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Abstract 
We proposed an empirical equation for a fine-structure constant:  
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. Then,  
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e
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× = = . where mp and me are the rest mass 

of a proton and the rest mass of an electron, respectively. In this report, using 
the electrochemical method, we proposed an equivalent circuit. Then, we 
proposed a refined version of our own old empirical equations about the 
electromagnetic force and gravity. Regarding the factors of 9/2 and π, we used 
3.132011447 and 4.488519503, respectively. The calculated values of Tc and G 
are 2.726312 K and 6.673778 × 10−11 (m3∙kg−1∙s−2). 
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1. Introduction 

The symbol list is shown in Section 2. We discovered Equation 1 [1] [2] and [3], 
which appeared very simple. Equations (1)-(3) were mathematically connected 
[3]. However, we could not establish the background theory. Furthermore, there 
appeared to be dimension mismatch problems. 
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These equations have small errors of approximately 10−3 and 10−4 [3]. We at-
tempted to reduce the errors in the previous reports by changing the factors of 
4.5, π and Tc [4] [5]. Regarding the factors of 9/2 and π, we used 4.48870 and 
3.13189, respectively. Then, the errors became smaller than 10−5. 

Then, 4.48870 and 3.13189 Ω are connected as follows. 

1
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m q
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                   (4) 

Next, we discovered the empirical equation for a fine-structure constant [6]. 

137.0359991 136.0 1113077
3 13.

1
5×

= + +               (5) 

136.011307713.5 1836. 26515 4 p

e

m
m
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To explain 136.0113077, we proposed the following values. 

( )
( )1.53

3.131777037
136.0113077

Rk
×

Ω =               (7) 

136.0113077 44.488855463
27

×
=                  (8) 

However, Equations (7) and (8) cannot be compatible with Equations (5) and 
(6). Main purpose of this report is to improve the compatibility between these 
equations. 

The remainder of the paper is organized as follows. In Section 2, we show the 
symbol list. In Section 3, we reconsider the deviation from the factors of 9/2 and 
π. In Section 4, using the electrochemical method, we propose the equivalent 
circuit for the fine structure constant. In Section 5, we refine our three equa-
tions. In Section 6, general discussions are presented, which are mainly about the 
UNIT. 

2. Symbol List (These Values Were Obtained from Wikipedia) 

G gravitational constant: 6.6743 × 10−11 (m3∙kg−1∙s−2) 
(we used the compensated value 6.673778 × 10−11 in this report) 

Tc temperature of the cosmic microwave background: 2.72548 (K) 
(we used the compensated value 2.726312 K in this report) 

k Boltzmann constant: 1.380649 × 10−23 (J K−1) 
c speed of light: 299,792,458 (m/s) 
h Planck constant: 6.62607015 × 10−34 (Js) 
ε0 electric constant: 8.8541878128 × 10−12 (N∙m2∙C−2) 
μ0 magnetic constant: 1.25663706212 × 10−6 (N∙A−2) 
e electric charge of one electron: −1.602176634 × 10−19 (C) 
qm magnetic charge of one magnetic monopole: 4.13566770 × 10−15 (Wb) 

https://doi.org/10.4236/jmp.2023.142011


T. Miyashita 
 

 

DOI: 10.4236/jmp.2023.142011 162 Journal of Modern Physics 
 

(this value is only a theoretical value, qm = h/e) 
mp rest mass of a proton: 1.6726219059 × 10−27 (kg) 

(we used the compensated value 1.672621923 × 10−27 kg in this report) 
me rest mass of an electron: 9.1093837 × 10−31 (kg) 
Rk von Klitzing constant: 25812.80745 (Ω) 
Z0 wave impedance in free space: 376.730313668 (Ω) 
α fine-structure constant: 1/137.035999081 

3. Reconsideration for the Deviation from 4.5 and π 

In this section, we reconsider the deviation from 4.5 and π. We notice that 
4.48870 and 3.1319 can be rewritten as follows. 
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For example, Equation (9) can be made sure as follows. 
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Next, the deviation from 4.5 and π can be explained as follows. 
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Regarding the values for 3.131777037 and 4.88855463, 
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Next, the deviation from 4.5 and π can be explained as follows. 
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Therefore, using X, the deviation should be rewritten as follows. 
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The value of 4.5 is from the degree of freedom as 9/2. Therefore, 4.488855 
should be dimensionless. 

2

1 Wb m s Wb m m1
J J s C4.488855463

p

p

m

e

m
m X m

q c
c

  ⋅ ⋅
+ + = = =  ⋅

=
× 

    (18) 

The correct value of X and the UNIT will be discussed in detail in a later section. 

4. Equivalent Circuit of the Fine Structure Constant with the 
Electrochemical Method 

4.1. Explanation Using the Transference Number 

For convenience, Equations (5) and (6) are rewritten as follows: 

137.0359991 136.0 11113077
3 13.5

= + +
×

             (19) 

136.011307713.5 1836. 26515 4 p

e

m
m

× = =              (20) 

We strongly believe that the fine structure constant should be explained by the 
transference number [7]. According to Rickert [8], 

1 2
1 11 12J L grad L grad

T T
η η

= +                   (21) 

1 2
2 21 22J L grad L grad

T T
η η

= +                   (22) 

where J1 and J2 are the current densities of two different carriers; η1 and η2 are 
the electrochemical potentials of the two different carriers; L11, L12, L21, and L22 
are Onsagar coefficients. 

In the area of solid-state ionics, Rickert proposed the following equation. 

12 21 0L L= =                         (23) 

Then, the transference number (t1 and t2) can be explained as follows. 

2
1

1 2

Rt
R R

=
+

                         (24) 

1
2

1 2

Rt
R R

=
+

                         (25) 

where R1 and R2 are different resistance values. Next, we consider the following 
equation. 

1
1
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11
81

1 136.0113077
81

I
I

V
Z

V

 −    
 = ×   
    − 
 

              (26) 

where V1 and V2 are the voltage losses due to different carriers; I1 and I2 are the 
currents due to different carriers; Z1 is the resistance, which will be explained 
later. In Equation (26), using an inverse of the matrix, Onsager coefficients can 
be obtained. Because the derivation is too complex to show here, we have: 
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1
1 1 1 281

ZV Z I I= × − ×                      (27) 

1
2 1 1 2136

81
.0113077

ZV I Z I= − × + × ×                (28) 

Next, we consider the following situation, which implies the open circuit con-
dition. 

1 2I I= −                           (29) 

Therefore, the theoretical voltage (Vth) is, 

1 2 1 1136.01130 11
3

7
13.5

7thV V V Z I = − = × + + × × 
         (30) 

In Equation (30), −V2 is the voltage loss due to the opposite drift (not diffusion) 
current (I2). Thus, in Equation (30), we obtained the value of a fine-structure con-
stant. For convenience, Equation (5) is rewritten as follows. 

137.0359991 136.0 11113077
3 13.5

= + +
×

             (31) 

Next, we define the interaction voltage (V3) as follows. 

1
3 181

ZV I= ×                          (32) 

The transference number for the small voltage loss (V1) is 
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Therefore, the interaction coefficient is 

1 137.0359991
136.0

1
359991

37.0359
1

91
1

9
1 1t

α
− = − = =             (34) 

The transference number for the large voltage loss (V2) is 

1 3 1 1
2

1 2
1 1

1
1 137.0359991136.0113 1

3 13.5

V V Z It
V V Z I

− ×
= = =

− × × + + × 

     (35) 

Equation 35 means the strong interaction. From Equations 33 and 35, V3 
should be transferred from the carriers with a large voltage loss (V2) to those 
with the small voltage loss (V1). From Equations (33) and (35), 

1 2 137.0359991
136.03

1
59991 1

37. 9 9
1

035 9 1
t t+ = + =              (36) 

4.2. Determination of the Important Resistance 

The total resistance is Z0, so the large resistance (Z2) should be 

2 0 137.035999081 2RZ Z k×= =                  (37) 

The small resistance is 
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1 0
137.035999081 2 379.5685505
136.0113077 136.0113077

RkZ Z × = == Ω       (38) 

We discover Z1 as follows: 

3
1

25812.8074593 27 379.5685505
1836.152654

m e

p

q m
Z

e m
= × × ×= = Ω        (39) 

Therefore, our argument is not a coincidence. From Equation (32), the inte-
raction resistance (Z3) should be 

1
3

1 4.686031487
81 3

m e

p

q m
Z

e m
Z

× == = × Ω              (40) 

Consequently, Equation (26) can be rewritten as follows, 

1 3 1

3 2

1
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Z I
Z Z I

V Z
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−    
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                   (26b) 

4.3. Suitable Charge and Equivalent Circuit 

We are discussing the equivalent circuit at the quantum level. Clearly, one 
charge is an electron. However, it is difficult to search for the other charge. The 
suitable charge is 

( )17

1

1.08957070 10 68.0 65C 05mq
e

Z
−= × ×=                 (41) 

Because qm has never been observed, the charge 
1

mq
Z

+  should be the set of an 

antiparticle 
1

mq
Z

− , which may be related to quarks. Then, we propose the equiv-

alent circuit in Figure 1. The total charge is 

1

2
136.0113mq

e
Z

= ×                           (42) 

When the charge 
1

mq
Z

+  cannot be realized at the low energy level, it cannot 

be observed as the mass. 

The direction of 
1

mq
Z

+  is opposite to the electrical field, which may prevent 

the increase of the electrical field. 
 

 
Figure 1. Equivalent circuit to explain the fine-structure constant. 
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5. Our Refined Three Empirical Equations 
5.1. The Most Suitable Value for X 

For convenience, Equations (5) and (6) are rewritten as follows: 

137.0359991 136.0 11113077
3 13.5

= + +
×

             (43) 

136.011307713.5 1836. 26515 4 p

e

m
m
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For convenience, Equations (16) and (17) are rewritten as follows: 
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Then, we notice that X should be 3. Therefore, 
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Here, 4/3mec2 is well known and has been discussed by Feynman. Next, the 
deviation from 4.5 and π can be explained as follows. 

3.132011447 0.999500154 1
4.4885

4
19503

.5
× =

π


              (49) 

5.2. Determination of the Important Resistance 

1 1
1837.48598811

3
p

e

m
m

=
+ +

 appears to be a transference number. The total re-

sistance (Z5), small resistance (Z6), large resistance (Z7) and interaction resis-
tance (Z8) can be defined. 

5
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8 6 3
13.5 13.5 12 4.686031487
81 81 3

m e m e
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q m q m
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e m e m
Z= × = × × × == × × Ω =  (53) 

Consequently, Z8 is equal to Z3. 

5.3. Our Refined Three Empirical Equations 

We use 2.726312143 K instead of 2.72548 K. We use 6.6737778665 × 10−11 
m3∙kg−1∙s−2 instead of 6.6743 × 10−11 m3∙kg−1∙s−2. Equation (1) is refined as follows: 
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                 (54) 
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Equation (55) is equal to Equation (56). Therefore, the compensation method 
is perfect. Next, Equation (2) is refined as follows: 
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Equation (58) is equal to Equation (59). Therefore, the compensation method 
is perfect. Next, Equation (3) is refined as follows: 
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Equation (61) is equal to Equation (62). Therefore, the compensation method 
is perfect. 
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6. Discussion 
6.1. Dimension Mismatch Problem 

For convenience, Equation (54) is rewritten as follows: 
2

2

4.48851950
1

3
2 kg

p cGm kT
hc c

=
×

                 (63) 

The value of 4.488519503 is the deviation from the degree of freedom 9/2, 
which is dimensionless. 

Therefore, there are no dimension mismatch problems. For convenience, Eq-
uation (56) is rewritten as follows: 
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In Equation (64), there remains the unexplained UNIT as “Am”. 
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In Equation (66), the UNITs of 1 J and 1 C can be separately defined. However, 

18 186.241509 10 eV 6.2415 1J 09 01 Vec
c

× = × ×=           (67) 

where V
c

 is the unit of the electromagnetic four potential. Therefore, Am
ec

 

may be Faraday constant at the quantum level. The proof is difficult and will be 
published in a future report. From Equations (47) and (65), we have 
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Next, the fine structure constant (α) is 
2

04 2
e hc α

ε
= ×

π π
                       (69) 

From Equations (68) and (69), 

2 2

1 1 6.3206454 07
1837.48598

1 s
2 284

3
m

c

p

e

kT
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E
mhc
m
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π π 

+ 


=  




   

(70) 

In Equations (68) and (70), from different coordinate systems, kTc should be 
changed because the unit C/m is not Lorentz invariant. Therefore, from Equa-
tion (63), G is not Lorentz invariant. 

6.2. Yukawa Potential 

According to the advanced Wagner model, the diffusion time for mixed elec-
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tronic and ionic currents should exponentially decrease with distance [9]. When 
the diffusion time for mixed electrons and quark flux should exponentially de-
crease with distance, the Yukawa potential can be explained. 

6.3. Consideration of the Degree of Freedom inside Electrons 

We have never discussed the spin of electrons. In Equation (64), the number 
3.132011447 Ω is the deviation from π.  We believe that π is related to the spin of 
the electron. Angrick et al. have confirmed that the spin of electrons cannot be 
thermodynamically ignored [10]. Furthermore, Aquino et al. discovered a new 
method for vector analysis [11]. We hope that the degrees of freedom in elec-
trons will be clarified in detail. 

7. Conclusions 

We proposed an empirical equation for a fine-structure constant:  

137.0359991 136.0 11113077
3 13.5

= + +
×

. We proposed several empirical equa-

tions to describe the relationship between an electromagnetic force and Tc.  
Three equations were explained by the factors of 9/2 and π. We attempted to 
improve the accuracies by changing the values of 9/2 and π. For this purpose, 
using the electrochemical method, we proposed the equivalent circuit. Then, we 
proposed the following two values, 
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3.132011447

p
e

e

m
m

m
c

ec

 
+ + 

 =Ω , 
2

4.488519503
11
3

p
p

m

e

m
m

m

q c

c
 

+ + 
 

=  

The calculated values of Tc and G are 2.726312 K and 6.673778 × 10−11 

(m3∙kg−1∙s−2). 11
3

p

e

m
m

 
+ + 

 
 appears to be related to the transference number. 

However, there should be the UNIT (m/C) in 11
3

p

e

m
m

 
+ + 

 
. Therefore, the val-

ues of Tc and G should not be Lorentz invariant. 
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