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Abstract 
It was argued that old and massive neutron stars end up as black objects that 
are made of purely incompressible superconducting gluon-quark superfluid 
matter (henceforth SuSu-objects). Based on theoretical investigations and 
numerical solving of the field equations with time-dependent spacetime to-
pologies, I argue that a dense cluster of SuSu-objects at the background of flat 
spacetime that merged smoothly is a reliable candidate for the progenitor of 
the big bang. Here, we present and use a new time-dependent spacetime metric, 
which unifies the metrics of Minkowski, Schwarzschild, and Friedmann as 
well as a modified TOV-equation for modeling dynamical contractions of re-
lativistic objects. Had the progenitor undergone an abrupt decay, a hadroniz-
ing front forms at its surface and starts propagating from outside-to-inside, 
thereby hadronizing its entire content and changing the topology of the em-
bedding spacetime from a flat into a dynamically expanding curved one. For 
an observer located at the center of the progenitor, 0 , the universe would 
be seen as isotropic and homogeneous, implying therefore that the last big 
bang event must have occurred in our neighborhood. For dynt τ  the 
curved spacetime re-converges into a flat one, whereas the outward-propagation 
topological front, which separates the enclosed curved spacetime from the 
exterior flat one, would appear spatially and temporally accelerating out-
wards. The here-presented scenario suggests possible solutions to the flatness 
problem, the origin of acceleration of the universe and the pronounced activ-
ities of high redshift QSOs. We anticipate that future observations by the 
James-Webb-Telescope to support our scenario when active QSOs with 

12z >  would be detected.  
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1. Introduction 

Data from supernovae statistics predict that at least 1% of star populations in 
star-forming clouds should be neutron stars (NSs). Yet this rate is expected to be 
even higher in the early universe when the first generation of stars was formed, 
roughly 500 Myr after the big bang (henceforth BB). These should have been 
massive, extraordinary luminous and therefore short-living, which subsequently 
collapsed to form BHs or massive NSs [1] [2]. However, their relatively large 
sizes, masses and energy contents would give rise to fragmentation, preferably 
forming massive NSs rather than BHs. This may reasonably explain why the 
mass-function of BHs exhibits the mass-gap: [ 2.5 5.5M M≤ ≤

 

 ], where 
stellar BHs have not been detected. 

Indeed, for the currently measured average density and dimensions, we expect 
the universe to inhibit 1020 NSs [3] [4]. The actual number of NSs may turn out 
to be much larger, as the universe prior to the BB might have been populated 
with old objects and inactive galaxies. This is in line with recent observations 
that reveal the existence of certain stellar components and QSOs formed earlier 
than the redshift 10z ≥  (see [2] and the references therein), i.e. within only 
several hundred million years after the BB. Also, formation of the high redshift 
galaxy GN-z11 within 600 Myr after the BB and the possibility that it may host a 
SMBH cannot be explained by the current evolutionary scenarios [5] [6]. There-
fore, NSs may significantly affect the dynamics of the universe on time scales 
longer than or even comparable to the age of the universe (henceforth 14τ .)  

On 14τ τ≥ , NSs have ample time to conglomerate into clusters and subse-
quently merge to form progenitors to numerous BB-events that take off sequen-
tially and in parallel.  

But what is the nature of NS-cores? Most theoretical and numerical studies 
of NS-interiors predict the central density to be larger than the nuclear density, 

0ρ . Due to the vanishing thermal energy production inside the core, the average 
gradient of the temperature throughout the NS should be positive, and therefore 
the core is practically a “freezer” of zero-temperature. Under these conditions, 
supranuclear dense matter has little choice, but to be superfluid. These argu-
ments are in line with well-observed glitch phenomena in pulsars (see [7] [8] [9] 
[10] for further details). 

Superconductivity ensures that magnetic fields are expelled from the ze-
ro-temperature core into the boundary layer between the core and the overlay-
ing compressible and dissipative normal matter. Based on our previous studies 
(e.g. [10]), the spacetime embedding the SuSu-core should be flat, whereas the 
overlaying normal matter is embedded in a curved spacetime (Figure 1). 

In fact, the over- and under-shooting that have been observed to associate the 
glitching events of the Vela pulsar in 2016 provide further evidence for the  
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Figure 1. A pulsars with an embryonic quantum core and different spacetime topologies. 
 
conductivity and superfluidity of the cores in massive NSs [11] [12]. The overall 
configuration is strikingly similar to the tachocline between the convection zone 
of the sun and the underlying rigid body rotating core, where dynamo action is 
considered to be operating. 

Demanding the core’s matter to be purely incompressible is a very strong re-
quirement with far-reaching consequences in astrophysics and cosmology. To 
clarify the point, a fluid is said to be incompressible, if the density-gradient va-
nishes everywhere in the domain, i.e. 0∇ = . In terrestrial incompressible flu-
ids, the pressure ceases to describe the thermodynamical state of matter locally, 
but it turns into a mathematical term only, called the Lagrangian multiplier, 
which affects the dynamical behavior of the fluid globally, irrespective of causal-
ity. 

In stars, incompressibility is a requirement that is fulfilled through the im-
posed regularity condition at the center of astrophysical objects. In the case of 
NSs, the pressure gradient P∇  is generally balanced by the spatial variation of 
the curvature g µν

µ∇ , which is dominated by ttg g rµν
µ∇ ≈ ∆ ∆ . On length 

scales comparable to the average separation between two arbitrary nucleons 

bbr∆ , the relative spatial variation of gµν  is of order 10−19 [13], and therefore 
too weak compared to the governing nuclear forces.  

On the other hand, the cores of old and massive NSs are made of zero-tem- 
perature supranuclear dense matter. Under these conditions, it was conjectured 
that the matter must be made of an incompressible superconducting gluon- 

https://doi.org/10.4236/jmp.2022.1311091


A. A. Hujeirat 
 

 

DOI: 10.4236/jmp.2022.1311091 1477 Journal of Modern Physics 
 

quark superfluid [14]. While superconductivity and superfluidity are direct con-
sequences of zero-temperature dense matter even under terrestrial conditions, 
the incompressibility of gluon-quark matter would remain a hypothesis that may 
not be verified under normal conditions. However, there is a reasonable argu-
ment in favor of the incompressibility of gluon-quark matter at zero-temperature: 
Given that gluon-quark-plasmas inside hadrons are hidden from the outside 
world, this may indicate that the energy states of QGP inside hadrons are incom-
patible with the surrounding particle-free vacuum structure [15] [16]. At zero- 
temperature however, a QGP is expected to undergo a phase transition into 
QG-condensate, where QG settles down into the lowest possible quantum ener-
gy state predicted to be compatible with that of the surrounding particle-free 
vacuum. In this case, putting a certain number of QG-condensates together, the 
vacuum would share the same energy states. Here, the QG-condensates become 
transparent to each other, and so they merge to form a parent QG-condensate, 
whose size is the linear addition of the individuals. 

As the spacetime embedding vacuum is flat, then the spacetime embedding 
the parent zero-temperature QG-condensate should be flat too, which is equiva-
lent to requiring the QG-cloud to be macroscopically incompressible. In fact, 
recent results from the Relativistic Heavy Ion Collider (RHIC) confirm that the 
quark-gluon-plasmas emerging from smashed nuclei behave nearly as perfect 
liquids [17] [18], though the physical conditions governing the QGP here are 
totally different from those inside the cores of massive NSs. 

Based thereon, the scenario here may be extended to suggest an alternative 
model for BB without invoking inflation to solve the horizon and flatness prob-
lems, as well as prohibit the progenitor from collapsing into a hypermassive BH 
(see [19] [20] [21] [22] for a review). Using recent WIMP observations, the total 
mass content of normal matter in the universe can be calculated and, when di-
vided by the universal maximum energy-density uni

crρ  ( 03 ρ≈  see [14] for fur-
ther details), then a radius of several AUs may be obtained. Prior to the BB-explosion, 
the progenitor, which was entirely made of incompressible SuSu-matter, was le-
vitating freely in a flat spacetime. 

Any model of the BB should still fulfill the classical conditions of isotropy and 
homogeneity [23]. However, according to our scenario, the progenitor must 
have a finite measurable size and a certain location in spacetime. These condi-
tions may safely be met for observers located at the center of the progenitor, 
which implies that the BB of our universe must have occurred in our close 
neighborhood. Of course, this would violate the cosmological principle grossly, 
but the model should be taken seriously as long as its implications agree with 
observations.  

2. Theory of the Time-Dependent Spacetime Topology of the  
Fireball 

Our model is based on the hypothesis that the spacetime embedding incompres-
sible SuSu-matter is flat, and that the progenitor of the BB is a hypermassive 
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DEO that formed from the merger of trillions of stellar mass DEOs on time 
scales comparable to or longer than the age of the universe. 

Hence, 0t ≤  relative to 0  the spacetime both inside and outside the pro-
genitor was Minkowski flat, i.e. 2d d dMinks x xµ ν

µνη= . However, at 0t += , the 
confining force at the surface of the progenitor suffered an irreversible destruc-
tive decay, which triggered a hadronization front that propagated from out-
side-to-inside, thereby converting the rings of SuSu-matter into a dissipative and 
compressible matter successively, which is dubbed normal matter. This matter 
interacts with the embedding spacetime and dictates its curvature. In the statio-
nary case, Birkhoff theorem states that the spacetime surrounding the newly 
formed rings of normal matter should be of the Schwarzschild-type metric, 

2d d dSchs g x xµ ν
µν= . 

If the metric is time-dependent, then the transitions from 2d Minks  into 2d Schs  
or even into the Friedmann-Robertson-Wakker metric (FRW), 2d FRWs , and vice 
versa, should be possible, depending on the amount and type of the embedded 
matter . 

Let 2ds  be a metric, which has the following form:  
2 2 2 2 2

00 11 22 33d d d d d d ds g x x g t g r g gµ ν
µν θ ϕ= = + + +          (1) 

where  
( ) ( )

( ) ( )

2 , 2 ,2
00 11

2 22 2 2
22 33

e , e

e , e sin

r t r t

t t

g c g

g r g r

λ

θ

= = −

= − = −



 
                 (2) 

Here   and λ  are functions of the comoving radius ( ), er r t r=  , and 
( )t  is a function of time only. All physical and geometrical events are meas-

ured with respect to 0  located at 0r = . 
When contracting the Riemann tensor and calculating the Ricci tensor (see 

[23] for further details):  

, , ,R α α α β α β
µν µα ν µν α µβ αν µν αβ= Γ −Γ + Γ Γ −Γ Γ                (3) 

using the Christoffel symbol:  

{ }, , ,
1 ,
2

g g g gλ λκ
µν κν µ κµ ν µν κΓ = + −                  (4) 

we obtain the following Ricci components:  

( )( ) ( )

( ) ( ) ( )

{ } ( ) ( ) ( )

( )

2 22 2
00

222
11

2 22 2
22

22 2 2 2
33

2 2 2 2 e

2 e 2

2 e 1 e 1

sin  2 e sin  1

R r r

R r

R r r r

R r r

λ

λ

λ

λ λ λ λ

λ λ λ λ λ λ

λ λ

θ λ θ

−

−

− −

−

′ ′′ ′ ′ ′ ′= + − + + − + − + − −

′′ ′ ′ ′ ′= − − + − + + − −

′ ′= − + + − + + − −

  ′= − + − + + + 

     

     

     

     





  

 

       

    

    

    ( ) ( )2e 1r λλ − ′− − 


 (5) 

, ′

 
 denote the time and spatial-derivatives of the variables, respectively. 

The field equations may be re-arranged into the convenient form:  
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
00 00 00

2
11 11 11

2 22
22 22 22

e

e

e   e 1

t s

t s

t C s C

R R RHS

R R RHS

R r R RHS

λ

λ

λ

−

−

− −

+ =

+ =

+ − =







               (6) 
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where 
( )

( )

( ) ( )
( ) ( )
( ) ( )
( )

2 2
00

2
11

2
22

2
00

2
11

22

2 2 2

2

2

2

2

1

t

t

t

s

s

s

R r

R

R

R r

R r

R r r

λ λ λ

λ λ λ λ

λ

λ

λ λ

λ

= + − + + −

= − − + −

= − + − +

′′ ′ ′ ′ ′= − + − −

′′ ′ ′ ′ ′= + − −

′ ′= + −

      

     

     

   

 

   

   

  



                 (7) 

To make the problem tractable, the field equations:  

1 ,
2

g gµν µν µν µνκ− + Λ = −                      (8) 

may be re-written in the following equivalent form:  

,
2
T g g RHSµν µν µν µν µνκ  = − − + Λ = 

 
                (9) 

where µ
µ=  , µν  and Λ  correspond to the stress-energy tensor and the 

cosmological constant, respectively (see [13] [23] for further details). 
Expanding the tensor RHSµν  we obtain:  

( ) ( )

( ) ( )

2
1
2

1
2

TRHS T g g

g p u u p g

p u u p g

µν µν µν µν

ν
µν µ µν

ν
µ µν

κ

κ ρ ρ

κ ρ ρ

 = − − + Λ 
 

 = − + − − + Λ  
  = − + − − + Λ    

           (10) 

The diagonal components have the following forms:  

( ) ( )

( ) ( )

( )

2
0000 00 00 00

2 2
1111 11 11 11

2222 22 22

1
2

1
2

2

RHS p g p g RHS g

RHS p V g p g RHS g

RHS p g RHS g

κ ρ ρ

κ ρ ρ

κ ρ

  = − + Γ − − + Λ =    
  = − + Γ − − + Λ =    
 = − + Λ = 
 

     (11) 

Here 2
00 111 g g VΓ = +  and V are the Lorenz factor and the transport ve-

locity as measured by 0 , respectively. 
The above set of equations may be re-written in a more convenient form:  

( ) ( )

( ) ( )

( ) ( )

2 2
0000 00

2 2
1111 11

2 2 2 2 2
2222 22

e e   

e e

e e e

t s

t s

t s

R R RHS

R R RHS

R R r r RHS

λ

λ

λ

− −

− −

− − −

+ =

+ = −

+ − = −





 

               (12) 

Subtracting the second equation from the first in (12), and dividing by 2, 
yields:  

( ) ( )( ) ( ) ( )2 2 2 2
00 11 00 11

1 1e e .
2 2

t tR R p g g V
r

λλ κ− −′ ′+  + − = − + Γ − 
 

      (13) 
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Now, adding the last equation to the third, we obtain:  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

2 2 2
00 11 22 2

2 2
00 11

1 1 de e e
2 d

1 ,
2

t t tR R R r
rr

p g g V p

λ

κ ρ

− − − + + − −  

 = − + Γ − + − −Λ 

 


           (14) 

where,  

( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

2
00 11

00 11

2
00 11 22

2 2
00 11 22 2

1
2
1
2
1 2
2
1 1 d e e
2 d

t t

s s

t t t

s s s

R R
r

R R
r

R R R
r

R R R r
rr

λ

λ

λ

λ

− −

+ = + − −

′ ′+
+ = −

+ + = − + − −

+ + = − −



   



   




  




  

           (15) 

As the last equation in (14) must be applicable both to stationary and time- 
dependent cases, then ( )2 2e e ,f r tλ− −= × . However, in the stationary case, 
Birkhoff theorem states that outside the object, ( ) ( )( ), ~ 1 1f r t r− . There-
fore, without loss of generality, we may set the metric components to be of the 
forms:  

2
2

11
ee

1

C

b

g λ= − =
−

 and 2 2e C R= ,                (16) 

where ( )R R t=  and ( ),b b r t=  . The subscript “b” corresponds to the 
function in the comoving frame. 

Further inspection of the equations (see Equation (20)), shows that, for a 
slowly varying   and V c , we obtain:  

( )2 2

1 d ~ ,
d br

rr R
κ   

whose integration yields ~ m r , where 24 dm r rπ= ∫  is the enclosed mass. 
It turns out that setting ( ) ( ), ,b br t m r t r=  provides consistent solutions for 
almost all reasonable metrics. In this case, the derivatives of   read as follows:  

( )

; if 0,

1=
2 1

1 ; otherwise

b

b

b

b F

λ

 =

 +

−
= + +

 



 

 

 





 

                (17) 

where R R=  , ( )1b b b= −    and F  is a material flux function of the 
form:  

1 .
2 1

nor
bb b

b

m
F

r
α

=
−





                       (18) 

Hence the set of field equations that describes the time-evolution of the space-
time topology reads:  
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( ) ( ) ( )

( ) ( )

2 2
2 2 2 2

2

2 2
00 11

1 e1 e e e e
2 e

1
2

b
R R RF
R R R r t r r

p g g V

λ
λ

κ

−
− − − −

−

       ∂ ∂ ∂
 − + − + + +     ∂ ∂ ∂       

 = − + Γ − 

  



  




 (19) 

( ) ( )

( ) ( ) ( )

2
2 2

22
2 2

1 1 e 3 2 2 e
2

1 de .
d

b

b

R RY F
r t R R

p V r
rr R

λκ κ

− −

− −

    ∂   − − + +     ∂       

= − + + −

 



 





  

         (20) 

In addition, the conservation of energy and momentum of matter is taken into 
account by requiring that the stress-energy tensor must be divergence-free, i.e. 

0T µν
µ∇ = . This yields the following set of GR hydrodynamical equations:  

( ) ( )1 1 1 0g g V
t R rg g
∂ ∂

− + − =
∂ ∂− −

             (21) 

( ) ( )

( )2
, ,

1 1 1

1 ,
2

r r

t

tt r rr r

g g V
t R rg g

P g V g
R r R

∂ ∂
− + −

∂ ∂− −

∂
= − + +

∂

 


            (22) 

where ( )2 3 sing r R GWθ− = ,  , and V are the determinant of the metric, 
the relativistic energy-density, and the transport velocity, respectively. The 
four-momenta is defined as huσ σ=  , where h stands for enthalpy and uσ  
for the four-velocity; { }, , ,t rσ θ ϕ= . Here, the Lorentz factor reads:  

2

1 .t

tt rr

u
g V g

=
+

                        (23) 

The continuity equation may be re-written in the following compact form: 

( ) ( )2
2

1 1 0,b br V
t R rr
∂ ∂

+ =
∂ ∂
                    (24) 

where b b GW=   and 3
b R=  .  

To close the system, an equation of state (EOS) should be included, e.g. 

( ) ( )tP P P u= =  . 

2.1. Special Cases 

In the above-mentioned derivations both the metric coefficients ttg  and rrg  
are spatially and temporally varying functions. The simplest special case is Min-
kowski spacetime, where 1ttg →  and 1ttg → − . The Schwarzschild metric 
may be recovered by relaxing the time-dependency, setting 1R = , 0V =  and  

( )
2

2 m rG
rc

= , where ( )m r  denotes the enclosed mass of normal matter. The  

FRW metric is recovered by setting both the energy density and the metric coef-
ficient ttg  to constants.  

However, it is tempting to see how the above set of equations yields the TOV 
equation in the case of an object in hydrostatic equilibrium, embedded in a 
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Schwarzschild spacetime as well as the Friedmann equations in the case of an 
expanding universe.  

2.1.1. The Modified TOV Equation for Modeling Slowly Contracting  
Relativistic Objects 

Assume we are given a non-rotating and demagnetized relativistic object of 
normal matter with a constant energy-density. Following Birkhoff theorem, the 
surrounding spacetime topology may be described by the Schwarzschild metric. 
Depending on the EOS, the object may undergo a dynamical collapse or contract 
slowly, where in both cases the matter is transported from outside-to-inside with 
the transport velocity V c . Similar to other stationary observers, our pre-
ferred central observer, O0 may measure the contraction of the object with 
( ) 1R t = . In this case, Equation (19) reduces to:  

( ) ( )

( ) ( ) ( )

2
2 2 2

2

2 2
00 11

1 ee e e
2 e

1 1 ,
2 2

r t r r

p g V g p

λ
λ

κ
κ

−
− − −

−

∂ ∂ ∂
+ +

∂ ∂ ∂

 = − + Γ − = − + Γ 

 


 
          (25) 

where Γ  is the modified Lorentz factor. Inserting:  

2

2 2

e ,bb b bb b bm m m
r R r R rR r

λ α α− ′ ′′∂    = = = −   ∂    

  

where 
2

2
bb

G
c

α =  and re-arranging terms, we end up with the following equa-

tion:  

( ) ( )
3 22

2 2
2

3ee  3  1  .
1 1

bb b bb b b

b b

r m r P
t r R R r

λ α α−
− + Γ∂ ∂

+ = − Γ − −
∂ ∂ − −

 
 

       (26) 

Since a small mass perturbation would hardly affect the global topology of 
spacetime on time scales much shorter than the dynamical time scale, the 
time-derivative of   may be replaced by a numerical smoother, which enables 
the  -integration throughout the whole domain, where the conditions at the 
outer boundary are used. 

Note that when the transport velocity vanishes, the modified Lorentz factor 
reduces to one, i.e., 2 1Γ = , and the classical TOV equation:  

( )
3

2

3
,

1
bb b b

b

m r P
r R r

α +∂
= −

∂ −



                      (27) 

is then recovered. The effect of the first term on the RHS of Equation (26) is to 
steepen the gradient of the energy density in the vicinity of the surface, which 
yields smaller radii of NSs than usually obtained using the classical TOV equa-
tion. 

2.1.2. Friedmann Universe 
The Friedmann universe may be recovered by setting 0V P= = , and  

constants= =  . In this case, the components of the material tensor on the 
RHS of Equation (11) reduce to:  
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( )

( )

( )

00

11

22

3
2 2

2 2

2 2

dust
RHS p

RHS p

RHS p

κ κρ ρ

κ κρ ρ

κ κρ ρ

= − + + Λ→− +Λ

= − + Λ → +Λ

= − + Λ → +Λ

              (28) 

Setting 0′= =   and inserting ( ) 2r kr=  on the LHS of the Equation 
(13), it can be easily verified that the different terms reduce to the following ex-
pressions:  

( ) ( )( )

( )

2
2

00 11

2
2

2

1 e
2

e

1 11 2
2 2

t t R RR R
R R

k
r R

Wp V
G

λλ

κ κ

−

−

 
+ → − 

 
′ ′+ − → − 

 
 − + + → −  

 





 

               (29) 

Adding these terms together yields the first Friedmann equation:  
2

2

1 .
2

R R k
R R R

κ
 

− − = − 
 

 

                     (30) 

Similarly, Equation (14) reduces to:  

( ) ( )( ) ( )

( )( )
( ) ( ) ( ) ( )

2
2

00 11 22

2 2
2 2

2 2
00 11

1 e 3
2
1 d e e 3

d
1 2
2

t t t RR R R
R

kr
rr R

p g g V p

λ

κ ρ κ

−

− −

  + + → −      

− − → −

 − + Γ − + − + Λ → − +Λ 







 

      (31) 

Hence, adding these terms together, we obtain:  
2

2 .
3 3

R k
R R

κ  Λ
= + − 

 



                    (32) 

Substituting 
2

R
R

 
 
 



 into Equation (30), we recover the classical form of 

Friedmann’s first equation:  

1 .
2 3 3

R
R

κ Λ
= − +



                      (33) 

In terms of the classical cosmological parameters iΩ , the dimensionless scale 
parameter 0a R R= , and the dimensionless time-variable ( )0 0H t tτ = − , Equ-
ation (30) may be transformed into the following form:  

2
,0 ,0 2

,0 ,02

d .
d

m r
k

a a
a aτ Λ

Ω Ω  = + +Ω +Ω 
 

             (34) 

The subscript “0” denotes the value of the corresponding parameter in the 
present time (see [23] for further details). Depending on the specific values of 

,0iΩ , the dimensionless scale parameter a may converge or diverge as the sys-
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tem evolves with time.  

3. The Numerical Approach 

For solving the set of field equations a new numerical solver has been developed. 
The solver is unconditionally stable, as it is based on implicit time-integration 
using preconditioning techniques of Krylov sub-space iterative methods. In the 
finite space, the equations are discretized using finite volume formulation to en-
sure mass and energy conservation. In Figure 2, a schematic description of the 
solution method is depicted (for further details on the projection method and 
preconditioning techniques see [24] [25]):  

4. Time Evolution of the Fireball: Numerical Investigation 

The form of rrg  in both stationary and time-dependent cases, has the following 
form:  

( ) ( ) ( )2
2

, ,1 2where ,
1

b
rr bbb

b

m r t m r tGg r t R
r rRc

α
   

= = =   
−    




    (35) 

( ),r t  is practically the communicator that tells spacetime how to curve. Let 
us address the following possibilities for  : 

( )

( )

2

2

: Schwarzschild
TOM : incompressible normal fluids

: Schwarzschild
Normal compressible, 2

: Friedmann, ~
dust

0 : Flat
Vacuum particle-free spacetime

0 : Flat
Incompressible SuSu-matter

r

r

rr t

α

α







<











           (36) 

where TOM stands for the “Type Of Matter”. 
 

 

Figure 2. The numerical procedure: the set of analytical equations is transformed into the 
finite space,  , using the finite volume discretization strategy. The set of equations in 
  in operator form read: H HL q b= , which may be re-written in matrix form as 
Aq b= , where A is the corresponding matrix of coefficients. The matrix equation is then 

simplified and replaced by A dµ = , where A  is a preconditioner that shares the eigen-
values of A, µ  is a correction vector that entails deviations from the original solution 
and d is the defect. The iteration procedure should continue until the maximum norm of 
µ  has dropped below the tolerance value. 
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It should be noted here that in the case of incompressible normal matter with 
( )0=   , the field equations lose their predictability power and would enforce 

the pressure to become ultrabaric and acausal.  
The dependence on time endows ( ),b r t  with another degree of freedom: 

The topology of spacetime depends not only on the total mass, but on the nature 
of matter also, and in particular, the spacetime should be prepared to imme-
diately change its topology, depending on whether it embeds normal compressi-
ble matter, SuSu-matter, or particle-free vacuum.  

In the present case, the progenitor of the BB is made of incompressible Su-
Su-matter. Hence prior to the BB, i.e., for 0t ≤  relative to 0 , the embedding 
spacetime was flat. 

However, at 0t =  the fine-tuned surface tension confining the enclosed 
ocean of the SuSu-matter inside the progenitor, undergoes an abrupt decay, 
through which a hadronizing front is formed, which propagates from out-
side-to-inside. Behind the front, the deconfined SuSu-matter converts into ha-
drons. The released energy, which is expected to be of the order of 1 GeV per 
hadron, creates an extraordinary huge pressure, whose P∇  enforces the newly 
created normal matter to propagate outwards with ultrarelativistic velocity. This 
velocity may be predicated from the momentum Equation (22) as follows:  

( )2 2 2 ,
u

u u
grav S

Pu P f u V c
t D D

∂ ∇
≈ − + ⇒ ≈ = ≈

∂
           (37) 

where uu  is the radial component of the contravariant four-velocity. We used 

bbr∆ = ∆  as the length scale over which P∇  changes significantly.  
As it will be explained later, since 0grav rf →∞→ , and therefore its decele-

rating effect decreases with the distance to 0 , and therefore the outward- 
moving particles would naturally be seen as accelerating outwards. In particular, 
the particles in the outermost shells, where the topology hardly differs from that 
of a flat spacetime.  

To manifest these arguments, we carry out our calculations, using the follow-
ing reference quantities  

[ ] 22
03 , 10 , .M M V cρ ρ    = = =   

 

  

These are used to non-dimensionalize the field equations. Based thereon the 

reference radius reads: [ ] ( )( )1 3
3 4 1.21 AUr M ρ  = ≈   

π 

 . which yields  

[ ] 10minτ ≈ . 

Although the inward propagational speed, fV , of the hadronization front, 
HD , should be taken as an input parameter, we simply set fV  to be equal to 

the speed of light. The reason is that inside incompressible SuSu-matter with 
0P∇ = , communications are conducted with the speed of light only. 

Hence, the hadronization front would reach the center roughly after 10 mi-
nutes, whilst the expansion front, EX , should have reached [ ]2r r= ×  . 

The production rate of normal matter norM  and the corresponding total 
mass norM  at time = t read:  
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2

0
0 0

2 3

0
0 0 0

 1 2

 3 3

f fnor

f f fnor

tV tV
M F

r r

tV tV tV
M M

r r r

    
 = + −   
     
      
 = − +     
       



             (38) 

where ( ) 3
0 04 3 crM rρπ=  and ( ) ( )2

0 04 cr fF r Vρ×π=  are the reference total ini-
tial mass of the progenitor and the initial outward-oriented flux of energy, re-
spectively. 

In Figure 3, we show the time-evolution of the spacetime topology during the 
propagation of the hadronization front without hydrodynamics. Here, the mass 
of SuSu-fluid decreases whilst the mass of the newly created normal matter in-
creases, thereby enforcing the spacetime to change its topology from flat into 
curved. On the other hand, the expansion front, EX , which separates the en-
closed curved spacetime from the unperturbed surrounding flat spacetime, starts 
propagating outwards at the speed of light.  

When including hydrodynamics, the flow configuration mimics the classical 
relativistic shock tube problem (RSTP, see [24] for further details). In Figure 4, 
the time-dependent motion of normal matter triggered by the pressure gradient 
under flat spacetime conditions is shown. Here, the matter is jettisoned into the  
 

 

Figure 3. Different snapshots of the profile of total mass of normal matter,  , and the gravitational potential  , during the 
propagations of both the inward-oriented hadronization, HA , and the outward-oriented expansion front, EX . In these calcu-
lations, hydrodynamics are not included. 
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Figure 4. Radial distributions of the energy-density  , transport velocity, V, and Lorentz factor, Γ , at different times are shown. 
When the quantum surface tension confining the SuSu-matter inside the progenitor is destructively perturbed, a hadronization 
front forms at the surface which, in turn, generates pressure, whose P∇  sets the newly created normal matter into out-
ward-oriented motion at ultra-high relativistic speeds. The spacetime shortly after the formation of the hadronization front is flat 
and therefore the flow configuration is identical to the classical relativistic Riemann problem. 

 
surrounding flat spacetime with ultrarelativistic velocity, reaching very high Lo-
rentz factors. In these calculations, the thermal energy is accounted for by mod-
ifying the total pressure as follows: ( ) 2

tot ramP P P V= + = +   , where ramP  
stands for the ram pressure. Similar to the non-relativistic shock-tube problem, a 
rarefaction wave forms, which propagates in the opposite direction, expands the 
matter and lowers its pressure (first panel, Figure 4). 

In the following step, we allow spacetime to evolve according to Equation (19). 
The initial configuration is a progenitor with incompressible SuSu-matter em-
bedded in a flat spacetime. However, at 0r r=  boundary conditions were im-
posed, that prohibit escape of matter from the initial domain of the progenitor. 
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Depending on the compactness parameter, 0 S bbr rκ α= =  and the EOS, the 
surrounding curved spacetime compresses the matter in the central region to-
ward forming a hydrostatic core. Indeed, in the limit of t →∞  the equation for 
 , which we term as the gravitational potential, converges to the TOV, which is 
usually used to model the interior of NSs in hydrostatic equilibrium (see Figure 
5 and Figure 6). Whilst the matter accumulates in the very central region, the 
gravitational potential well becomes increasingly deeper. 

When removing the BCs on the velocity and pressure at 0r r= , the resulting 
large pressure gradient jettisons the newly created hadrons into the surrounding 
spacetime with ultrarelativistic velocities, leaving little time for the matter to ac-
cumulate in the central region to form a core in hydrostatic equilibrium. 

As anticipated, when the SuSu-matter in the outermost shell of the progenitor 
decays into hadrons, the surrounding spacetime starts curving. This, in turn, 
compresses the newly created normal matter via a compression front that fol-
lows, but is still slower than the inward-propagating hadronization front (see the 
first panel in Figure 6). Had the compression front hit the center, then the infal-
ling matter bounces back and turns into outflow (second panel in Figure 7). 
Note that the transport velocity increases with both time and distance from the  
 

 

Figure 5. Snapshots of the radial distribution of the energy density  , the total mass of normal matter,  , the transport veloc-
ity, V, the modified Lorentz factor, Γ , and the gravitational potential,  , during contraction of a DEO. The boundary condi-
tions here do not allow transport of normal matter into the surrounding space. In these calculations, an enhanced shock-capturing 
method is developed to avoid bouncing. The final configuration here is shown to converge smoothly into forming a core in hy-
drostatic equilibrium, whose interior may be well-described by the classical TOV equation. 
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Figure 6. Snapshots of the radial distributions of the energy density  , the total mass of normal matter,  , the transport ve-
locity V and the modified Lorentz factor Γ  during the early stages of the contraction of the progenitor. In these calculations, the 
boundary conditions do not allow transport of normal matter into the surrounding. Obviously, the compressional front initially 
forms at the surface, starts propagating inwards. Depending on the EOS, the final configuration is a core in hydrostatic equili-
brium whose interior is described by the modified TOV equation. 
 

 

Figure 7. Snapshots of the radial distributions of the energy density  , the transport velocity V, the modified Lorentz factor Γ  
and the gravitational potential   for different times during the hadronization process of the progenitor and beyond, starting 
from 1 0t =  (blue) and ending up at 9 6t =  (black). 
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center, and therefore is practically accelerating outwards relative to 0 . In the 
third panel the modified Lorentz factor, Γ  is displayed versus distance. We re-
call that: 

2

2

2

2

2

: General form

1: Hydrostatic core embedded in curved spacetime

1 : Flat spacetime
1

tt rr

tt rr

g V r
g V r

β
β

 +
 −Γ = 
 +
 −

       (39) 

Obviously, for matter configurations that are slowly contacting or in hydros-
tatic equilibrium, 2Γ  is more indicative than the classical Lorentz factor. 

In the fourth panel the time-evolution of  , which is dubbed gravitational 
potential, is displayed. Here, during the accumulation of matter in the central 
region, the gravitational potential becomes increasingly deeper, which agrees 
with the numerical experiment in Figure 3. However, had the core entered the 
bouncing phase, which is expected to occur on the dynamical time scale, the 
spacetime at the background would start flattening, in accord with the minimum 
energy theorem (see Equation (40) below).  

To clarify this point we note that in the stationary case, the minimum energy 
theorem states that the gravitational energy/mass, g , of an object can be ex-
tracted from the curvature of the embedding spacetime as follows:  

2

0

1 lim d
16

0 flat spacetime
Schwarzschild spacetime

i k
g i kk iSr

n g g g S
x x

M

→∞

∂ ∂ = − ∂ ∂ 


=


π



∫ 

 



            (40) 

For further details see [14] [26]. 
In obtaining the last equality, we relied on the Birkhoff theorem, which states 

that the surrounding spacetime topology may be described by the Schwarzschild 
metric. 

In the present time-dependent case, Birkhoff theorem is valid only in the do-
main between the shock front, SH , and the expansion front EX , only. Here 
the time-dependent gravitational potential reads:  

( )
( )

( ) ( )
( )
0

, :

, log 1 :

0 :

SH

SH EX

EX

r t r r

r t M r r t r r t

r r t

≤
= − ≤ ≤
 ≥



            (41) 

where SH SHr V t  and EXr ct  are the radial distances of both the shock and 
expansion fronts, respectively. 

The integral may be transformed into an infinite series, where each summand 
represents the enclosed mass of a newly created ring of normal matter at a time 

nt . Since the series converges to 0 , the integral should be transformable into 
the sum of infinite discrete summands as follows: 
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( ) ( )2

0

0
0

1 1lim d ,
16 16 nrSr t tc

S f t
∞

→∞ = →∞ =

∗ 
π

→
π

=∑∫            (42) 

where ( )nf t  corresponds to the time-dependent form of the integrand at time 

nt . For 0t r c≤ , the total mass of normal matter increases with time and the 
corresponding potential well becomes increasingly deeper. 

For 0t r c≥  the total mass of normal matter enclosed within the outward- 
moving radius ( )shr r t≥  is 0 , whereas the gravitational potential  
( ) 0, ~ log 1 EXr t r−  , and therefore decreases with time and distance. As a 

consequence, due to the significant increase of the volume enclosing the normal 
matter, the gravitational potential starts flattening in the inner part (see   in 
Figure 7). In the limit of 0τ τ∆ , the curved spacetime would converge to a 
flat one and our observer 0  would hardly see anything, but a flat spacetime. 

A comoving observer sitting at the shock front would experience deceleration 
if the expansion front is much faster than the shock front, whereas a stationary 
observer at the center would see the shock front accelerating outwards. 

It should be noted here that the large outward-oriented relativistic velocities 
of normal matter must be extremely redshifted, so that 0  would fail to observe 
their motions unless they collide with existing objects and galaxies. In this case, a 
considerable amount of mass of the inflowing normal matter sticks to the ga-
laxy’s constituents, thereby transferring a huge amount of momentum and en-
forcing the galaxy to start moving outwards; hence accelerating outwards with 
respect to 0 . This process has a significant effect, as, in addition to setting the 
galaxy in outward-oriented global motion, it turns old and inactive galaxies into 
active mode, in which accretion is activated and jets are initiated, so that they 
can be easily seen by remote observers. 

5. Summary and Discussion 

Based on our previous studies of glitching pulsars, an alternative model for the 
BB has been presented. Accordingly, pulsars are born with embryonic cores that 
are made of incompressible SuSu-matter. As pulsars evolve over cosmic times, 
these embryonic cores grow in mass and dimension to finally metamorphose 
into invisible dark energy objects. This phase corresponds to the lowest quantum 
energy state. According to our conjecture, the spacetime embedding SuSu-matter 
must be flat.  

For 14τ τ≥ , these DEOs should have ample time to conglomerate into a clus-
ter, and then subsequently merge to form the 2010 M



 massive progenitor of 
the BB with a flat spacetime at the background. 

At 0t +=  with respect to 0 , the progenitor underwent an abrupt decay, 
thereby initiating four fronts that started propagating in different directions and 
speeds (see Figure 8): 
 A hadronization front, HA , that formed at the surface and propagated in-

ward at the speed of light, behind which SuSu-matter was converted into vi-
rially hot and dissipative normal matter, which, in turn, interacted with space-
time and converted it into a curved one. 
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Figure 8. A schematic description of the evolution of spacetime (ST) topologies during 
the big bang event. Starting at the surface of the progenitor (BB), the hadronization front, 

HA , starts propagating inwards with the speed of light, thereby converting the Su-
Su-matter into normal matter, and changing the topology of the embedding spacetime 
from flat into a curved one. The newly created normal matter is jettisoned in the direction 
of P−∇ , thereby forming a shock-front SH , which is then immediately overtaken by 
the outward-propagating expansion front EX . The latter changes the spacetime topol-
ogy from flat into a curved one. Relative to 0 , both curved spacetimes between HA  
and SH  (red colored) as well as between SH  and EX  (yellow colored) increase 
with time. However, as the total mass of normal matter is finite, the curved spacetime 
starts to flatten and converge to a flat on time scales much longer than the dynamical one, 
i.e. dynτ τ . 

 
 An expansion front, EX , of spacetime, which formed at the surface and 

propagated outwards at the speed of light, thereby changing the topology of 
spacetime from flat into a curved one. 

 HA  would be followed by the compression front COM , which the sur-
rounding curved spacetime exerts on the enclosed normal matter, but not on 
the incompressible SuSu-matter. Due to the opposing force of the pressure, 

COM  would propagate much more slowly than HA . 
 Triggered by the gradient of the pressure of normal matter at the surface of 

the progenitor, a shock front, SH , started propagating outwards, whose 
speed is determined by both the EOS and the ratio of the pressure across the 
surface. Given the perfect spherical symmetry of the progenitor and that 

0P= =  in the surrounding flat spacetime, SH  of the normal matter in 
the outermost shell would hardly differ from, though more slowly than EX . 
This implies that the matter-free domain which is bounded between SH  
and EX , increases with time. However, the outward propagational speed of 
the matter in the following shells must be smaller, as the corresponding mat-
ter still has to climb up the gravitational well in which it is located. For the 
stationary observer 0 , this matter appears accelerating outwards, render-
ing its re-collapse into a BH. 
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In this paper, we have presented also the theoretical foundation of the scena-
rio, by deriving the time-dependent GR field equations in combination with the 
general relativistic hydrodynamical equations.  

A new metric, which unifies the Minkowski, Schwarzschild and Friedmann 
metrics has been presented and implemented in the present model of the BB. 
Moreover, a modified TOV-equation for modeling contracting relativistic ob-
jects has been presented. 

A highly robust time-implicit numerical solver, which relies on precondition-
ing techniques within the framework of Krylov subspace iterative methods, has 
been employed to solve the above-mention set of equations numerically. 

The numerical results obtained are in line with the here-presented scenario. In 
Figure 9 and Figure 10, we schematically outline the different aspects of the 
scenario, but the main consequences may be read as follows, though theoretical 
investigations and observational data are still needed to ensure their validities 
further: 
 We conjectured that the spacetime inside zero-temperature QG-condensates 

that are motionless relative to remote stationary observers ought to be flat. 
This corresponds to the lowest quantum energy state, which should be com-
patible with the surrounding vacuum states [15] [16]. Putting a certain num-
ber of such QG-condensates, each component would be transparent to the 
other, and so they ought to overlap towards forming a parent condensate, 
whose mass and dimension are the linear addition of those of the individuals. 
The matter in the cores of massive NSs is expected most to share these prop-
erties, and therefore the spacetime embedding these cores should be flat. We 
note that the flatness requirement of spacetime inside zero-temperature 
QG-condensates is equivalent to demanding them to be in an incompressible 
state.  

 Another implication of the above-mentioned conjecture is that the laws of 
nature would permit the existence of a universal maximum energy-density, 

uni
maxρ , beyond which matter becomes purely incompressible. In this case, the 

matter is well-prepared to resist all types of external destructive perturbations, 
as communications are maintained at the speed of light. Consequently, the 
collapse of astrophysical objects with incompressible SuSu-cores need not 
end up forming BHs, but the SuSu-cores would enforce the infalling matter 
to bounce off, through which they increase in masses and size. 

Indeed, based on the numerical solution of the Gross-Pitaevskii equation for 
modeling Boss-Einstein condensates (see Section 2.4 in [14]), it was shown that 
the merger of two DEOs proceeds rather stably and smoothly, without develop-
ing destructive perturbations. This in turn may indicate that the NS-merger 
GW170817 may have formed a NS with a much more massive core, rather than 
collapsing into a stellar BH (see [27] [28] [29] for further details). 

In an infinite universe, these BB-cycles may occur in the sub-domains sequen-
tially and/or in parallel as depicted in the lower panel. 
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Figure 9. A schematic description of the BB-scenario as seen by the supra-observer G0: on time scales comparable 
to or even larger than the age of the universe, a certain number of DEOs find their ways to conglomerate and form 
a tight cluster, where they subsequently merge smoothly and form the hypermassive progenitor of the BB. At a 
certain time, it undergoes an abrupt decay, triggering a hadronization front, HA , which starts propagating from 
outside-to-inside, thereby converting the SuSu-matter into normal dissipative matter and changing the spacetime 
topology from flat into a curved one. At the same time, the decay triggers an expansion front EX , which starts 
propagating outwards, thereby changing the topology of the surrounding matter-free spacetime from flat into a 
curved one. Once EX  has hit and marched throughout old and quiet galaxies, it sets them in active mode, 
which we identify as high redshift QSOs. For dynτ τ  the curvature of spacetime embedding the BB-explosion 

starts flattening in accordance with the minimum energy theorem. 
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Figure 10. A schematic description of BB-cycles in the multiverse scenario as seen by the 
supra-observer G0. Pulsars are born with embryonic cores of incompressible SuSu-matter 
(a), these cores grow in mass and dimension in a discrete manner (b, c) and finally me-
tamorphose the entire dead NSs into invisible DEOs (d). On time scales comparable to or 
longer than the age of the universe, part of these objects conglomerate to form a cluster of 
DEOs (e), that subsequently merge to form a hypermassive DEO (f), which serves as the 
progenitor of the next BB. At a certain time, it undergoes an abrupt decay (f), thereby ha-
dronizing the entire progenitor and giving rise to a BB-explosion (f), later on the jetti-
soned matter cools down and forms stars, part of which collapse to form the next genera-
tion of pulsars. 
 

It should be noted here that the event horizon of a 2210 M


 massive object 
made of normal matter is of order 1027 cm. Hence, without invoking inflation 
and violating causality, our universe must theoretically have collapsed into a 
hypermassive BH. In the here-presented scenario, however, our universe is shown 
to expand forever, without invoking inflation and dark energy, whilst still res-
pecting causality.  
 The ADM mass is generally calculated from the integral (40), provided that 

the concerned object is standing there forever. However, in the time-dependent 
case, the causality condition requires the curved spacetime from which gra-
vitational mass-energy is extracted, to have a finite dimension. Recalling that 
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the convergence of SuSu-matter into normal matter was completed after 10 
minutes, generating a fireball with a fixed mass of 2210 M



, which must re-
main constant. As both the fireball and the embedding spacetime are ex-
panding, the curvature must start flattening from inside-to-outside (see Fig-
ure 7). In this case, the following two logical consequences emerge: 

1) Once the outward-propagating expansion front, EX , has hit and 
marched through faint and quiet galaxies, the local spacetime is perturbed and 
their contents must re-arrange their trajectories, thereby transforming the ga-
laxies into active modes, that we observe today as active galaxies and powerful 
QSOs.  

2) After the first 10 min, the total mass of normal matter was 2210 M


, and 
was enclosed inside a sphere of radius 2.4 AU. Since then the curvature of space-
time has been continuously flattening, which yields a relative curvature:  
( ) ( ) ( ) ( ) 2 30today 10min ~ 10min today 10Q t Q t r t r t −= = = = ≈   . This implies 

that the universe today must be extraordinarily flat. 
 Based on the here-presented scenario, we conclude that BB-explosions are 

local recurrence phenomena in an infinite universe, that may take off from 
time to time in different sub-domains sequentially and in parallel. These 
sub-domains are dynamical; they may overlap with others, disappear, or even 
be created anew. Each sub-domain may be populated by all types of objects 
and its dimension and age are determined by the time it takes to restore the 
spacetime topology into a flat one. The life-cycle of each sub-spacetime fol-
lows the same evolutionary scenario of the BB in our universe: here pulsars 
evolve into NSs, these become DEOs. Large number of DEOs may conglo-
merate in a certain location in the sub-domain, they merge and form a giant 
progenitor made of SuSu-matter.  

Note that in an infinitely large universe, the mathematical probability of as-
sembling a sufficient number of DEOs in a certain location is vanishingly small, 
but certainly not zero. Also, expansion of spacetimes of certain sub-domains of 
the infinite universe cannot rule out the possibility that they may be contracting 
in other sub-domains. These expansions/contractions may not affect the topolo-
gies of local spacetimes inside galaxies, which in turn may facilitate assembling 
of objects. Once assembled and smoothly merged to form the progenitor, the 
latter may undergo an abrupt decay that leads to its entire hadronization, there-
by creating a giant fireball. Its content cools down and stars are formed, part of 
which collapse to form pulsars and so on. 
 The total mass of normal matter-made objects that evolved from the BB of 

our universe may most likely be much lower than expected, as spacetime 
surrounding the progenitor of the BB may have been populated by numerous 
dead objects and galaxies. 

 SuSu-matter can be found in pulsars, NSs, magnetars and even in stellar and 
supermassive BH-candidates. This implies that these objects may be much 
more massive than predicted from observing normal and luminous matter. 
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This is a direct consequence of the flat spacetime topology that embeds Su-
Su-matter. 
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