,0 ,0 ,0R M KH H Λ = Ω +Ω +Ω +Ω                  (22) 

and thus 
2
0

,0 ,0 ,0 2 2
0 0

1 R M
kc

H aΛ= Ω +Ω +Ω −                   (23) 

This means that, at present, the total energy density, including the curvature of 
the FLRW Universe, must be equal to the critical density. 

Recent experimental values for the parameters used in the present calculation 
can be taken from the Planck 2015 data [19]: 

1 1
0 67.3 km s MpcH − −⋅ ⋅=                     (24) 

5
,0 9.24 10R

−Ω = ×                         (25) 

,0 0.315MΩ =                           (26) 

,0 0.685ΛΩ =                           (27) 

,0 0KΩ =                             (28) 

Also note that the Hubble time Hubblet  is then found to be: 

9

0

1 14.53 10 yearsHubblet
H

= = ×                   (29) 

From Equations (19) and (28) it is obvious that, with the present-day experi-
mental parameters, space must be almost perfectly flat: ,0KΩ  must be equal to 
zero to a very good approximation, and the boundary condition Equation (23) 
reduces to 

,0 ,0 ,01 R M Λ= Ω +Ω +Ω                      (30)   

which is in good agreement with the experimental results. 
We then obtain the solution of the Friedmann equation, for a flat geometry: 

( ) 0
0 4

0 ,0 ,0 ,0

1 da
a

R M

a at a
H a aΛ

′ ′
=

′ ′Ω +Ω +Ω
∫              (31) 
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where the experimental parameters 0 ,0 ,0, ,R MH Ω Ω  and ,0ΛΩ  are given by 
Equations (24)-(27). Note that ( )t a  is a function of the ratio 0a a  only. The 
absolute value of a  is unimportant. Also, since 0k = , the time function ( )t a , 
and thus also the scale factor function ( )a t , do not depend on 0c . 

For the time since the start of Big Bang, BBt , one then finds, by numerical in-
tegration: 

( ) 1
0 0 0 4

0 ,0 ,0 ,0

9

0

1 d

0.9506 0.9506 13.81 10 years

BB

R M

Hubble

a at t a t
H a a

t
H

Λ

′ ′
= = =

′ ′Ω +Ω +Ω

≅ = = ×

∫
            (32) 

As a result, we can rewrite Equation (31) as 

0
0 4

0 ,0 ,0 ,0

1 d
0.9506

a
a

R M

t a a
t a aΛ

′ ′
=

′ ′Ω +Ω +Ω
∫                (33) 

In Equation (33), time and length only appear in the ratios 0t t t′ =  and  

0a a a′ = . From the start of Big Bang until today these relative values vary from 
0 to 1. Therefore we will use 0a  and 0t  as units of length and time whenever 
we perform a numerical calculation.  

Note that all these results are purely classical. Very close to the origin of Big 
Bang, distances between material objects become very small, and a more correct 
calculation should also take into account non-classical (quantum) processes, that 
are not included in General Relativity.  

5. The Calculated Scale Factor Function a(t) Must Be  
Independent of the Time t0 When It Is Determined  
by the Comoving Observer 

The calculation of the scale factor ( )a t , as illustrated here, is based on experi-
mental measurements made at time 0t t= , with scale factor 0a . The resulting 
formulas contain experimental parameters (Hubble constant, densities, …) that 
vary with time. It is obvious that, in order to be consistent, a theory that calcu-
lates the deformation of space-time must always obtain the same scale factor 
function ( )a t , independent of the time of the observations. We will illustrate 
now that this is indeed the case for the standard Big Bang results. We will start 
from Equation (21), giving the function ( )t a  as derived by an observer at time 

0t t= , and we will transform this expression to find the result for ( )t a , as de-
rived by the same observer at a different time 1t t= . 

First note that, from Equations (10)-(13):  

,0 ,
1

1 4
0

4

R R
a
a

ρ ρ=                          (34) 

,0 ,
1

1 3
0

3

M M
a
a

ρ ρ=                         (35) 

,0 ,1ρ ρΛ Λ=                           (36) 
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,0 ,
1

1 2
0

2

K K
a
a

ρ ρ=                          (37) 

Also, from Equations (7) and (8): 
2 2 22
0 0 01

,0 ,12 2
1 1

3 3
8 8c c

H H HH
G GH H

ρ ρ= = =
π π

                   (38) 

Therefore, Equations (16)-(19) can be rewritten as: 
2 2

,0 ,11 1
,0 ,14 2 4 2

,0 ,10 0 0

4 4
1

0

1R R
R R

c c

a H a H
a H a H

ρ ρ
ρ ρ

Ω = = = Ω                (39) 

2 2
,0 ,11 1

,0 ,13 2 3 2
,0 ,10 0 0

3 3
1

0

1M M
M M

c c

a H a H
a H a H

ρ ρ
ρ ρ

Ω = = = Ω               (40) 

2 2
,0 ,11 1

,0 ,12 2
,0 ,10 0c c

H H
H H

ρ ρ
ρ ρ
Λ Λ

Λ ΛΩ = = = Ω                  (41) 

2 2
,0 ,11 1

,0 ,12 2 2 2
,0 ,10 0 0

2 2
1

0

1K K
K K

c c

a H a H
a H a H

ρ ρ
ρ ρ

Ω = = = Ω                (42) 

From Equation (42) it follows that, if 0KΩ =  at time 0t , it is zero at all other 
times. 

The results of Equations (39)-(42) can also be formulated as: 

( )
4 2
0 0

,04 2R R
a H

t
a H

Ω = Ω                        (43) 

( )
3 2
0 0

,03 2M M
a H

t
a H

Ω = Ω                       (44) 

( )
2
0

,02

H
t

HΛ ΛΩ = Ω                         (45) 

( )
2 2
0 0

,02 2K K
a H

t
a H

Ω = Ω                        (46) 

Also, from Equation (20) one obtains: 

4

4 3 2
2 2 0 0 0
1 0 ,0 ,0 ,0 ,03 2

1 1 1
R M K

a a a
H H

a a aΛ

 
= Ω +Ω +Ω +Ω 

 
          (47) 

We can conclude that, as soon as the scale factor 1a  is known, all other para-
meters 1 ,1 ,1 ,1, , ,R MH ΛΩ Ω Ω  and ,1KΩ  can be deduced from their values at time 

0t t= . 
Substituting the expressions Equations (34)-(42), (47) in the solution of the 

Friedmann equation, Equation (21), we obtain: 

( ) 1
0 4 2

1 ,1 ,1 ,1 ,1

1 da
a

R M K

a at a
H a a aΛ

′′ ′′
=

′′ ′′ ′′Ω +Ω +Ω +Ω
∫          (48) 

Here the new integration variable 0

1

a
a a

a
′′ ′=  was introduced.  

It is immediately clear that Equation (48) is the solution of the Friedmann 
equation, as derived by an observer at time 1t t= , with scale factor 1a , Hubble 
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constant H1 and radiation/mass/dark energy/curvature relative densities ,1RΩ , 

,1MΩ , ,1ΛΩ  and ,1KΩ . We can conclude that the function ( )t a  as obtained at 
time 1t  is identical to the function ( )t a  as obtained at time 0t .  

Finally, substituting Equations (39)-(42) in Equation (47) we find immediately 
that  

( )2 2
1 1 ,1 ,1 ,1 ,1R M KH H Λ += Ω +Ω +Ω +Ω                 (49) 

and thus 

,1 ,1 ,1 ,1 1R M KΛΩ +Ω +Ω +Ω =                     (50) 

Therefore, the total energy density, including the energy density related to the 
overall curvature, remains equal to the critical density at all times. 

We can conclude that, in the FLRW Universe, the Comoving Observer always 
obtains the same time function ( )t a , independent of the value of the scale fac-
tor  0 1 2( , , ,...)a a a  at which the measurements are made. This is also true for 
the scale factor ( )a t  since it is calculated as the inverse function of ( )t a . Ob-
viously this property is necessary for internal consistency. Otherwise observers 
at different epochs would obtain different evolution functions for the Universe. 
This result will be used explicitly in the following sections. 

Note that this condition, that the scale factor function ( )a t  must be inde-
pendent of the time at which it is calculated by the Comoving Observer, is valid, 
not only for a flat 3D-space, but also for arbitrary curvature. 

6. Time Dependence of the Speed of Light 

We will now perform a simple Gedankenexperiment. Consider a Comoving Ob-
server who can carry out measurements of the parameters relevant for cosmolo-
gy, throughout the history of the Universe. After each measurement session the 
observer uses General Relativity and the FLRW metric to calculate the scale fac-
tor function, and the distance covered by a light signal. Note that an identical 
evolution function of the Universe must be obtained by the Comoving Observer 
at all times. At time it t=  the observer determines the speed of light ic  and 
the corresponding parameters iH , ,R iΩ , ,M iΩ , ,iΛΩ  and ,K iΩ . From these 
parameters the observer then calculates the universal scale factor function ( )a t . 
Consider the case of a flat 3D-space at 0t t= , corresponding to the actual expe-
rimentally observed world in which we live. At time it  the observer will then 
obtain the distance covered by a light signal since the start of Big Bang, as given 
by Equation (3): 

( ) ( ) ( ) ( ) ( )0 0

d0, di it ti i
i i i

a c ts t t a t c t
a t a t

∆ = =∫ ∫                 (51) 

The observer can determine ( )0, is t∆  with infinitesimal time intervals d it . 
The speed of light, as seen by the observer at it t= , can then be found as the de-
rivative of ( )0, is t∆  with respect to it . Note that ( )a t  is independent of it , 
as discussed before: the derivative of ( )a t  with respect to it  is zero. 
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Taking the derivative of both sides of Equation (51) with respect to it  we 
then find the speed of light ( )ic t  as obtained by the Comoving Observer at it : 

( ) ( ) ( )
( ) ( )

( )0

dd 0, d
d d

iti ii
i i

i i

a t c ts t tc t c t
t t a t

 ∆  = = + ∫            (52) 

Therefore, since 
( )0

dit t
a t∫  is a positive quantity, we obtain 

( ) ( )d
0

d
i i

i

a t c t
t

   =                         (53) 

We can conclude that i ia c  is a constant quantity as a function of time. 
This means that Equation (51) describes light moving at a speed of 

( ) ( ) ( )
0 0i ia c a c

c t
a t a t

= =                        (54) 

Therefore, for a Comoving Observer, standard Big Bang theory describes light 

traveling at a variable speed 
( )
0 0a c

a t
, where 0 0a c  is a universal constant.  

We will now prove the same fact from internal consistency arguments. 
First consider a Comoving Observer at time 0t t= . This observer makes all 

relevant experimental measurements ( 0c , 0H , …) and determines the scale 
factor function ( )a t . The observer then calculates the distance covered by a 
light signal from time 0t =  to an arbitrary time 1t t= . The result is 

( ) ( )
1 0 0

1 0
0, d

t a c
s t t

a t
∆ = ∫                       (55) 

However the same observer can also make all relevant measurements ( 1c , 

1H , …) at time 1t t=  and then, using these results, calculate the distance cov-
ered by the light signal from time 0t =  to this time 1t t= . The result is 

( ) ( )
1 1 1

1 0
0, d

t a cs t t
a t

∆ = ∫                      (56) 

In order for the theory to be self-consistent, the results from Equation (55) and 
(56) must be identical. Therefore, again, we find 0 0 1 1a c a c= . i ia c  is a universal 
constant. The actual value of i ia c  is not known, because only the relative value 
of the scale factor appears in the numerical formulas, not the absolute value. 

From Equation (54), the variation of the speed of light for a Comoving Ob-
server can now be calculated by taking the derivative of ( )c t  with respect to time: 

( ) ( ) ( )0 0
0 02

d 1
d
c t a caaa c H t c t

t a aa
= − = − = −



            (57) 

Equations (54) and (57) have been suggested before [18] [20] [21] [22]. However, 
the calculation given above is a simple mathematical proof that, for a Comoving 
Observer, they follow directly from basic Big Bang theory. 

As ( )a t  increases with time, it is clear from Equation (54) that the speed of 
light is a decreasing function of time. At present ( 0t t= ), Equation (57) reduces 
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to 

( ) 1 1
0 0 0

d 2.1 cm s year
d
c t H c
t

− −= − ≅ − ⋅ ⋅                  (58) 

The present-day variation of ( )c t  is extremely small. Therefore a constant 
speed of light, as postulated in Special Relativity, is a very good approximation 
for all “normal” experiments. However, for longer timespans, e.g. in cosmology, 
the variation of the speed of light becomes important. 

For light starting not at 0t = , but at a later time 1t , we can write: 

( ) ( ) ( ) ( )
0 1 0

1

0 0 0 0 0 0
1 0 0 0

d d d
,

t t t

t

a c t a c t a c t
s t t

a t a t a t
∆ = − =∫ ∫ ∫              (59) 

This means that a light signal starting at a later time must be described using the 
same function ( )a t  as before. Therefore, for light generated today, ( )c t  va-
ries at the same rate as ( )c t  for light originating from far away and long ago. 

7. Analytical Approximations for the Scale Factor  
Function a(t), with Error Smaller than 1% over  
the Complete Range [0, 1]. Speed of Light as a  
Function of Time  

In order to calculate actual distances traveled by a light signal, we will now 
present sufficiently accurate approximations for ( )a t . In this section all values 
of a  and t  will be expressed in normalized units 0a a  and 0t t  respectively. 

The function ( )t a , as given by Equation (33), can be considered in three dif-
ferent regimes, depending on the dominant term under the square root sign. At 
high values of t  the dark energy contribution ( ,0ΛΩ ) dominates. At interme-
diate t  matter ( ,0MΩ ) is more important. At early t  the radiation contribu-
tion ( ,0RΩ ) is dominant. These three regimes also appear in the scale factor 
function ( )a t . Using these approximations for ( )a t  we then calculate the 
speed of light as a function of time. 

7.1. Approximation for a(t): “Dark Energy and Matter” Regime 

A useful expression for ( )a t , for the regime where matter and dark energy do-
minate, can be found in the literature [23]. Translated to our units this approxi-
mation can be written as 

( ) ( )2 3 0.67850.0.7947 e23 106 ta t t= + −                 (60) 

7.2. Approximations for a(t): “Radiation and Matter” Regime 

For low values of t  and a , it is obvious from Equation (33) that the term 
proportional to ,0ΛΩ  under the square root sign can be neglected. One then 
obtains 

( )
0

,0 ,0

1 d
0.9506

a

R M

a at a
a

′ ′
≅

′Ω +Ω∫                   (61) 
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This integral can be solved analytically. The result is 

( ) ( )

( )

3 2 3 2
,0 ,0 ,02

,0

1 2,0 1 2
,0 ,0 ,02

,0

2 1
3 0.9506

2
0.9506

R M R
M

R
R M R

M

t a a

a

 = Ω +Ω −Ω  Ω

Ω  − Ω +Ω −Ω  Ω

          (62) 

This can be rewritten as 

( ) ( )3 2 1 2 3 2 2
,0 ,0 ,0 ,0 ,0 ,0 ,0

33 2 .9506 0
2R M R R M R Ma a tΩ +Ω − Ω Ω +Ω + Ω − Ω =   (63) 

This is a cubic equation for the unknown ( )1 2
,0 ,0R M aΩ +Ω . The equation can 

be solved using standard methods. The discriminant of this equation is  

2 2 3 2
,0 ,0 ,0

3 30.9506 0.9506
2 8M M RD t t = × Ω × Ω −Ω 

 
            (64) 

Finally ( )a t  can be calculated from the resulting solutions for  
( )1 2

,0 ,0R M aΩ +Ω .  
Depending on the sign of the discriminant different expressions are ob-

tained: 

For 0D >  (i.e. for 
3 2

,0 5
2

,0

8 2.51107 10
3 0.9506

R
D

M

t t −Ω
> = ≅ ×

Ω
) one finds: 

( ) ,0 2 3 2 2 4 2
,0 ,0 ,0

,0 ,0

1 31 2
2 3 2 2 3 2

,0 ,0 ,0 ,0

21 31 2
2 4 2 2 3 2

,0 ,0 ,0

1 3 90.9506 0.9506
4 16

3 30.9506 0.9506
2 4

9 30.9506 0.9506
16 2

R
M R M

M M

M R M R

M M R

a t t t

t

t t

t

Ω  = − + × Ω −Ω + × Ω Ω Ω 

 − × Ω Ω + × Ω −Ω  

  − × Ω − × Ω Ω       

  (65) 

For 0D <  (i.e. for 
3 2

,0 5
2

,0

8 2.51106 10
3 0.9506

R
D

M

t t −Ω
< = ≅ ×

Ω
) the result is: 

( )
2

,0 ,0 ,02
3 2

,0 ,0 ,0

0.95061 34 cos arccos 1
3 4

R R M

M M R

t
a t

  Ω Ω Ω
= − + −   Ω Ω Ω   

      (66) 

For Dt t<  we will use Equation (66). For 0.333Dt t< <  we will use Equa-
tion (65), and for 0.333 1t< <  we will use Equation (64). In this way, it is easy 
to show that the difference with the exact values of ( )a t  is smaller than 1% 
over the complete time interval [0, 1].  

Note that time Dt  is a purely mathematical quantity. It doesn’t have any 
physical meaning. 

7.3. Speed of Light as a Function of Time 

Using the approximations for ( )a t  given above, and using Equation (54), it is 
now straightforward to calculate the speed of light as a function of time through-
out the history of the Universe. The result is shown in Figure 1. 
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Figure 1. Speed of light (as observed by a Comoving Observer) as a function of time in 
the FLRW Universe. For 0t t=  (present time) the speed of light converges to 0c . For 
very early times the speed increases strongly, and even diverges for 0t = . 

8. The Horizon Problem 

Our visual horizon is determined by the Cosmic Microwave Background. This is 
the oldest electromagnetic radiation we can observe. It originated in the first 
stages of Big Bang, when the temperature of the Universe had cooled down to 
about 3000 K. At that temperature electrons and nuclei (mainly protons) started 
to combine to form atoms. After this primordial deionization event, light was 
free to travel through space, without being scattered, along null geodetics, as de-
scribed by General Relativity. Some of these photons can still be observed today, 
and they constitute the CMB. It was found experimentally that the present-day 
CMB is a nearly perfect example of Black Body radiation, with a temperature of 
approximately 2.725 K. As the original temperature of the CMB was about 3000 
K, it is straightforward to calculate the redshift that produced the present day 
CMB from the original radiation: 

3000 1101
2.725CMBz = ≅                         (67) 

Then the corresponding scale factor at CMB time CMBt  is (relative to 0a ):  

0

1 1
1 1102

CMB

CMB

a
a z

= ≅
+

                       (68) 

From Equation (33) we can calculate the time at which the CMB light started, by 
numerical integration, using the experimental parameters mentioned before: 

0
0

0 4
,0 ,0 ,0

5
0

d
0.9506

10 3652.64 000 year4 s

CMBa
a

CMB

R M

t a at
a a

t
Λ

−

′ ′
=

′ ′Ω +Ω +Ω

×≅ ≅

∫
             (69) 

It is found experimentally that the CMB background radiation is extremely iso-
tropic. Variations in CMB temperature across the sky are smaller than 0.001 
Kelvin. This means that all points of our Visible Universe must once have been 
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in thermal equilibrium with each other. If a constant speed of light 0c  is ac-
cepted, this is impossible to understand. This is called the Horizon Problem. 

To solve this problem we will first calculate the distance covered by a photon 
from the start of CMB until today, using the approximations introduced in Sec-
tion 7. From Equation (59) it then follows that this distance can be calculated as 

( ) ( ) ( ) ( )

( )

0

0

5

0 0
0 0 0 0

0 0 0 02.644 10

1

1

d, d

d 3.28

CMB CMB

t
CMB CMB t t t

a c td t s t t t c t
a t a t

tc t c t
a t−×

′
= ∆ = =

′ ′

′
= ≅

′ ′

∫ ∫

∫
       (70) 

Therefore, from Equation (70), 0 03.28c t  is, according to standard Big Bang 
theory, the distance traveled by a CMB photon observed today. Therefore this is 
the radius of our present-day Visible Universe (corresponding to  

93.28 13.81 10 45.3× × ≅  billion light years, where a light year is defined as the 
distance covered by a light signal in one year at the “traditional” speed of 
299,792,458 km/s). 

Taking into account the expansion of space we can now calculate what was the 
value of the radius of our present-day Visible Universe at CMBt t= . According to 
the definition of the scale factor this is simply 

( ) ( )0 0 0 0 0
0

9 6

0.00298

0.0

1 3.28
1102

10 light years 41.2 10 lig0298 13.81 ht years

CMB
CMB CMB CMB

a
d t d t c t c t

a

= ≅ ×× ×

= = × ≅
   (71) 

Before the time of CMB, at temperatures above 3000 K, photons could not 
travel freely through space, due to scattering by the primordial plasma. However 
we can calculate the cumulative distance traveled by a photon that is continually 
scattered from 0t =  to CMBt t= . This distance is given by the sum of the indi-
vidual steps between scattering events (obviously these steps are not in a straight 
line). The cumulative distance traveled by a photon between time 0t =  and 

CMBt t=  can then be calculated numerically as 

( ) ( ) ( )
00 0

0 0 0 00 0

d0, d 0.0657CMB CMBt t t
CMB

a c ts t t c t c t
a t a t

′
∆ = = ≅

′ ′∫ ∫       (72) 

We can now address the Horizon Problem. According to standard Big Bang 
theory, the ratio of the cumulative distance covered, since the start of Big Bang, 
by a photon at CMBt t= , to the corresponding radius of our present-day Visible 
Universe at that time, is 

( ) 0 0

0 0
0 0

0

0, 0.0657
22.0

0.002983.28

CMB

CMB

s t c t
a c tc t
a

≅
×

∆
=                (73) 

This large ratio shows that CMB photons were indeed able to make thermal 
contact between opposite ends of our present-day Visible Universe, evening out 
temperature fluctuations in the CMB radiation. This is a purely classical process: 
no quantum gravity considerations are involved. 
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We will now study the evolution of the ratio (distance traveled by a light sig-
nal)/(radius of our Visible Universe) for times before CMBt . 

At very early times, the radiation contribution is dominant. Equation (33) re-
duces to: 

0

2

0
0 0,0 ,0

1 d 1
0.9506 0.9506 2

a
a

R R

t a a a
t a

 ′ ′
= =  

Ω × Ω  
∫           (74) 

and one finds 
1

1 1 1 2
2 2 4

,0
0 0

2 0.9506 R
a t
a t

 
= Ω  

 
                    (75) 

Therefore, the cumulative distance traveled by a light signal is:  

( ) ( ) ( )
0

1 1
2 2

0 0 0 0
0 0 1 10 0

02 4
,0

2d0, d
0.9506

tt
t

R

a c c tt ts t t c t
a t a t t

 ′
∆ = = =  ′ ′  Ω

∫ ∫        (76) 

From Equations (75) and (76) it follows that, in the zero time limit, the ratio 
(distance traveled by light)/(radius of our Visible Universe) will tend to a con-
stant value: 

( )
1
20 0 ,0

0

0, 1 33.4
3.28 3.28 0.9506 R

s t
ac t
a

∆
= ≅

× × Ω
             (77) 

The zero time limit of this ratio is clearly higher than the CMBt  value. We will 
now study the evolution of this ratio in the time interval [ ]0, CMBt . Using the 
results of Section 7, the cumulative distance traveled by a light signal from time 
zero to time t  can be calculated numerically as 

( ) ( )
00 0 0

d0,
t
t

ts t c t
a t

′
∆ =

′ ′∫                     (78) 

The results for the ratio of this distance to the corresponding radius of our 
present-day visible Universe are shown in Figure 2. It can be seen that the ratio 
decreases monotonously, from 33.4 to 22.0, during the time interval from the 
start of Big Bang to CMBt .  

We can conclude that, according to basic Big Bang theory, photons were able 
to make thermal contact inside our present Visible Universe during the com-
plete time interval before the deionization event at CMBt . A decreasing speed of 
light gives a simple intuitive explanation of this phenomenon: the light cone 
“opens up” at early times: photons can cover very large distances due to their 
very large speeds. The decreasing ratio in Figure 2 suggests that the quality of 
the thermal contact in the plasma decreases as a function of time. This may ex-
plain the appearance of (small) fluctuations in the CMB temperature. 

We have used here the concept of varying speed of light to explain the Hori-
zon Problem. However all formulas and calculations used are standard Big Bang 
expressions. Therefore there is no Horizon Problem in standard Big Bang theory  
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Figure 2. Ratio of the (cumulative) distance traveled by a light signal to the radius of our 
present-day Visible Universe for the time interval from zero to CMBt . Ratios from 33.4 to 
22.0 explain the smoothness of the CMB horizon. 
 
to start with: the formulas show that thermal contact, producing a very smooth 
CMB, was possible in the very early Universe because of the very high distances 
covered by light signals at early times. Note that a variable speed of light makes 
the apparent contradictions intuitively acceptable. 

9. For Non-Zero Curvature, the Combination of the FLRW  
Metric and the Friedmann Equation (and More Generally  
the Einstein Field Equations) Is Internally Inconsistent 

The Friedmann equation, Equation (4), explicitly contains a constant speed of 
light 0c . However, as shown in the previous sections, the FLRW metric implies a  

variable speed of light ( ) ( )
0 0a c

c t
a t

= . Obviously, this situation is inconsistent. In-

deed, if the reasoning leading to a variable speed of light is correct, a Comoving 

Observer at time 1t  should measure a speed of light 0 0
1

1

a c
c

a
= , and thus should  

start from a Friedmann equation containing a speed of light 1c  instead of 0c . 
In spite of this inconsistency, the combination of General Relativity and the 
FLRW metric (i.e. standard Big Bang theory) leads to remarkably good agree-
ment with experimental results. To understand this we should note that the in-
consistency noted here does not lead to problems for standard Big Bang theory 
immediately, because, as we know from experiment, we live in a flat 3D-space 
( 0k = ) and therefore the term proportional to 0c  in the Friedmann equation is 
zero. Thus, as shown in the previous sections, the scale factor function ( )a t  
does not depend on the speed of light, and using the experimentally measured 
values ( 1c , 1H , ,1RΩ , ,1MΩ , ,1ΛΩ , ,1KΩ ) will automatically lead to the same 
(correct) solution ( )a t  of the Friedmann equation as for the 0t t=  case. 
Problems only arise when we ask questions such as “How can the distance cov-
ered by a light signal be larger than 0 0c t ?” (here the variation of the speed of 
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light is important). The Horizon Problem belongs to this category. 
However, for a curved 3D-space, ( 0k ≠ ) there is a more direct problem: the 

standard Friedmann equation, Equation (4), uses the speed of light 0c  at all 
times, and therefore contradicts the requirements of the FLRW metric. This will 
lead to problems. A Comoving Observer at time 1 0t t≠ , using the Friedmann 
equation containing 0c , and not 1c , will obtain an incorrect scale factor func-
tion. We can conclude that the evolution of the Universe, i.e. the function ( )a t , 
as obtained for 0k ≠  by an observer at 1 0t t≠  using a constant speed of light 

0c , will be incorrect. The Flatness Problem belongs to this category. 
The obvious solution for this problem is to modify the Friedmann equation in  

such a way that 0c  is replaced by a variable speed ( ) ( )
0 0a c

c t
a t

= , as required by  

the FLRW metric. This was done in Ref. [18]. In the following section we will 
show that this procedure solves the Flatness Problem.  

Also note that the Friedmann equation follows from the standard Einstein 
field equations of General Relativity. Therefore, if we accept a variable speed of 
light in the Friedmann equation, the speed of light must be allowed to be varia-
ble in the Einstein field equations in general as well. 

10. The Flatness Problem 

Experimentally, the curvature term ,0KΩ  today is found to be very close to zero. 
This is very unexpected in standard Big Bang theory. First, we will now describe 
the Flatness Problem in more detail, and then we will show how the variable  

speed of light ( ) ( )
0 0a c

c t
a t

=  offers a simple and straightforward solution.  

10.1. Flatness Problem: Traditional Big Bang Theory 

In standard non-zero flatness ( 0k ≠ ) Big Bang theory, the evolution of the flat-
ness parameter ( )K tΩ  can be obtained from Equation (46): 

( )
( ) ( )

2 2
0 0

,02 2K K
a H

t
a t H t

Ω = Ω                      (79) 

The time derivative of ( )K tΩ  can then be written as: 

2 2
0 0 ,0 2 3 3 2

d 2 2 2 2
d

K
K K K

H a H a Ha H H
t H a Ha H a H

     Ω −
= Ω − = − Ω + = − Ω +     

     

  

 

   (80) 

Now, taking the time derivative of the definition aH
a

=


 it is easy to show that 

H aH
H aH

+ =




                          (81) 

Also, from the Friedmann equation, Equation (4), we know that 
4 3

2 2 2 0 0
0 ,0 ,0 ,04 3

8
3 R M

a aGa kc a
a a

ρ ρ ρΛ

 π
+ = + + 

 
              (82) 
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Taking the time derivative of both sides of Equation (82) we then find:  

[ ] [ ]4 2 2 2 2
3 2R M R M

a G H
aH H

ρ ρ ρΛ Λ
π

= − + − = − Ω +Ω − Ω


       (83) 

Combining Equations (80), (81) and (83) we obtain the time derivative of KΩ : 

( ) [ ]d 2 2
d K K R Mt H

t ΛΩ = Ω Ω +Ω − Ω                  (84) 

It is immediately clear that ( ) 0K tΩ =  is a solution of this differential equation. 
This is consistent with the experimental value ,0 0KΩ = . However, when we fo-
cus on early times there is a problem. At early times the radiation and mass con-
tributions RΩ  and MΩ  are dominant. The dark energy term ΛΩ  is negligi-
ble. Therefore the numerical factor ( )2 2R M ΛΩ +Ω − Ω  must be positive at 
these times. Therefore it follows from Equation (84) that even a very small devi-
ation of KΩ  from zero (positive or negative) will grow (exponentially) fast. 
Small deviations from zero are supposed to occur, e.g. due to quantum processes. 
Therefore the ( ) 0K tΩ =  solution is unstable. It can easily be shown that the 
value of ( )K tΩ  at early times must have been unrealistically small in order to 
produce the very low value we observe today. This is known as the Flatness 
Problem.  

10.2. Flatness Problem Solution: Big Bang Theory with a Modified  
Friedmann Equation Using a Time Dependent Speed of Light 

As explained in Section 9, Big Bang theory can be made self-consistent by using  

( ) ( )
0 0a c

c t
a t

=  instead of 0c  in the Friedmann equation. The equation can then  

be solved using the same methods as before. The modified Friedmann equation is: 
2 2

2 2 0 0
2

8  
3

a cGa a k
a

ρπ
− = −                       (85) 

The flatness parameter ( )K tΩ  can then be written as 

( )
( ) ( )

4 2
0 0

,04 2K K
a H

t
a t H t

Ω = Ω                     (86) 

The time derivative of ( )K tΩ  then is: 

2 2
0 0 ,0 4 3 5 2

d 2 4 2 2 2 2
d

K
K K K

H a H a Ha H H
t H a Ha H a H

     Ω −
= Ω − = − Ω + = − Ω +     

     

  

 

 (87) 

From the modified Friedmann equation, Equation (85), it follows that 
4 3

2 2 2 2 4 0 0
0 0 ,0 ,0 ,04 3

8
3 R M

a aGa a ka c a
a a

ρ ρ ρΛ

 π
+ = + + 

 
             (88) 

Taking the time derivative of both sides of Equation (88) we then find:  

[ ] [ ]4 14 4
3 2M M

a GH H
aH H

ρ ρΛ Λ
π

+ = + = Ω + Ω


            (89) 

Combining Equations (81), (87) and (89) we find the new differential equation 
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for ( )K tΩ : 

( ) [ ]d  4
d K K Mt H
t ΛΩ = − Ω Ω + Ω                   (90) 

This equation is similar to Equation (84), however now the coefficient of KΩ  is 
always negative. At early times an arbitrary non-zero curvature will decrease 
exponentially. Space will inevitably evolve to zero curvature. Due to the de-
creasing speed of light the Flatness Problem has disappeared. Basic Big Bang 
theory predicts a flat Universe. 

11. Discussion and Conclusions. Special Relativity, General 
Relativity and the Constancy of the Speed of Light 

At present, the speed of light is generally considered to be a universal constant. 
Light rays can change direction, but every observer will always measure the same 
local speed. This is indeed the basic postulate of Special Relativity [24]. The pre-
dictions of Special Relativity have been verified multiple times to a very high de-
gree of accuracy and therefore any claim of a variation of the speed of light can 
only be accepted if it is confirmed by irrefutable experimental results. 

Note that in this paper, to avoid confusion, we define the speed of light from 
measuring the time it takes for a light signal to cover the length of a material ob-
ject. This is different from the “constant speed” definition of 1983 [17]. 

In Special Relativity, in the absence of gravitation, the speed of light is clearly 
constant. In the presence of gravitation the situation is more unclear. The gener-
ally accepted opinion is that the speed of light is constant in that case as well, 
however dissident ideas exist. Einstein himself suggested a variable speed of light 
[25], before producing the standard equations of General Relativity. Einstein’s 
variable speed of light calculation for bending of starlight by the Sun contained 
an error, but an improved version of this calculation, leading to the correct re-
sult, was later given by Dicke [26]. 

As shown in Section 9, the Friedmann equation and the FLRW metric are es-
sentially inconsistent, because the first uses a constant speed of light 0c , and the  

latter implies a variable speed of light ( ) ( )
0 0a c

c t
a t

= , for a Comoving Observer. In  

the case of a flat space (our experimentally observed situation) this only produc-
es problems when we focus explicitly on the variation of the speed of light (the 
Horizon Problem). In the case of non-zero curvature, the inconsistency leads to 
problems directly (the Flatness Problem). Introducing the correct variable speed 
of light in the Friedmann equation solves the Horizon and Flatness Problems 
immediately, taking away the need for ad hoc additions to Big Bang theory, such 
as Cosmic Inflation. 

The problem is more general, however. The Friedmann equation was derived 
from Einstein’s field equations of General Relativity. Therefore, if we accept the 
introduction of the FLRW metric as a legitimate procedure, and distances are 
expressed in units based on non-expanding material objects, we now have an 
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example where it is necessary to introduce a varying speed of light in the Eins-
tein field equations. This suggests a modification of the Einstein field equations 
in general: they should allow for a variable speed of light. The explicit form of 
the time dependence of the speed of light (and possibly the spatial dependence as 
well) will then be determined by the specific problem. 

Experimental observations of the speed of light have been made as a function 
of time, at different locations, and fluctuating results have been obtained [27]. It 
has been suggested that these fluctuations are related to (tidal) variations of the 
local gravitational acceleration g. If such effects are real indeed, it is obvious that 
they are small variations compared to the large scale, long term evolution of the 
speed of light described here. The FLRW metric starts from a homogeneous 
Universe, and thus ignores perturbations due to local mass concentrations. 

We can conclude that, to verify the decrease of the speed of light predicted 
here, new, more precise, measurements of the speed of light, and its evolution, 
are needed (the latest experimental measurements, in the 1970s, had an accuracy 
of approximately 1 m/s). Also it would be interesting to perform such measure-
ments in gravitational environments different from the surface of the Earth. If 
the speed of light is found to be invariable in deep intergalactic space, we can 
conclude that the combination of General Relativity and the FLRW metric does 
not give an acceptable description of our Universe. 

The concepts “expanding space” and “variable speed of light” are comple-
mentary. This, then, seems to be the physical meaning of the FLRW metric: the 
expansion of the Universe, and the simultaneous decrease of the speed of light 
for a Comoving Observer. This explains in a simple way how the distance cov-
ered by a light signal since the start of Big Bang can be much larger than 0 0c t , as 
expected classically from a constant speed 0c . 

A natural question is: “Is indeed the speed of light time dependent, or is what 
we observe just a consequence of gravitational time dilation?” It should be noted 
that a Comoving Observer doesn’t have an objective method to judge his cosmic 
flow of time. Therefore it seems reasonable to define the speed of light from the 
time it takes a light signal to cover the length (supposedly constant) of a material 
object. Future developments of physics will tell us whether this is indeed the best 
way to describe the reality of our Universe. 

Note that, if we write the Planck radiation formula in the frequency form, the  

speed of light only appears as a multiplicative factor 2

1
c

. Therefore, when the  

speed of light is altered, the general form of the spectrum remains unchanged, 
and we still recognize it as blackbody radiation (albeit with a modified tempera-
ture, due to the expansion of space (and wavelength)). 

The present results can be interpreted as showing that the speed of light, as 
measured by a Comoving Observer, is caused by the collective mass of the Un-
iverse. This is essentially Mach’s Principle [28]. Also note that in this view our 
present-day speed of light has no special meaning whatsoever. It just happens to 
be, by chance, the speed of light at the time we live. This also means that the 
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speed of light is a variable property of the vacuum, changing as a function of 
gravitation. Note that this has also consequences for notions such as Planck 
length and Planck time, since the speed of light appears in their definition. 

Observations of high-redshift supernova data have shown that, at present, the 
expansion of the Universe is accelerating [29] [30]. Interestingly, it was recently 
noted that this observed accelerating expansion of the Universe can be simply 
described by a phenomenological decrease of the speed of light by 2.2 cm/s per 
year [31]. This confirms the present calculation.  

Additional claims have been made about experimental observations of a sys-
tematic decrease of the speed of light [32]. An interesting case is the Lunar Laser 
Ranging experiment (LLR). During the Apollo and Lunokhod missions, in the 
1970s, mirrors were installed on the Moon, and these are used to determine very 
precisely the distance between Earth and Moon, by measuring the round trip 
time of laser pulses. In this way, a systematic increase of the Earth-Moon orbit 
semimajor axis of 3.8 cm per year has been observed [33]. Also it is straightfor-
ward to calculate that a decrease of the speed of light of 2.1 cm/s per year results 
in an apparent increase of the Earth-Moon distance of 2.7 cm per year. However, 
this distance is also influenced by tidal effects and other geophysical processes. 
Another observation is the Pioneer Anomaly, related to radio data probing the 
position of distant spacecrafts. All these observations, as described in [32] and 
[33], might suggest a speed of light decrease of the order of 2 cm/s per year, 
however the results are insufficient to make a final conclusion. 

It might be argued that the present results contradict Special Relativity. This is 
correct indeed. Lorentz invariance is broken because of the transition from a 
non-expanding to an expanding frame of reference. In the present formalism, 

i ia c  is a universal constant. In Special Relativity, where ia  is a constant, this 
reduces to the standard result that ic  is a universal constant. Also note that, in 
the calculation presented here, the speed of light remains the maximum speed of 
communication at any time t . Therefore the speed of light remains the speed of 
causality, which is an essential aspect of Special Relativity. 

Obviously General Relativity is a classical, non-quantum theory, producing 
divergences for time 0t = . These divergences should disappear in a quantum 
version of General Relativity. However, today we do not have such a quantum 
theory of gravitation yet.  

In “normal” experiments, times are short, and it is perfectly acceptable to use 
a constant speed of light. For longer times, however, such as in cosmology and 
astronomy, a varying speed of light will lead to new physics. An obvious example 
is the solution of the Horizon Problem. This is essentially a consequence of the 
fact that the light cone is no longer made up of straight lines: it “opens up” at 
times closer to the start of Big Bang. Similar remarks can be made about the 
Flatness Problem. As we have shown, basic Big Bang theory with a decreasing 
speed of light predicts a flat Universe. Note that it is no longer necessary to make 
claims of extreme fine tuning to explain the observed flatness. On the contrary, 
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basic Big Bang theory makes this flatness mandatory. 
Also note that the present results imply that the most important motivations 

for the development of Cosmic Inflation theory no longer exist. To explain the 
isotropy of the CMB background and the Flatness of 3D-space we do not need to 
start from quantum processes, they are natural consequences of classical physical 
mechanisms. 

Recent observations suggest that the speed of light is equal to the speed of 
gravitational waves to a very good approximation [34]. Therefore gravitational 
interaction is expected to show the same time dependence as the speed of light. 
This might be important for our interpretation of the results of gravity, especial-
ly at very large distances. 

Also the Hubble Tension, i.e. the conflicting results for measurements of the 
present day Hubble constant, as determined from “recent” and “ancient” phe-
nomena, might be related to this variation of ( )c t . According to the present 
calculation, the speed of light was extremely high, and rapidly decreasing, at the 
time when the CMB background radiation was released. It should be investi-
gated how this affects the baryon acoustic oscillations of the primordial plasma, 
and thus the temperature variations we observe today in the CMB background. 
If the present calculation is correct, it is clear that standard present day physics 
cannot be used to describe the situation at time CMBt t= . 

A very common remark is that in our present situation, on earth, we are not 
subjected to an FLRW metric, but to a Schwarzschild metric, due to the earth’s 
gravitational field. However note that the earth’s gravitational field does not 
make the gravitational influence of the rest of the Universe disappear. We are 
subjected to a superposition of local and distant fields. As the variation of the in-
fluence of faraway matter (and other forms of energy) is very slow, compared to 
local effects, these two contributions are decoupled in a natural way. It is rea-
sonable to conclude that our present-day speed of light 0c  is very well ap-
proximated by the varying speed of light in intergalactic space (where the FLRW 
metric is supposed to be valid). Big Bang theory provides a general background, 
on which local phenomena are superimposed. Also, note that the Earth, the So-
lar System and the Milky Way are moving through intergalactic space, through 
regions that are supposed to have been modified by cosmic expansion before.  

Finally, a variable speed of light suggests that other physical “constants” might 
be variable as well. This is certainly the case for 0ε  and/or 0µ , the permittivity 
and permeability of vacuum, since 0 0 01c ε µ= . Obviously, such variations 
would seriously complicate the interpretation of experimental results. In this 
context it is interesting to note that recently it has been argued [35] that physics 
can be described starting from a Unified Energetic Tension Field based on 
( )0 0,ε µ  of free space. 
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