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Abstract 
The theory that gravitons lose energy by way of gravitational redshift while 
traveling in a gravitational field is applied to the expansion of the universe 
and to spiral and dwarf galaxy rotation curves using General Relativity. This 
is a graviton self interaction model which derives an expansion equation 
which is identical in form to the standard Lambda Cold Dark Matter model. 
In the domain of galaxies, spiral and dwarf galaxy rotation curves are matched 
using only baryonic mass. Thus, the requirement for dark matter and dark 
energy in the universe is replaced by this paradigm. 
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1. Introduction 

This paper describes a theory of gravitons acting in the universe and it supers-
cedes the theory expressed in [1] in regards to the expansion of the universe. We 
will also describe the action of gravitons in galaxies [2]. Assuming that gravitons 
are the agents of interaction in a gravitational field, then our goal is to describe 
how the gravitational redshift of gravitons shows up as what has traditionally 
been labeled as dark matter and dark energy. We will show how the redshift of 
gravitons can explain both of these phenomena using high precision data. 
Throughout this paper, all reference to sources of mass and test particles are as-
sumed to be of baryonic nature, unless otherwise specified. When we speak of 
the graviton mass mg, it is a relativistic mass. 

We assume gravitons are bosonic particles which travel at constant speed c in 
vacuum, where c equals the speed of light. Gravitons traveling in a gravitational 
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field between a source mass M and a test mass m, modeled by the equivalence 
principle as an accelerating system, should experience an average energy loss of 
δξ  due to motion in that field, over a short time period t r cδ δ= , where the 
acceleration a at a point r in the field is given by 2a GM r= − . The energy loss 
is expressed differentially as  

( ) ( )2
2 ,g

g g

GMmvm c m c a t r
c r
δδξ δ δ

 
= − = − = − 

 
            (1) 

where gm m n=  is the average relativistic graviton mass, n is the number of 
gravitons, m is the test mass, vδ  is the change in the free fall velocity of the 
system observed from an inertial reference frame, G is Newton’s gravitational 
constant, M is the baryonic mass of the field source, r is the distance between the 
center of the source and the location of the moving gravitons, tδ  is the short 
travel time of the gravitons at speed c over distance rδ . The energy change is a 
loss (negative), because the velocity change vδ  is in the same direction as the 
motion of the gravitons, so that for an inertial observer moving in the same di-
rection as the graviton, the energy of the graviton is redshifted. We call this ef-
fect of energy loss a gravitational redshift which, as we have described it resem-
bles a Doppler effect. Since gravitons are agents of the gravitational field, our 
model is essentially an attempt to describe the graviton-graviton interaction as 
in the self interaction of a quantum gravity theory [3]. 

Gravitons exist and travel in a gravitational field, which in principle is equiva-
lent to an accelerating system. Assume that the total graviton energy for a system 
of two masses is expressed by,  

,GMm
r

Ξ =                           (2) 

where gm nm=  is the total graviton mass associated with the test mass m, 
where mg is the average graviton mass and n is the number of gravitons. The to-
tal graviton energy decrease δ Ξ  due to its freefall in the gravitational field of 
mass M, when viewed from an inertial system, is expressed by  

2 2 ,v GMm v GMm GM r
c r c r c r
δ δδ δ    Ξ = −Ξ = − = −    

    
          (3) 

where, as in (1), ( )2v GM cr rδ δ=  is the velocity increase in the accelerated 
reference frame equivalent, according to the principle of equivalence, to the gra-
vitational field of mass M at the position r. 

2. Gravitons in an Expanding Universe 

Consider the universe as a sphere of interior baryonic mass M with a thin spher-
ical shell of mass m. The masses M and m are constants. The thin shell has a ra-
dius ( )r t  at time t. Only the mass interior to the shell has an effect on the shell. 
The total graviton energy ( )tΞ  within the shell at time t is given by (2), where 

( )r r t= . Assuming isotropic uniformity, the mass density ( )tρ  within the 
shell at time t is  
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( )( ) ( )3

3 .
4

Mr t
r t

ρ =
π

                        (4) 

At the present epoch of time 0t  the baryon mass density is bρ , which is 
given by,  

3

3 ,
4b

M
a

ρ
π

=                            (5) 

where ( )0a r t=  is the radius of the universe at the present epoch. 

2.1. Energy Loss Due to Gravitational Redshift 

Since the potential function ( )r GMm rΦ =  is defined as having zero energy at 
infinity and having a negative energy at position r, likewise we define the gravi-
ton energy loss to be zero at infinity and negative at position r. Applying (1) to 
the n gravitons in free fall in the expanding universe we have the energy loss,  

20
d ,

r
dm dm dm dm

GMm GMmK n K r K
rr

δξ
∆Ξ

∞

 ∆Ξ = = − − = −  
 ∫ ∫         (6) 

where dmK  is a coupling constant to be determined by observation and the ex-
tra minus sign accounts for an energy loss because the gravitons travel in the 
same direction as the free fall velocity change and appear redshifted to an iner-
tial observer also moving in the same direction. Substituting for M from (5) and 
simplifying yields,  

34 .
3

b
dm dm

mGaK
r
ρ

∆
 π
 


Ξ


= −                    (7) 

This component is the energy loss of the so called dark matter. 

2.2. Energy Loss Due to Expansion 

Gravitons traveling at speed c in the vacuum of the expanding universe undergo 
cosmological redshift in three dimensions on the way to interaction with the 
masses. We express this redshift by applying the 3-D velocity differential  
( 3

x y zv v v cδ δ δ ) to the total graviton energy Ξ  from (2), and applying (3) in 
the three spatial dimensions, given in the form,  

3 ,x y zv v vGMm
r c

δ δ δ
δξ

 
= −  

 
                   (8) 

where the negative sign is applied because the motion of the gravitons is in the 
same direction as the freefall in the field. We can convert the 3-D velocity diffe-
rential to a ratio of 3-D volume differential by the construction,  

3 3 ,x y z

x y z x y z

v v v x y z x y z
c t c t c tc c t t t

δ δ δ δ δ δ δ δ δ
δ δ δ δ δ δ

    
= =        

         (9) 

where x, y and z are Cartesian co-ordinates, xt , yt  and zt  are independent 
times and where x xv x tδ δ δ= , y yv y tδ δ δ=  and z zv z tδ δ δ= . Furthermore, 
we convert the volume differential in Cartesian co-ordianes to radial co-ordiates, 
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in the form  
24 .x y z r rδ δ δ δπ=                        (10) 

Now, applying the transformations (9) and (10) to (8), while also moving the 
volume differential 3

x y zc t t tδ δ δ  to the left hand side of the equation we get,  

( ) ( )3 24 .x y z
GMmc t t t r r

r
δξ δ δ δ δ= π−                (11) 

The left hand side of (11) is a quadruple differential whilst the right hand side 
is a single differential. Integrating both sides of (11) yields,  

( )
0

0

3
3 2

0 0 0 0

2
3 2

4

84 ,
3

T T T r
de x y z r

de

r
br

a mGMc t t t r r
r

GmGMr r a m r

δξ δ δ δ δ
σ

δ ρ

∆Ξ  − ∆Ξ = =   
  

=

π

π
− = −π

∫ ∫ ∫ ∫ ∫

∫
     (12) 

where the expansion time is taken to be  

,T a c=                           (13) 

where a  is the present radius of the universe and deσ  is a dimensionless coupl-
ing constant and where, in the final line we substituted for M from (5). Rearrang-
ing (12) we get the graviton energy loss due to the expansion of the universe, the 
so called dark energy component,  

2
28 .

3de de b
G m rσ ρ

 
∆Ξ = −  

 

π                    (14) 

We will subsequently show that the graviton energy losses dm∆Ξ  and de∆Ξ  
can account for the expansion rate of the universe without dark matter or dark 
energy which is required by the Lamda Cold Dark Matter cosmological model 
[4]. 

2.3. Equation of the Expanding Universe 

The total energy of the shell of mass m, where m M , having kinetic energy, 
gravitational potential energy and energy loss due to the cosmological redshift of 
gravitons (14), is expressed by  

2

3 3 2
2 2

2 2

1
2

1 4 4 8
2 3 3 3

1 ,
2

dm de

b b
dm de b

GMmmv
r

m mGa Ga Gmv K m r
r r

mc ka

ρ ρ
σ ρ



− + ∆Ξ + ∆Ξ

   
= − − −   

 

π π π






−




=


   (15) 

where the term on the far right is the total energy, where k is a constant (curva-
ture) with dimensionality [length]−2, a  is the present radius of the universe 
and M is the mass of the universe. Multiplying (15) by 22 mr  and simplifying, 
we get the expression for the expansion of the shell,  

3 3 22 2 2

2 3 3 3 2

8 8 161 1 .
3 3 3

b b b
dm de

Ga Ga Gv kc aK
r r r a r

ρ ρ ρ
σ

 π π π
 

 
= + + 

  
−     (16) 
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Note that the shell mass m can be made arbitrarily small compared to the un-
iverse mass M. 

Define the distance r by  

,r aa=                            (17) 

where the time varying scale factor a is dimensionless with 0 1a< ≤ . Using (17), 
the velocity v takes the form  

d d .
d d
r av a
t t

= =                         (18) 

Substituting (18) into (16) gives us,  

( )2 2 2

3 2

8 1 161 d .
d 33

dm b de bG K Ga kc
a t a a

ρ σ ρ+  = + −


π


π



           (19) 

Putting (19) in terms of the mass densities we have,  

( ) ( ) ( ) ( )( )
21 d 8 ,

d 3 m dm de k
a G a a a a

a t
ρ ρ ρ ρ  = + + + 

 

π          (20) 

where  

( ) ( )
3

1 dm b
m

K
a

a
ρ

ρ
+

=                      (21) 

is the mass density composed of baryons and graviton energy loss mass due to 
gravitational redshift (an apparent dark matter mass density),  

( ) 2de de baρ σ ρπ=                       (22) 

is the graviton energy loss due to the expanding universe (an apparent dark 
energy mass density) and  

( )
2

2

3
8k

kca
Ga

ρ −
=

π
                       (23) 

is the curvature mass density. 
Define the Hubble parameter ( )H t  by  

( ) 1 d ,
d
rH t

r t
=                         (24) 

where, by (17), r aa= . Equation (24) can also be written as  

( ) ( )d ,
d
rv H t r t
t

= =                      (25) 

which is the Hubble law for ( )0 0H H t=  where 0t  is the present epoch of cos-
mic time. Thus, ( )H t  defined by (24) is the general form of Hubble’s law [5]. 
Substituting ( )H t  for d da a t  in (20), with some manipulation, we get  

( ) ( ) ( ) ( ) ( )
23

,
8c m de k

H t
t t t t

G
ρ ρ ρ ρ= + +

π
=             (26) 

where ( )c tρ  is called the critical mass density at time t. Dividing (26) by 
( )c tρ  yields the parametric equation  
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( )
( ) ( ) ( ) ( )1 ,c

c m de k
c

t
t t t

t
ρ
ρ

= Ω = = Ω +Ω +Ω              (27) 

where ( ) ( ) ( )m m ct t tρ ρΩ = , ( ) ( ) ( )de de ct t tρ ρΩ =  and  
( ) ( ) ( )k k ct t tρ ρΩ = . At the present epoch 0t , the mass density parameter is  

( ) ( )0 1 ,m dm bt KΩ = + Ω                       (28) 

where bΩ  is the baryon mass density parameter, the graviton expansion energy 
loss mass density parameter is  

( )0 2de de bt σπΩ = Ω                        (29) 

and the curvature density parameter is  

( )
2

0 2
0

.k
kct
H

Ω = −                         (30) 

3. General Relativity for an Expanding Universe with  
Graviton Interaction 

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric line element [6] [7] 
[8] [9] in terms of the scale factor ( )a t  is  

( ) ( )
2

2 2 2 2 2 2 2 2 2
2

dd d d sin d ,
1

rs c t a t r r
kr

θ θ φ
 

= − + + + − 
         (31) 

where the scale factor ( )0 1a t< ≤  and the curvature k has units of [length]−2 
where 0k < , 0k >  or 0k = . The Einstein equations [10] [11] in trace reverse 
form is  

1 ,
2

R T Tgµν µν µνκ  = − 
 

                     (32) 

where Rµν  is the Ricci tensor, Tµν  is the energy-momentum tensor, T is the 
contracted energy-momentum tensor, gµν  is the metric tensor defined by (31) 
and 48 G cκ = π . Define the energy-momentum tensor Tµν  of a perfect fluid,  

2 0 0 0
0 0 0

,
0 0 0
0 0 0

c
p

T
p

p

µν

ρ 
 
 =  
  
 

                   (33) 

where, referring to (21) to (23) for the mass densities, the total mass density ρ  
is given by  

,m de kρ ρ ρ ρ= + +                       (34) 

where  

( ) 3

3

1
,dm b

m

K a
r

ρ
ρ

+
=                      (35) 

2 ,de de bρ σ ρπ=                        (36) 
2 2

2

3 ,
8k

ka c
Gr

ρ
π

−
=                        (37) 

https://doi.org/10.4236/jmp.2022.1311084


F. J. Oliveira 
 

 

DOI: 10.4236/jmp.2022.1311084 1354 Journal of Modern Physics 
 

and where the current baryon mass density is  
,b c bρ ρ= Ω                          (38) 

where bΩ  is the baryon mass density parameter. We have assumed the equa-
tion of state for the relativistic particles 2

de dep cω ρ= , with 1deω = − . We are 
neglecting the radiation density (photon and neutrinos) and we will justify this 
when we fit the model to SNe Ia data. 

Solving the Einstein Equations (32) given the mass-energy tensor (33), and 
simplifying the results, yields the equation for the rate of change of the scale fac-
tor,  

2

2

8 .
3

a G k
a a

ρ  =
π

− 
 



                    (39) 

Assuming 0k =  for no curvature, and the total mass density given by (34) - 
(38), the Hubble parameter ( )H a  is  

( ) ( )
0 3

1
2 ,dm b

de b

K
H a H

a
σ

+ Ω
= Ωπ+               (40) 

where 2
08 3b bG HρΩ π= . 

4. Fits to Type Ia Supernova Data and Comparison with the  
Standard Model 

The scale factor a has the relation to the cosmological redshift z expressed by  

1 .
1

a
z

=
+

                         (41) 

An increment of comoving distance cdδ  defined in terms of the scale factor 
is  

( )2

d d ,c
t ad c c

a a H a
δ = =                    (42) 

where we used the definition (24) of the Hubble parameter. In terms of the cos-
mological redshift z , the comoving distance is  

( )
d ,c

zd c
H z

δ =                        (43) 

where we used the fact that ( )2 2d d 1 da z z a z= − + = −  to transform (42), drop-
ping the minus sign. 

The flux 0Φ  from a distant light source at redshift z is defined in terms of 
the observed luminosity ( )21oL L z= + , where L is the luminosity of the emit-
ting source,  

( )0 2 2
,

4 1 p

L
z d

Φ =
+π

                      (44) 

where pd  is the proper distance. The luminosity distance, from (44) is  

( )
0

1 .
4p

Lz d =
π

+
Φ

                      (45) 
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The luminosity distance, from (43), is  

( ) ( ) ( ) ( )0

d1 1 ,
z

L c
c zD z z d z

H z
= + = + ∫               (46) 

where cd  is the co-moving distance and where  

( ) ( ) ( )3
0 1 1 2 ,dm b de bH z H K z σ+ π= + Ω + Ω             (47) 

and we changed the negative sign to positive by inverting the limits of integra-
tion. The form (47) of the Hubble parameter ( )H z  is identical to that of the stan-
dard model. Therefore, fitting to the SNe Ia data will be identical. The magnitude 
is defined, in the standard way,  

( ) ( )( )5log ,L B offMu z D z aµ= − +                 (48) 

where Bµ  is the source magnitude and offa  is an offset. Generally, the source 
magnitude is combined into offa . 

We applied (48) in a fit to 580 Type Ia supernovae (SNe Ia) magnitude data 
from the Super Nova Cosmology Project Union 2.1 data set [12]. With Hubble 
constant 1 1

0 70 km s MpcH − −= ⋅ ⋅ , densities 0.271mΩ = , 0.729deΩ =  [12] and 
offset 87.441offa = − , the fit to the SNe Ia data set obtained a two parameter 

2 0.9769χ = . Figure 1 shows the fit to the data. Regarding neglecting the radia-
tion density in our model, the radiation density parameter of photons, with 0.7h =  
is given by [13], ( )5 2 52.47 10 5.04 10r h− −Ω = × = × . At the maximum redshift  
 

 
Figure 1. Supernova cosmology project union 2.1 SNe Ia magnitude vs redshift data 
points with error bars. The solid line is the fit for the graviton model with 0.271mΩ =  

and 0.729deΩ =  with a two parameter 2 0.9769χ = . The dotted line is the fit for the 

LCDM model with the same parameters and the same 2χ . The graviton model and the 
LCDM model fits are (obviously) identical. 
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of max 1.5z =  for the SNe Ia data, the relative magnitude of the error radε  in 
comparing the radiation and matter densities is  

( )
( )

4
max 4

3
max

1
4.6 10 ,

1
r

rad
m

z

z
ε −Ω +

= = ×
Ω +

               (49) 

which justifies ignoring the radiation density in the fitting. 
Assuming that the curvature 0k = , so that 0kΩ = , then from (27) we have 

for the present epoch  

( )1 1 2 ,dm b de bK σ= + Ω + Ωπ                  (50) 

and from (29),  

.
2

de
de

b

σ
Ω

=
πΩ

                        (51) 

For example, for 0.721deΩ =  and 0.049bΩ =  which is in the big bang nuc-
leosynthesis (BBN) allowable range [14] we get a value of the coupling constant 

2.342deσ = . Also, from (28) we get ( ) 1 4.694dm m bK = Ω Ω − = . The expansion 
time, from (13) has the value 9

01 13.97 10 yrT H= = × . 

5. Gravitons in Galaxies 

Integrating (1) up to radial distance r we obtain the average energy change per 
graviton g∆Ξ  expressed by  

( )2
20 0

d d .
r r b

g g g
GMum c m r

c r
 ∆Ξ = − = −  
 

∫ ∫              (52) 

Equation (52) describes the gravitational redshift of the energy of the average 
graviton as it travels from a lower, more negative potential to a position r of higher, 
less negative potential and is consistent with energy conservation. 

Now, consider the energy for a galaxy of mass M interior of a small mass m in 
a circular orbit of radius r. The gravitons traversing the distance at lightspeed 
from the interior mass to the orbiting mass will experience a decrease in energy 
as described by (52), gn∆Ξ = ∆Ξ , where n is the number of gravitons. Taking 
the energy loss of the gravitons into account, the total orbital energy of the or-
biting mass m is  

21 ,
2 g g

GMmmv K n E
r

− + ∆Ξ =                   (53) 

where v is the rotational velocity of the orbiting mass, gK  is a coupling coeffi-
cient, a constant for each galaxy, and the total energy 2E GM r= − . Using (53) 
by expanding g∆Ξ  using (52), with gm nm= , multiplying by 2/m and moving 
all terms except 2v  to the right hand side, we obtain the expression for the or-
bital velocity,  

( ) ( )2
20

2 d .
r

g

GM r GM r
v K r

r r
 

= +  
 

∫                 (54) 

As an approximation, we model the mass distribution of a spiral galaxy by a 
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spherically symmetric distribution ( )rρ , even though a mass density distribu-
tion consisting of a spherically symmetric central bulge surrounded by an axially 
symmetric thin disk would be more realistic. Then the mass ( )M r  of the ga-
laxy within the radial distance r from the galaxy center is given by,  

( ) ( ) 2
0

4 d .
r

M r r r rρπ= ∫                     (55) 

Coupling Coefficient Kg 

Under our assumption that the coupling coefficient is constant for each galaxy, 
(54) can be solved for gK  at the galaxy edge, where fr r=  and fv v= , giving  

( )

( )

2

20

,
2 df

f
f

f
g

r

GM r
v

r
K

GM r
r

r

−

=
 
 
 

∫
                    (56) 

where ( )f bM r M=  is the total baryonic mass in the galaxy. By Newton’s gra-
vitational law, at the galaxy edge, the final velocity fv  is related to the total 
mass gM  contained within the radial distance fr  by,  

( )2 ,g b d
f

f f

GM G M M
v

r r
+

= =                    (57) 

where g b dM M M= + , where dM  is the total apparent mass due to the gravi-
ton energy loss, the mass of the so called “dark matter”. The total apparent dark 
matter in a galaxy is given at the galaxy edge by,  

2

.f f
d obs b

v r
M M

G
= −                        (58) 

Using the results from analyzing galaxy rotational data we can estimate the 
dark matter by (58) as dM , and substituting that and (57) into (56) we arrive at 
a formula for estimating gK  as,  

( )
20

.
2 df

d obs
g

r
f

M
K

M r
r r

r

=
 
 
 

∫
                    (59) 

6. The Einstein Equations for Galaxies with Gravitons 

Assuming a spherically symmetric mass distribution for a galaxy we will use the 
Schwarzschild metric to describe the motions within the galaxy. The Einstein 
equations for the region outside of a spherical mass distribution is  

0Rµν =                             (60) 

where Rµν  is the Ricci tensor. The metric element we use is defined in spheri-
cal coordinates,  

( )( )2 2 2 2 2 2 2d e d e d d sin d ,s c t r rν λ θ θ φ= − + + +             (61) 

where  
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( )
2

2
e 1 ,

GM r
c r

ν = −                        (62) 

( ) 1

2

2
e 1 ,

GM r
c r

λ
−

 
= − 
 

                      (63) 

and where ( )M r  is the mass within radius r. From the metric element (61) the 
metric tensor is  

( )

2

2 2

e 0 0 0
0 e 0 0

.
0 0 0
0 0 0 sin

g
r

r

ν

λ

µν

θ

 −
 
 =  
  
 

                (64) 

Since the metric (64) does not depend on time t and angles θ  and φ , it fol-
lows from Hamilton’s principle and the Lagrange equations1 that  

d de 0,
d d

tν

τ τ
  = 
 

                       (65) 

implying that the total energy E is  

2

de ,
d

t E
mc

ν

τ
=                         (66) 

from which we get  
2 2 2

2 2 2

de e .
d

c t E
m c

ν ν

τ
−   

=   
   

                   (67) 

And similarly for the φ  component, we have that  

( )2 2d dsin 0,
d d

r φθ
τ τ
  = 
 

                   (68) 

implying that the specific angular momentum is  

( )2 2 dsin ,
d

r hφθ
τ
=                       (69) 

from which we get,  

( )
2 2

2 2
2 2

dsin .
d

hr
r

φθ
τ

=                      (70) 

For motion in the plane defined by r and φ , d d 0θ τ = , where θ  is de-
fined as  

.
2

θ =
π                            (71) 

Equation of Motion 

We derive the equation of motion using the metric element (61), where  
2 2 2d ds c τ= −  where dτ  is the differential of proper time τ . Dividing the 

metric element by 2dτ  and substituting from (66)-(71) with the metric element 

 

 

1Wikipedia: Schwarzshild geodesics, https://en.wikipedia.org/Schwarzschild_geodesics.  
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we get, dropping the θ  term since d 0θ = ,  
2 2 2 2

2
2 2 2 2 2

d de e ,
d d

s E r hc
m c r

ν λ

τ τ
−= − = − + +               (72) 

Multiplying (72) by e λ−  and simplifying yields  

( )
2 2 2

2
2 2 2 2

d e e .
d

r E hc
m c r

ν λ λ

τ
− + −   

= − +   
   

               (73) 

Substituting for e λ−  from (63) into (73) and, since e eλ ν−=  from (62) and 
(63) so that ( ) 0e e 1ν λ− + = = , we get after simplification,  

( ) ( ) 22 2 2
2

2 2 2 2 2 3

2 2d .
d

GM r GM r hr E hc
rm c r c rτ

= − + − +            (74) 

We assume that the mass ( )M r  within distance r from the galaxy center is 
given by the sum of the baryonic mass ( )bM r  within r and the mass ( )gM r  
equivalent to the graviton gravitational redshift energy loss mass within r. The 
mass density of the baryons is given ( )b rρ . The total mass within r, which is 
the sum of baryonic mass and gravitonic energy loss mass, is expressed by  

( ) ( ) ( ) ,b gM r M r M r= +                     (75) 

where the baryonic mass is  

( ) ( )2
0

4 d ,
r

b bM r s s sρπ= ∫                     (76) 

where bρ  is the baryonic mass density and from (54) we express the gravitonic 
energy loss mass in terms of the baryonic mass density by,  

( ) ( )
20

2 d ,
r b

g g

M s
M r K r s

s
= ∫                    (77) 

where gK  is a constant coupling coefficient which is peculiar to each galaxy. For 
circular motion the specific angular momentum term in (74) is  

( )2

2 .
GM rh

rr
=                          (78) 

Dropping the constant terms in (74) and substituting with (78), the velocity of 
a particle in orbit in the galaxy is expressed by  

( ) ( ) 22
2 2

2 2

d 2 .
d

GM r GM rrv c
r c rτ

 
= = +  

 
               (79) 

7. Results for SPARC Galaxies  

We use the velocities from the Spitzer Photometry and Accurate Rotation Curves 
(SPARC) data base [15] [16], derived from near-infrared (NIR) surface photo-
metry at 3.6 μm. We select the spiral galaxies NGC 2403, NGC 2841 and dwarf 
galaxies DDO 154 and NGC 2915. From the photometric data which has been 
reduced to the equivalent velocities for the galaxy bulge, disk and gas mass con-
tent, we approximate the baryonic mass as due to a spherically symmetric dis-
tribution, which is given by the Newtonian relation for the velocity to mass con-
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tained within the radius r from the galaxy center, expressed by  

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )) ,

b gas gas dsk dsk dsk

bul bul bul

rM r v r v r r v r v r
G

r v r v r

 = + ϒ 
 

+ ϒ
        (80) 

where ir r= , 1,2, ,i N=  , 1N > , N the number of radial distances observed, 
and the absolute values of the velocities are needed because they can sometimes 
be negative (Ref. [16], p. 5) . The velocities for the disk and gas from Table 2 of 
[15] are taken with * 1ϒ = . In our Table 2, dskϒ  and bulϒ  are the M L

 

 
used in (80) to make the fits. Using the SPARC results for the mass at r in terms 
of the gas, disk and bulge velocities, where the mass internal to r is given by 

( )bM r  of (80), the equivalent graviton energy loss mass is  

( ) ( )
( )

( ) ( )2

11 22 d .j j

j j

rn b
g rjg

M s
M r K r s

s
+ <

− >
=

  
=      

∑ ∫             (81) 

The predicted velocity (79) is expressed in the form  

( )
( ) ( )( ) ( ) ( )( ) 2

2 2
22 ,b n g n b n g n

n
n n

G M r M r G M r M r
v r c

r c r

 + +
 = +
 
 

     (82) 

where 1, 2, ,n N=  , 1N > . 
We strived to obtain good fits to the velocity ( )obs kv r  at each radial distance 

kr  by minimizing the mean absolute error MAE between ( )kv r  and ( )obs kv r  
while iterating ( )dsk krϒ  for the disk and, when available, ( )bul krϒ  for the 
bulge. We constrained the mass to agree with the baryonic Tully-Fisher relation 
(BTFR) [17] [18] mass for each galaxy. Table 1 lists for each galaxy the baryonic 
mass bM  determined by the velocity profiles used in (80), the BTFR estimated 
galaxy mass, the mean data rotation velocity error errV , the mean absolute fitted 
error MAE and the coefficient gK . 

Table 2 lists the average values for disk dskϒ  and bulge bulϒ  mass to light 
ratios which were used in making each galaxy fit. Also listed in the table are 
minimum and maximum dskϒ  taken from Table 4 and Table 5 of [19] for  
 
Table 1. Results of fits to SPARC galaxy data using the graviton model (82) with masses 
from (80) and (81). The errV  are the mean error of the reported stellar velocities. The 
MAE errors are the average absolute error for the fits.  

Galaxy bM  

( 10M 10×


) 

† bM  BTFR 

( 10M 10×


) 
errV  

(km∙s−1) 
MAE 

(km∙s−1) gK  

NGC 2403 1.612 1.612 2.421 0.528 0.424 

NGC 2841 37.277 37.356 7.67 1.476 0.189 

DDO 154 0.06474 ‡ 0.02143 0.625 0.225 0.578 

NGC 2915 0.2810 0.2799 8.064 0.814 0.653 

† Using final velocity as flat velocity. ‡ Rotation curve does not flatten. 

https://doi.org/10.4236/jmp.2022.1311084


F. J. Oliveira 
 

 

DOI: 10.4236/jmp.2022.1311084 1361 Journal of Modern Physics 
 

Table 2. Results of fits to SPARC galaxy data using the graviton model (82). The columns 
for dskϒ  and bulϒ  are the averages for the disk and bulge mass to light ratios deter-
mined by modeling the rotation velocity curve. 

Galaxy Avg dskϒ  Avg bulϒ  † min dskϒ  † max dskϒ  

NGC 2403 0.579 0 1.3 1.8 

NGC 2841 1.039 0.833 2.0 5.1 

DDO 154 6.183 0 1.1 1.2 

NGC 2915 1.874 0 na na 

0 in the bulϒ  column means the bulge velocity is zero in the data. † Min and max dskϒ  
values for high surface mass galaxies from [19]. NA means the result is not available. 
 
comparison. The fitted spiral galaxy disk mass to light ratios are 1.0dskϒ <  ex-
cept for NGC 2841 which fitted with 2.0dskϒ < . A good reference for fits to 
SPARC data can also be found in [20], especially for spiral galaxy NGC 2841, 
where from our Table 2 we have an average of 0.856 M Ldskϒ =

 

 and 
1.254 M Lbulϒ =

 

, each of which is of the same order of magnitude as the 
fitted values 0.81 0.05 M Ldiskϒ = ±

 

 and 0.93 0.05 M Lbulϒ = ±
 

, re-
spectively, from Figure 1 of [20]. For each plot of the galaxy rotation velocity, 
the Newtonian velocity curve is also displayed. Plots for the results of the SPARC 
galaxies can be found in Figure 2 and Figure 3. 

SPARC Galaxies DDO 154 and NGC 2915 

Two dwarf galaxies that have been difficult to understand in terms of missing 
mass are DDO 154 and NGC 2915. Figure 3 shows the results for the fits using 
the graviton model. The upper curve shows the mass density, the middle curve 
displays the M/L ratios and the lower plot shows the observed and predicted ro-
tation velocities. With the graviton model for DDO 154 we obtained a total ba-
ryonic mass of 86.47 10 MbaryM = ×



, which is less than 2× the detected lumin-
ous mass [21] of 8

* 3.65 10 MHI HeM M ++ = ×


. Significantly, it is only one-fifth 
of the estimated dark plus luminous matter of 93.1 10 Mdark lumM + = ×



. Our fit-
ted disk mass to light ratios have an average of 6.183 M Ldskϒ =

 

 which is 
3× the published value of 2 M Ldskϒ ≈

 

. 
For NGC 2915 we obtained a total baryonic mass of 92.81 10 MbaryM = ×



, 
where the stellar mass and luminous HI mass [22] [23] 9

* 1.06 10 MHIM M+ = ×


. 
This compares with the total dynamical mass 921 10 MTM = ×



 which is 7× the 
total baryonic mass derived by the graviton model. 

8. Discussion 

Regarding the baryon acoustic oscillations (BAO) in the primordial plasma and 
the resulting cosmic microwave background radiation (CMB), if the energy loss 
in the gravitational field due to the gravitational redshift of graviton energy is 
the cause of the apparent dark matter in the universe, implying that dark matter  
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Figure 2. NGC 2403 and NGC 2841. Fits with SPARC data, the masses derived from (80) 
and (81) with velocity profiles for gas, disk and bulge. For mass to light curves, dskϒ  is 
the solid line and filled circles, bulϒ  is the solid line and open squares. For rotation ve-
locity curves, the solid line is the minimised fit to the data with the graviton model (82) 
and the dashed line is the Newtonian velocity. Top Half: Upper: Mass density. Middle: 
Mass to light ratio. Lower: The model velocity vs. radial distance from the galactic center 
and the Newtonian velocity. Bottom Half: Upper: Mass density. Middle: Mass to light ra-
tio. Lower: The model velocity vs. radial distance from the galactic center and the Newto-
nian velocity. 
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Figure 3. DDO 154 and NGC 2915. Fits with SPARC data, the masses derived from (80) 
and (81) with velocity profiles for gas, disk and bulge. For mass to light curves, dskϒ  is 
the solid line and filled circles. For rotation velocity curves, the solid line is the minimised 
fit to the data with the graviton model (82) and the dashed line is the Newtonian velocity. 
Top Half: Upper: Mass density. Middle: Mass to light ratio. Lower: The model velocity vs. 
radial distance from the galactic center and the Newtonian velocity. Bottom Half: Upper: 
Mass density. Middle: Mass to light ratio. Lower: The model velocity vs. radial distance 
from the galactic center and the Newtonian velocity. 
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particles do not exist, then in density perturbations of the primordial plasma just 
before recombination, the baryons, photons and gravitons are synchronized and 
there is not a central region of dark matter particles as theorized in the standard 
model [24], so that when recombination begins the photons dissociate from the 
electrons and the resultant hydrogen atoms begin to attract and form dense re-
gions in the perturbation. Just how the graviton redshift energy loss affects the 
density formations in the primordial plasma and how this affects the determina-
tion of the Hubble constant from the BAO and CMB modeling [25] is an area 
which needs to be studied. 

Regarding galaxy dynamics, with the modified Newtonian dynamics (MOND) 
[26] [27] there may be a way to compare it with the graviton gravitational red-
shift theory. MOND takes effect in galaxies at a distance where the central acce-
leration is around 1.2 × 10−10 m∙s−2 by effecting a transition in the gravitational 
attractive force from a 2r−  to a 1r−  form. On the other hand, the graviton 
gravitational redshift theory augments the Newtonian rotational velocity begin-
ning from the galactic center, which allows to distinguish it from MOND. Refer-
ring to Figure 2, at a radius of 24.59 kpcr =  the spiral galaxy NGC 2841 has 
an observed velocity of 1298.0 km sV −= ⋅  and we calculate the Newtonian ve-
locity of 1191.5 km sNV −= ⋅  using the SPARC data. The radial acceleration at 
this distance is 2 10 21.171 10 m sAcc V r − −= = × ⋅  which is at the beginning of the 
MOND regime and, assuming we have the correct baryon mass within that ra-
dius, MOND would predict an orbital velocity smoothly connected to the New-
tonian value NV  but we see that it would be smaller than V by 106.5 km∙s−1. 

Another interesting alternative approach to modified Newtonian dynamics is 
given in [28] which, by way of an additive inverse Yukawa-like term to Newto-
nian gravitation, purports to account for gravitational dynamics from solar sys-
tems to galaxies and galaxy clusters and to the large scale universe expansion. 
There is an analogy between (Ref. [29] Equation (19)) and our (54) which can to 
be further explored. 

9. Conclusions 

The graviton self interaction model describes the effect of gravitons in free fall in 
the gravitational field, losing energy by way of gravitational redshift and cosmo-
logical redshift without emitting any radiation. General Relativity was applied 
for both the universe expansion and for spiral galaxy rotation curves. By assum-
ing a coupling coefficient dmK  for the graviton redshift in free fall, the graviton 
model can account for the apparent dark matter in the universe being related to 
the baryon density. Likewise, the dark energy depends on the coupling constant 

deσ  and the baryon density. Thus, the apparent dark matter and dark energy are 
replaced by two constants and the hypothesized redshift of graviton energy. 

In the case of the rotational characteristics of spiral galaxies, the graviton 
theory well explains the greater than expected galaxy rotational velocities in the 
SPARC data with only the baryonic mass derived from the gas, disk and bulge 
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velocity data with fitted *ϒ  ratios, with a galaxy dependent coupling coefficient 

gK  and with the total baryon mass conforming to the BTFR. 
It is apparent that the fundamental aspect of graviton redshift points to the 

need to include this in the General Relativity field equations. 

Conflicts of Interest 

The author declares no conflict of interest. 

References 
[1] Oliveira, F.J. (2022) Journal of High Energy Physics, Gravitation and Cosmology, 8, 

579-592. 

[2] Oliveira, F.J. (2022) Journal of High Energy Physics, Gravitation and Cosmology, 8, 
810-834. https://doi.org/10.4236/jhepgc.2022.83055 

[3] Deur, A. (2009) Physics Letters B, 676, 21-24.  
https://doi.org/10.1016/j.physletb.2009.04.060 

[4] Wikipedia. Lambda-CDM Model.  
https://en.wikipedia.org/wiki/Lambda-CDM_model  

[5] Hubble, E. (1929) Proceedings of the National Academy of Sciences, 15, 168-173.  
https://doi.org/10.1073/pnas.15.3.168 

[6] Friedmann, A. (1922) Zeitschrift für Physik, 10, 377-386.  
https://doi.org/10.1007/BF01332580 

[7] Lemaître, G. (1931) Monthly Notices of the Royal Astronomical Society, 91, 483-490.  
https://doi.org/10.1093/mnras/91.5.483 

[8] Robertson, H.P. (1935) The Astrophysical Journal, 82, 284-301.  
https://doi.org/10.1086/143681 

[9] Walker, A.G. (1937) Proceedings of the London Mathematical Society, Series 2, 42, 
90-127. https://doi.org/10.1112/plms/s2-42.1.90 

[10] Einstein, A. (1918) Über Gravitationswellen. Sitzungsberichte der Königlich Preußis-
chen Akademie der Wissenschaften (Berlin), Seite 154-167.  
https://ui.adsabs.harvard.edu/abs/1918SPAW.......154E/abstract  

[11] Einstein, A. (1952) The Foundation of the General Theory of Relativity. Dover Pub-
lications, Inc., New York. 

[12] Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah, R., Barbary, K., et al. 
(2011) The Astrophysical Journal, 746, Article ID: 22011768.  
https://doi.org/10.1088/0004-637X/746/1/85 

[13] Lahav, O. and Liddle, A.R. (2010) The Cosmological Parameters. Chapter 21.  
https://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmological-parameters.pdf  

[14] Tanabashi, M., et al. (2018) Physical Review D, 98, Article ID: 030001.  
https://pdg.lbl.gov/2018/reviews/rpp2018-rev-bbang-nucleosynthesis.pdf  

[15] http://astroweb.cwru.edu/SPARC  

[16] Lelli, F., McGaugh, S.S. and Schombert, J.M. (2016) The Astronomical Journal, 152, 
157-170. https://doi.org/10.3847/0004-6256/152/6/157 

[17] McGaugh, S.S. (2005) The Astrophysical Journal, 632, 859-871.  
https://doi.org/10.1086/432968 

[18] Lelli, F., McGaugh, S.S. and Schombert, J.M. (2016) The Astrophysical Journal Let-
ters, 816, L14-L19. https://doi.org/10.3847/2041-8205/816/1/L14 

https://doi.org/10.4236/jmp.2022.1311084
https://doi.org/10.4236/jhepgc.2022.83055
https://doi.org/10.1016/j.physletb.2009.04.060
https://en.wikipedia.org/wiki/Lambda-CDM_model
https://doi.org/10.1073/pnas.15.3.168
https://doi.org/10.1007/BF01332580
https://doi.org/10.1093/mnras/91.5.483
https://doi.org/10.1086/143681
https://doi.org/10.1112/plms/s2-42.1.90
https://ui.adsabs.harvard.edu/abs/1918SPAW.......154E/abstract
https://doi.org/10.1088/0004-637X/746/1/85
https://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmological-parameters.pdf
https://pdg.lbl.gov/2018/reviews/rpp2018-rev-bbang-nucleosynthesis.pdf
http://astroweb.cwru.edu/SPARC
https://doi.org/10.3847/0004-6256/152/6/157
https://doi.org/10.1086/432968
https://doi.org/10.3847/2041-8205/816/1/L14


F. J. Oliveira 
 

 

DOI: 10.4236/jmp.2022.1311084 1368 Journal of Modern Physics 
 

[19] De Blok, W.J.G. and McGaugh, S.S. (1997) Monthly Notices of the Royal Astronomical 
Society, 290, 533-552. https://doi.org/10.1093/mnras/290.3.533 

[20] Li, P., Lelli, F., McGaugh, S.S. and Schombert, J.M. (2018) Astronomy & Astrophysics, 
615, A3. https://doi.org/10.1051/0004-6361/201732547 

[21] Carignan, C. and Purton, C. (1998) The Astrophysical Journal, 506, 125-134.  
https://doi.org/10.1086/306227 

[22] Meurer, G.R., Carignan, C., Beaulieu, S.F. and Freeman, K.C. (1996) The Astronomical 
Journal, 111, 1551-1575. https://doi.org/10.1086/117895 

[23] Meurer, G.R., Blakeslee, J.P., Sinanni, M., Ford, H.C., Illingworth, G.D., Benitez, N., 
et al. (2003) The Astrophysical Journal Letters, 599, L83-L86.  
https://doi.org/10.1086/381317 

[24] Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., et al. 
(2011) Monthly Notices of the Royal Astronomical Society, 416, 3017-3032.  
https://doi.org/10.1111/j.1365-2966.2011.19250.x 

[25] Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Bacci-
galupi, C., Ballardini, M., et al. (2020) Astronomy & Astrophysics, 641, 67-139. 

[26] Milgrom, M. (1983) The Astrophysical Journal, 270, 365-370.  
https://doi.org/10.1086/161130 

[27] Milgrom, M. (1983) The Astrophysical Journal, 270, 371-383.  
https://doi.org/10.1086/161131 

[28] Falcón, N. (2013) Journal of Modern Physics, 4, 10-18.  
https://doi.org/10.4236/jmp.2013.48A003 

[29] Falcón, N. (2021) Journal of Astrophysics and Astronomy, 42, Article No. 102.  
https://doi.org/10.1007/s12036-021-09752-0 

 
 

https://doi.org/10.4236/jmp.2022.1311084
https://doi.org/10.1093/mnras/290.3.533
https://doi.org/10.1051/0004-6361/201732547
https://doi.org/10.1086/306227
https://doi.org/10.1086/117895
https://doi.org/10.1086/381317
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1086/161130
https://doi.org/10.1086/161131
https://doi.org/10.4236/jmp.2013.48A003
https://doi.org/10.1007/s12036-021-09752-0

	How the Redshift of Gravitons Explains Dark Matter and Dark Energy
	Abstract
	Keywords
	1. Introduction
	2. Gravitons in an Expanding Universe
	2.1. Energy Loss Due to Gravitational Redshift
	2.2. Energy Loss Due to Expansion
	2.3. Equation of the Expanding Universe

	3. General Relativity for an Expanding Universe with Graviton Interaction
	4. Fits to Type Ia Supernova Data and Comparison with the Standard Model
	5. Gravitons in Galaxies
	Coupling Coefficient Kg

	6. The Einstein Equations for Galaxies with Gravitons
	Equation of Motion

	7. Results for SPARC Galaxies 
	SPARC Galaxies DDO 154 and NGC 2915

	8. Discussion
	9. Conclusions
	Conflicts of Interest
	References

