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Abstract 
We study the transport of a small wave packet in the embedding of the Stu-
eckelberg-Horwitz-Piron relativistic quantum theory into the manifold of 
general relativity around the Schwarzschild solution using a semiclassical ap-
proximation. We find that the parallel transport of the momentum leads to a 
geometrical (Berry type) phase. 
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In this paper, we study the idea called geometric (Berry) phase found by Berry in 
1984 [1] in the context of electromagnetism, in application to the effect of a 
change in direction of the momentum vector parallel transported around a 
closed path on a manifold with curvature, such as in gravitational field [2] (see 
also [3] [4] [5]). This change, as we show, leads to a phase change on its wave 
function [6] in the quantum theory [7] (see also [8] and [9]).  

Stone et al. [10] have discussed the geometrical and Berry phase associated 
with Dirac and Weyl particles; our work deals with the phase generated by pa-
rallel transport for a quantum theory on the manifold of general relativity. 
Ghosh and Mukhopadhyay [11] have discussed the geometric (Berry) phase for 
a Dirac Hamiltonian theory in a gravitational field, pointing out the similarities 
between the effects of gravitation and magnetism. We study here the geometrical 
(Berry) phase on a wave function associated directly with a rigorous quantum 
theory on the manifold. In this paper, we follow a narrow wave packet trans-
ported on a geodesic around a black hole [12] and show that a semicassical ar-
gument leads to such a geometrical phase.  
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For any conserved vector Sµ  infinitesimal parallel transport along a geodesic 
is given by 

d dS x Sλ ν
µ µν λ= −Γ                          (1) 

where dxµ  is along the curve. For the Schwarzchild coordinates , , ,t r θ ϕ , we 
assume a geodesic circle [12] at constant ,t θ  and r and carry out the integra-
tion over ϕ  with measure dϕ . The change in the vector with ϕ  is  

d dS Sλ
µ µϕ λϕ= −Γ                          (2) 

The only non-vanishing components that enter (e.g. [2]) are:  
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The parallel transport equations can then be written  
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Due to the non-diagonal structure, we see that this system is, in fact, second 
order. At fixed , rθ , differentiating the second and third equations of (4), with 
respect to ϕ , we obtain  
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where cosk θ= . The solutions of these oscillator type equations are given by  
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These solutions determine the equation for rS :  

 ( ) ( ) ( ) ( )d 1 , cos , sin
d
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= − +             (7) 

so that (up to a arbitrary function of , ,r tθ  which we set to zero).  

 ( ) ( ) ( ) ( )1 , sin , cosrS C r k D r k
kr

θ ϕ θ ϕ= − −             (8) 

We must now set initial conditions at 0ϕ = . From Equation (6) we have  
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and from (8),  

 ( ) ( )0, rD r kr Sθ =                         (10) 

Since our equations are second order there must be just two independent con-
stants of integration. One can eliminate, say, B, D, with initial conditions.  

Using our solutions (6) and (8) and the original Equations (4), we see that  
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so that, substituting for B and D, we have the solutions  
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with A and C given by the initial conditions (9) one finds the vector for any ϕ ; 
and in particular for 2ϕ = π  at any given θ  for cosk θ= . Note that there is 
no singularity at 2θ = π  ( 0k = ). Substituting (9) into (12), and replacing Sµ  
by pµ  we obtain:  
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Therefore, after transport in ϕ  from 0 to 2π,  
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This means that the momentum after parallel transport is equal to the original 
momentum plus the change pµ∆  found explicitly in Equation (13). Now, for a 
wavepacket narrow in both energy-momentum and spacetime, we assume that 
the classical computations are a good semiclassical approximation. For a wave 
packet of the form [6]: 
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We have then  

 ( ) ( )41 d e
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               (16) 

where ( ), , ,x t rµ θ ϕ=   
After the change in the momentum in transport of the function from 0 to 2π 

in ϕ , we obtain  
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where ( ), , ,rp E p p pµ θ ϕ= .  
We remark that a convolution is not necessary since the support of the wave 

packet is very narrow. 
Now substitute this result into the expression for ( )xµψ  in (15) at the initial 

point xµ  at 2ϕ = π  to obtain the additional phase factor e i p xµµ− ∆  .  

( ) ( )e i p xx x
µ

µµ µψ ψ − ∆′ =   

We therefore find, in our semiclassical calculation, that a wave packet trans-
ported on a closed geodesic curve around a black hole acquires a geometrical 
(Berry type) phase. Quantum scattering [6] on a black hole should display, as for 
the Aharonov-Bohm [13] experiment, a corresponding interference effect.  
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