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Abstract 
Previous theories of quasicrystal diffraction have called it “Bragg diffraction 
in Fibonacci sequence and 6 dimensions”. This is a misnomer, because quasi-
crystal diffraction is not in integral linear order n where nλ = 2dsin(θ) as in 
all crystal diffraction; but in irrational, geometric series τm, that are now 
properly indexed, simulated and verified in 3 dimensions. The diffraction is 
due not to mathematical axiom, but to the physical property of dual harmony 
of the probe, scattering on the hierarchic structure in the scattering solid. By 
applying this property to the postulates of quantum theory, it emerges that 
the 3rd postulate (continuous and definite) contradicts the 4th (instantaneous 
and indefinite). The latter also contradicts Heisenberg’s “limit”. In fact, the 
implied postulates of probability amplitude describe hidden variables that are 
universally recognized, in all sensitive measurement, by records of error bars. 
The hidden variables include momentum quanta, in quasicrystal diffraction, 
that are continuous and definite. A revision of the 4th postulate is proposed.  
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1. Introduction 

Einstein claimed Bohr’s theory is incomplete: “the wave function does not pro-
vide a complete description of the physical reality” [1]. Their views represented 
two physics in schism [2]. Quanta are fundamental. Our theory of diffraction in 
quasicrystals is falsifiable and verified [3].  

The quanta are not only harmonic; but harmonic in dual series: geometric and 
linear. Many have believed the quantum is real, rather than conceptual and axi-
omatic. The quasicrystal proves its reality. The formula for the free electron or 
photon probe, that consistently and realistically describes interactions by the 
dual wave-particles, can be further used to describe the reduction of the wave 
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packet in space and time. The real probe bridges a short-cut that is taken by the 
method of mathematical probability amplitudes. The quantum finds new ex-
pression in the peculiar diffraction that we observe in quasicrystals [3].  

Consider the quantum wave-packet in momentum space: in a scattering crys-
tal, both the probe wave-packet and Bragg diffraction are periodic, while their 
interaction is harmonic in space and time, by linear, integral orders. By contrast, 
diffraction from quasicrystals occurs in geometric series of irrational orders [4]. 
This scattering corresponds to hierarchic structure in the quasicrystal. It turns 
out that the quasi-Bloch waves—that are generated by the hierarchic scatterer and 
that mediate the quasi-Bragg diffraction—are dual harmonic in both geometric 
and linear series: the periodic probe scatters into geometric space.  

How, we ask, does this realistic, dual harmony in the quasicrystal compare with 
the following 4 postulates of orthodox quantum mechanics [5]: 

1) Representational completeness of ϕ. The rays of Hilbert space correspond 
one-to-one with the physical states of the system. 

2) Measurement. If the Hermitian operator A with spectral projectors {Pk} is 
measured, the probability of outcome k is kPφ φ . These probabilities are ob-
jective, i.e. indeterminate. 

3) Unitary Evolution of isolated systems: 

( )1expU Htφ φ φ−→ = −  

and therefore deterministic and continuous. 
4) Evolution of systems undergoing measurement.  
If Hermitian operator A with spectral projectors {Pk} is measured and out-

come k is obtained, the physical state of the system changes discontinuously:  

( )k k kP Pφ φ φ φ φ→ =  

Notice the opposites in the 3rd and 4th postulates: the unitary evolution is con-
tinuous and deterministic; the measurement is discontinuous and indeterminate. 
Heisenberg’s uncertainty “limit” seems to have been arbitrarily discarded. The 
examination of dual harmonies in the wave-packet, preserves his limits. 

In this paper, we consider first the probe, with group velocity and phase ve-
locity variables; then illustrate dual quanta in quasicrystals; and finally describe 
the evolutionary reduction of the wave-packet using the known variables. The 
treatment is not so much probabilistic as classically crystallographical. Wherever 
measurement predictions are calculated to be the same in realistic theory as in 
probabilism, the theories are, in logic, equally “true”; however, the dual harmonics 
in quasicrystals demand redefinition of the quantum, and they are consistent with 
continuous change during measurement.  

2. Wave-Packet 

Consider the interaction, in time and space, between an X-ray or electron wave- 
packet and a quasicrystal. This stable wave-packet [6] is deduced from the com-
bination of wave-particle duality, Maxwell’s electromagnetism, special relativity, 
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Planck’s law, and the de Broglie hypothesis, all expressed in simplified units with 
unified reduced Planck constant 1 c= = , the speed of light. The rest mass 
(zero for the photon) of the probe is given by: 

( )( )2 2 2
om k k kω ω ω= − = + −                     (1) 

where ω is its angular frequency; k its wavevector; and mo its rest mass (zero for 
the photon). The equation is separable into conservative and responsive parts. 
For a normal free particle, the wave function may be expressed1: 

( )
2

2, exp
2
Xt x A Xϕ
σ

 
= + 

 
 with imaginary: ( )X i t kxω= −        (2) 

where uncertainty σ depends on initial conditions that determine coherence of a 
packet in space and time (in manifold rank ℜ4) and where A2 is a normalizing 
constant2. The variables ω  and k  are mean values. The Gaussian envelope func-
tion is conservative and contains energy, momentum, mass density, intrinsic spin 
etc. The imaginary factor in exp(X) is responsive as an infinite wave with uni-
form density for all x and t: (eX) * (eX) = 1. It describes interference, superposi-
tion, entanglement, creation, annihilation, harmony, resonance, etc. Equation (2) 
is not only stable mathematically with energy and momentum conservation; but it 
represents stable photons from the microwave background that have travelled 13 
billion light years (cf. [7]). 

The packet has many special properties. Differentiation of Equation (1) pro-
vides the equations for dispersion dynamics [6] in simplified units, including: 

d
d 1

k k
ω ω
⋅ =                             (3) 

where the normalized phase velocity of the wave vp/c = ω/k. Notice this phase 
velocity, in vacuo, is—for particles with mass mo > 0—faster than the speed of 
light c. It does not conflict with relativity because the phase does not carry ener-
gy and is not measurable directly, but it is a real part of physics and we apply it 
below. The beat velocity is the normalized group velocity, vg/c = dω/dk [3] [6]. 
Notice that the group, velocity vg/c = (dω/dk)−1 = energy/momentum, and is the 
velocity of the reference frame in relativity, i.e. less than the speed of light. For a 
free particle, vg/c = k/m', i.e. momentum/relativistic mass. 

The phase velocity vp is the ratio of the two most measured variables in atomic 
physics and is very easily derived from the free particle wave equation eX, while it 
is totally ignored in texts about quantum theory and even denied [7]. Its inverse 
vg by comparison, that is theoretically derived with comparative difficulty as beat 
velocity, is the dominant variable in special relativity and even in quantum me-
chanics. As we illustrate below, the neglect of vp causes major confusion, e.g. in 
collapse.  

The probe is uncertain in space and time [8]: 

 

 

1We let ϕ stand for a density function of either photon or electron. 
2In the simplest case with k linear, ( )( )* 2 22 exp dA A X σ τ= ∫ . 
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8; 8, , ,it k i i x y zω∆ ⋅∆ = ∆ ⋅∆ = =                    (4) 

since σ (in Equation (2)) cancels after Fourier transformation. We shall consider 
uncertainty in collapse after reporting on the reality of dual harmonics in quasi-
crystals.  

Notice that this physical result is sharply distinguished from signal processing 
of electromagnetic waves: in the latter case, c depends on physical laws that are 
invariant in all inertial reference frames, so that, wherever mo = 0, vp = c = vg. 
The speeds may be measured by reflections of signals into space, or from inter-
ferometry. However, in the former case, as applied to electron microscopy, gv c  
so that pv c . We will apply this internal motion of the wave packet in double 
slit interference. 

Moreover, the wave-packet has remarkable properties that have been over-
looked in standard quantum mechanics. The packet enables spatial entanglement 
in the propagation direction as in the transverse directions, and also enables ac-
tion at distances, with speeds faster than c, in waves representing massive par-
ticles. We shall return to this property in the context of Young’s double slit ex-
periment, but are uncommitted regarding and Bell’s inequalities and observa-
tions from crossed polarizers. 

3. Hierarchic Structure 

The probe just described diffracts off a hierarchical quasicrystal (QC) with ico-
sahedral symmetry in its diffraction pattern. Not only is the pattern forbidden in 
Bragg diffraction from crystals, but so also are the diffraction orders which are in 
geometric series that is emphatically inconsistent with the integral orders n in 
Bragg’s law: nλ = 2dsin(θ), where λ = 2π/k is the probe wavelength; d is the in-
terplanar spacing for a particular diffraction beam; and θ is half the scattering 
angle. The law is very well understood in terms of harmonic reflections of the 
periodic probe from atomic sites that are periodic and crystalline. By contrast, 
quasicrystal diffraction is often misnamed “Bragg diffraction in Fibonacci se-
ries”, which is a contradiction in terms for reasons already given. A priori, rela-
tionships between n, λ, d and θ are undefined. We had to work out both the law 
of quasicrystal diffraction and to understand the harmonies that are required 
between the periodic probe and the geometric series diffraction. It is obvious 
that the quasicrystal is structured from hierarchically arranged icosahedra be-
cause—especially after the unit cell is identified and measured—this introduces 
the geometric series with the point group symmetry of the pattern. Moreover, 
the unit cell is icosahedral and is extremely dense owing to the precise diameters 
not only of Mn and Al atoms in the first quasicrystal observed [4] but of all of 
the diatomic 1:6 quasicrystals subsequently reported. The structure is therefore 
uniquely icosahedral. 

Furthermore, complete indexation in three dimensions was developed from a 
stereogram of the icosahedral structure, both for the principal axes as for the 
diffraction planes that are normal to them. The indexation was three dimension-
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al and geometric, which excludes the prior usage of six dimensions. Dimensions 
should not be multiplied without necessity. The indexation of the diffraction 
pattern is complete [4].  

From the hierarchic structure, quasi-structure factors could be calculated by 
formulae [4] that are modified from classical structure factors for crystals. The 
modifications included, firstly a scaling factor cs to compensate for the (linear) 
aperiodicity of the structure that causes surprisingly sharp diffraction; and se-
condly an iterative procedure that summed quasi-structure factors over a large 
quasicrystal of selected order so as to account for the aperiodicity of the unit cell. 
By numerically scanning values for cs, it was found to maximize at a unique val-
ue for all quasi-Bragg reflections. Applying this value, the calculations provided 
a range of intensities that matched very well the wide range of experimental val-
ues observed in the diffraction patterns. Not surprisingly, the structure factor 
intensities were all close to zero at Bragg scattering angles, but consistent with 
experimental line intensities at scattering angles that were larger than defined by 
Bragg’s law3. The divergence from the Bragg condition depends on the cohe-
rence factor, cs = θ/θ': the Quasi-Bragg law was therefore deduced: 

( )2 sinm dτ λ θ′ ′=                         (5) 

for the simplest index (h, 0, 0) with ( )1 5 2τ = + , i.e. the golden section, and 
with interplanar spacing:  

( )2 2 1 22d a h k l
−

′ ′= + +                       (6) 

having generally irrational values h, k, l, for each a member of the series 0, τ−1, 1, 
τ, …, τm, …, and having quasi-lattice parameter a′ , which was consistently 
measured in the conventional way [9]. The primes indicate modified versions of 
Bragg variables as they apply to QC diffraction (Equation (5)). 

4. Summary of the Analytic Derivation 

Whether the QC diffraction series is Fibonacci or geometric is nominal, since 
the following identities can easily be demonstrated by mathematical induction: 
[9]: 

( ) ( ) ( ),11, 0,1 0,1m
m m m mF F Fτ τ δ τ= = + +              (7) 

where the brackets define the bases for the mth term of the Fibonacci series Fm 
and δm,1 is the Kronecker delta. The geometric series is irrational, but Equation 
(7) shows how it can be separated into a natural part, δm,1 + Fm(0, 1), and irra-
tional part, Fm(0, 1)τ. By substituting the last τ by 3/2, an approximate natural 
value for τm is obtained, and subtraction of this approximate natural value from 
the original irrational geometric number, yields an extraordinary and exact value 

 

 

3In crystals, structure factors are calculated from atoms in a unit cell, and the number of values is 
therefore restricted. In pure Al, for example, there are only two values: 0 (when half the atoms scatter 
in antiphase) or 4. In quasicrystals, the quasi-structure factors are calculated over all the scattering 
atoms in selected structural orders of clusters, superclusters etc. This calculation is performed itera-
tively. 
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1/cs,. which we will call also the metric function (Equation (8)). The match is 
emphatically extraordinary because the comparison is between numeric and ana-
lytic answers, that are the same for all m, i.e. τ − 0.5. 

The exact match clarifies the nature of cs. The irrational part of the index pro-
vides a scaling factor for the scattering of probe by specimen, that results in dual 
harmonics in the diffraction (Section 4). The scaling factor describes a ratio be-
tween a Bragg angle from a cubic crystal having lattice parameter a  and integral 
indexation, from a corresponding quasi-Bragg angle in quasicrystals with qua-
si-lattice parameter a′  and geometric indexation. The ratio results from path 
differences between neighboring rays in the quasi-Bragg scattering [10]. The ir-
rational part, phase shifts the ray paths that are longer than in Bragg diffraction. 
The result is that corresponding quasi-Bragg diffraction angles are not only 
sharply defined; but are fractionally larger by ~11.18… % after allowing for dif-
ferent indexations in electron microscopy where sin(θ)~θ. The fraction is the 
peculiar consequence of the ideal icosahedral, hierarchic structure. The diffrac-
tion pattern is a map of quantized momentum transfers. The dual harmonics de-
termine the momentum quanta that define quasicrystal diffraction patterns. The 
following illustration is by quasi-Bloch waves that are stimulated by the interac-
tion of the probe that scatters inside the quasi-lattice.  

5. Dual Harmonies That Occur in Irrational, Geometric 
Order 

The diffraction mechanism by quasi-Bloch waves in QCs at the quasi-Bragg 
condition, illustrates consequences of the irrational QC diffraction. In a crystal 
oriented to a first order Bragg condition, an advancing high-energy electron- 
beam interacts with the reflecting lattice to form two momentum dispersed Bloch 
wave bands [11]. Relative intensities of the zeroth order and first order beams 
depend on specimen thickness and on specimen orientation, and they form reg-
ular fringes in wedge foils; and lattice images in high resolution imaging [12]. 
The images are commensurate with the unit cell and with all cells periodically 
repeating. This is represented in the blue wave of Figure 1. However, these pe-
riodic Bloch waves are incommensurate with the hierarchic quasi-lattice that is 
geometric and irrational. However if their scale is multiplied by the metric func-
tion (Equation (8)) [3] [9];  

4

1

21 11
0.894

m
m

s m

F
c F

τ +

+

−
= + =                    (8) 

the (red) wave becomes commensurate with the geometric quasi-lattice both 
long-range, and simultaneously at linear short-range on each geometric inter-
cept, i.e. for all m. In Equation (8), Fm represents the Fibonacci sequence, base 
(0, 1). The quasi-Bloch wave is translationally invariant about all geometric in-
tercepts a'τm. Notice that the spacings between intercepts are in Fibonacci series 
that are represented by the denominator in Equation (8), Fm+1. 
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Figure 1. Crystalline Bloch waves (blue) are commensurate with their unit cell and corresponding periodic crystal 
lattice at the Bragg condition. When this wave is stretched horizontally by the inverse coherence factor 1/cs , the qua-
si-Bloch-wave (QBW in red) commensurates with the irrational, geometric and hierarchic, quasi-lattice. Its geome-
tric order is represented by the intercepts on the horizontal line above it. The digitized number of periodic cycles 
between successive intercepts is in Fibonacci sequence (denominator in equation 8), and the diffraction is logarith-
mically periodic. The natural and irrational parts of the indices are separable: the irrational part is expressed by the 
metric stretch; the natural part scatters with sharp, coherent diffraction [3]. 

 
Most Important is the fact that the quasi-Bloch wave is dual harmonic. The 

irrational part of any index is represented by the metric function (Equation (8)) 
and this digitizes the periodic probe, which commensurates with the hierarchic 
lattice. The fractional increase in ray paths causes an 11.18… per cent increase in 
scattering angle. The dual harmony enables the periodic probe to scatter cohe-
rently from the hierarchic lattice onto a geometric reciprocal lattice with a pecu-
liar and precise quasi-lattice constant a′  [3]. 

It is obvious that the dual harmony forces the quantization of the momentum 
that is evident in the diffraction pattern. It is reasonable to make the hypothesis 
that all quantization is the result of—not the cause of—harmonic dynamic va-
riables. Further confirmation may, in future, be found from multi-slice calcula-
tions of quasi-Bloch wave intensities as probe interacts with specimen. This be-
comes more feasible now that cs is known, understood and applied with geome-
tric band-gaps in momentum space [11]. 

Notice that this discovery of dual harmony in QC diffraction is realistic rather 
than mathematical: the solution is three dimensional, geometric, and classical 
with harmonies in space and time. By contrast mathematicians have digressed 
with six dimensions for “Fibonacci sequences” in abstruse tiling and unexplained 
diffraction [13].4 

6. Hidden Variables 

“It was [Einstein’s] almost solitary conviction that quantum mechanics is 
logically consistent but that it is an incomplete manifestation of an under-
lying theory in which an objectively real description is possible—a position 
he maintained until his death” ([14] p. 433). 

Einstein’s EPR thought experiment has not resolved his differences with 

 

 

4Incidentally, another example of dual harmony is the 12 point chromatic scale in Western music, 

which is, conversely, irrational short range ( 12 2× ) and linear long range (×2). 
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Bohr5: the former realistic, the latter probabilistic. The difference is partly no-
minal because a realist variable that is truly hidden can be represented, in epi-
phenomenal mathematics, by a probability amplitude. That is why mathemati-
cians have been content to “choose” their lattice parameter [3] [4], instead of 
measuring it, and thereafter to “apply” Bragg’s law in six invented dimensions. 
By contrast, the metric function is derived, observed and verified in three di-
mensions. The derivation occurs by applying observed, irrational indices to a 
modification of the classical theory, and the derivation is therefore realistic. 

This is not to deny that the probability amplitude, that is used for example in 
elementary particle interactions, has been extraordinarily successful. However, 
the standard theory is indistinguishable from a realist theory when the probabil-
ity amplitude expresses hidden variables. This is consistent with “mad-dog Eve-
rettianism” [5]: we have the Schrödinger equation and a wave function and that 
is all, with no metaphysics and no phenomenalism. 

Sometimes a “hidden variable”, such as phase velocity, becomes useful to ex-
plain a long-known property such as intrinsic spin, and to discover new depen-
dent properties such as its magnetic radius [15]. As another example, the hidden 
variable that determines the direction of spontaneous emission is, by momen-
tum conservation, atomic recoil, the same recoil as is acknowledged in the Schro-
dinger eigenvalues by reduced mass on the electron. In this paper, we use phase 
velocity that derives directly from special relativity and can be used to describe 
the otherwise instantaneous and problematic collapse of the wave packet when a 
measurement is made (Section 6). The phase velocity is hidden because it is fast-
er than the speed of light, and because it does not carry energy; this is carried by 
conservation in the group velocity. However, when the angular frequency and 
wavelength of an interacting particle is known, the phase velocity is sometimes 
informative. It is simpler in concept (ω/k) than the more easily measured group 
velocity dω/dk. For many such reasons, the wavefunction cannot be complete. 
The realistic quantum that we have described implies continuity in the final rea-
listic collapse upon measurement (cf. postulate 4). 

7. Operators and Reduction of the Wave-Packet 

Equations (1) and (2) describe a stable wave-packet because ω  and k  are con-
served. They represent photons that are more than 13 billion light years old, when 
measured in the microwave cosmic background, to an accuracy of 1:105. They 
are mathematically conserved by mean energy and momentum; so can hardly be 
unstable (cf. [7]). The equations also apply to free electrons in high energy elec-
tron diffraction. 

To show that the photon is consistent with mainstream quantum mechanics, 
we need to show that it responds consistently with known operators. Consider 
firstly, the energy operator in Schrödinger’s equation: 

 

 

5Though it is obvious that if reference frames are not held stable, Einstein could not measure, by 
conservation laws, the momentum on Bohr’s electron. 
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ˆ i tε φ= − ⋅∂ ∂                          (9) 

Then by applying to Equations (2) with the chain rule:  

( )2 1i X
t

φ φ φ ω φ∗ ∗∂
− = +

∂
                 (10) 

the integral over X, in the antisymmetric first term of the bracket operating on 
symmetric ϕ is zero. The second term provides the expectation ε ω= , in ab-
sence of Schrödinger’s central potential etc. 

Similarly, 

x= −k k                          (11) 

With this consistency, we proceed to consider the reduction of the wave- 
packet in space and time. Particularize with observations on a Young’s slit expe-
riment in strong beam and weak beam (Figure 2) ([16] p. 262). After taking ac-
count of different λ and mo, electrons produce corresponding interference pat-
terns to Young’s. Suppose an electron is a point particle that may be incident on 
slit B as a single time-resolved event. In weak beam, individual scintillations are 
observed in the image plane (green pattern), but the pattern is different if slit A 
is open (upper red pattern) or closed (lower red pattern). Bohr claimed that the 
calculated wave function is a probability amplitude. He held no way of predict-
ing precisely where an individual event would be recorded on the image plane. 
Einstein objected that his interpretation of probability amplitudes implies 
“spooky action at a distance”, which is unsatisfactory as an explanation because 
information about the state of A would be needed at B by a speed faster than 
light.  
 

 

Figure 2. A bright incident beam, transmitted by Young’s double slit, forms a regular in-
terference pattern in the image plane (upper red). When the beam intensity is weak, scin-
tillations may be counted on the plane (green) while, after a long time, the pattern ap-
proximates to the strong beam pattern. A single electron passing through slit B would 
require “spooky action at a distance” to respond to either slit A open (upper red) or A 
closed (lower red). 

https://doi.org/10.4236/jmp.2022.1311085


A. J. Bourdillon 
 

 

DOI: 10.4236/jmp.2022.1311085 1378 Journal of Modern Physics 
 

However, when we consider the wave function to be a probability amplitude 
that is due to hidden variables, including vp, then the information at A (whether 
open or closed) may be carried to B through those variables in the following 
way.  

The wave-packet described by Equation (2) is extended by σx in both time and 
x-space so that transverse waves have time Δt to interact after passing through 
the slit(s), and the interference is as Young observed it (Figure 2) with the 
transverse uncertainty σy that can be estimated. There is no spooky action at a 
distance, and no instantaneous collapse: Notice that across the wavefronts in 
Figure 2, time is constant and locally Newtonian. The waves, as they advance, 
interact long range with scintillator atoms in their general path: some will reso-
nate in phase causing the transverse density function to accelerate across the 
front in response, further exciting a scintillating molecule. Any resonant mole-
cule will compete with other molecules to absorb energy from the electron, so 
that energy will eventually be captured when the wave front becomes localized. 
Subsequently decay occurs by photo-emission.  

Electron-scintillator resonance corresponds to photon resonance, which is 
simple since in vacuo, the components i

p gv v c= = . Absorption depends on the 
oscillator strength |<|er/4πe0|>|2 around the excited molecule. Typically, since 
the scintillation energy of de-excitation is similar to the probe photon energy, its 
absorption is an all-or-nothing event.  

Consider the “collapse” of Bohr’s wave-packet that is supposed to occur when 
an event is recorded by scintillation or chemical reaction on photographic emul-
sion. In the standard theory, by definition of the wavefunction, the event is only 
probable and never predictable for particular quanta. However, as with the in-
terference pattern, a realistic wavefunction undergoes a different sequence. The 
real interference occurs throughout the space between slits and image plane, as a 
superposition of excitations from the double slit. Moreover, this pattern extends 
in both time and space (Equations (2)). As the superposition approaches the image 
plane it interacts, in time and space, with the chemicals on the image plane, some 
of which will—depending on hidden variables—resonate, typically through elec-
tric permittivity. Resonances will appear and there may be a mutual forward- 
backward response through the extended wave-packet, leading to concentration 
of the wave-packet near a molecule and localization as the excitation grows. Fi-
nal absorption will occur in time Δt~8/Δω, within typical scattering angle of 
<45˚ from the axial line through the slits. The absorption event is, within this 
time scale, all-or-nothing, and contrasts with the gradual decay of energy when 
the probe is a high energy electron beam. The resonance occurs continuously.  

High-energy electron diffraction may scintillate more than one atom sequen-
tially with small energy losses, so that the absorptive beam spread is small across 
a thin detector. Furthermore, over a short decay path, multiple excitations, if 
they occur, will result typically in a single recorded pulse owing to the uncer-
tainty in time σ (in Equation (2)) controlling the resonant interaction. 

Because the quantum has finite uncertainty, and because the electron has in-
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trinsic magnetic moment with dimensions L3T−1Q in length, time and charge 
respectively [15], we can drop the supposition that the quantum is a point par-
ticle. Instead, Huyghens’ wavelet is real and is described mathematically in the 
ℜ4 complex space. Consider further, the phase velocities that are described in the 
wave-packet (Section 2) in all three spatial dimensions. On the photon they are 
all equal to c: vp = vg. However in the electron with finite mo, vp > c, and the 
transverse velocities are greater than the velocity in the propagation direction, 

,y z x
p p pv v v , since transverse momenta are small: 1 i i i i

p gv v p m′= = ; i = x, y 
or, z (momentum/relativistic mass m', in simplified units). Applications of these 
principles to Bell’s inequalities and to crossed polarizers will be described in fu-
ture work [17]6. 

8. Conclusions 

Easy it is for a mathematician to invent axioms that describe an infinite wave 
that is attached to a quantum as if the wave were a probability amplitude for the 
positions and momenta of atoms in an ideal gas. The invention was disconti-
nuous and indefinite during measurement, and therefore not subject to the laws 
of physics. It is lucky that such an invention should have been useful in devel-
oping the standard model for elementary particles. 

However, it is difficult for a physicist to discover the continuous and definite 
laws in physics that can be used to predict future measurements on such com-
plicated systems. This is done here by employing the reality of the wave func-
tion, including its physical properties of phase velocity that is measured by real 
components ω, ki, ν, λ etc. 

We propose a change in postulate 4 of quantum theory (in the Introductory 
section above) to account for physical variables that can always be described, 
even if not actually measured on individual atoms: 

4. Evolution of systems undergoing measurement. 
If Hermitian operator A with spectral projectors {Pk} is measured and out-
come k is obtained, the physical state of the system changes continuously: 

( )k k kP Pφ φ φ φ φ→ =  within time Δt~8/Δω. 

The notions, that the probability amplitude is extended in time and space, 
while that the quantum is a point particle, are multiplication of entities. By con-
trast, we have shown how the real wave-packet describes the effects of Young’s 
slits completely, as it does indeed for other diffraction effects: Quasicrystal dif-
fraction has proved the quantum to be dual harmonic and real in this instance. 
We understand that phase velocity vp = ω/k is hidden in the sense that it is 
measured through its inverse, vg = dω/dk. Independently, the constituent va-
6The following identities, that are used in this paper, are consistent. Relativity: 2 2 2 2 4

oE p c m c= + ; 
2 4 2 4 21 ;o gE m c m c v cω β β′= = = − = ; 21g o gp k m v m v β′= = = − . Corrollary: Frequency ν, 

angular frequency ω, wavelength λ, and wavector k are all relativistic; moc2 is normally constant. On 
the analysis used, after massive annihilation, energy conservation would require the rate of increase 
in c is half the rate of decrease in rest mass mo: dc/dmo = −c/2mo. 
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riables are also measurable.  
In physical quantum mechanics, reduction of the packet is continuous in time, 

having typical uncertainty, Δt = 8/dω. This contradicts postulate 4 in mathemat-
ical quantum theory, where the evolution is instantaneous. On their hypotheses, 
arbitrary change in reference frame is a mathematical option for Bohr in the 
EPR experiment [1]; but is confusing in the wider scope of physics. 

In other words, the fact of real quanta in quasicrystals implies that extreme 
probabilism is an analytic theory of math. If Probabilism expresses the effects of 
hidden variables in measurement, then it is indistinguishable from real physical 
theory since they describe the same experimental results.  

9. Postscript on Intuition 

Many, from freshman undergraduates to seasoned mechanists, have been mysti-
fied by physical quanta. Einstein famously objected, “God does not play dice 
with nature”. 

“[Einstein] was said to reject the idea of a personal God, but I am fairly sure 
he meant by that the anthropomorphic figure of the Blake pictures—God 
with a great beard. He accepted the idea of a spirit of righteousness and for 
one who had not fed on the Gospels that is surely a just paraphrase of what 
the true idea of God might mean.” [18] 
Dirac on Einstein: “He wasn’t merely trying to construct a theory to agree 
with observation. So many people do that. Einstein wrote quite differently. 
He tried to imagine, ‘If I were God, would I have made the world like this.’ 
And according to the answer to that question, he would decide whether he 
liked a particular theory or not.” [19]  
Pauli quipped, “Dirac has a religion, ‘There is no God and Dirac is his 
prophet’” [20]. 

All science begins with intuition. One intuition need not depend on another. 
Einstein’s calculation of the perihelion of Mercury and concern for light bending 
during the 1917 total eclipse show Dirac mistaken on the necessity for evidence, 
at least for general relativity. Intuition belongs not to the core logic of science 
that has been described by Popper [21]; but to the psychology of scientists before 
they formulate a law and begin to systematize and verify it. Einstein’s profound 
belief in objective reality for the wave function [1] ([22] ch.25c) has been de-
bated over a long time e.g. ([14] p. 433).  
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