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Abstract

We study the transport of a small wave packet in the embedding of the Stu-
eckelberg-Horwitz-Piron relativistic quantum theory into the manifold of
general relativity around the Schwarzschild solution using a semiclassical ap-
proximation. We find that the parallel transport of the momentum leads to a
geometrical (Berry type) phase.
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In this paper, we study the idea called geometric (Berry) phase found by Berry in
1984 [1] in the context of electromagnetism, in application to the effect of a
change in direction of the momentum vector parallel transported around a
closed path on a manifold with curvature, such as in gravitational field [2] (see
also [3] [4] [5]). This change, as we show, leads to a phase change on its wave
function [6] in the quantum theory [7] (see also [8] and [9]).

Stone et al [10] have discussed the geometrical and Berry phase associated
with Dirac and Weyl particles; our work deals with the phase generated by pa-
rallel transport for a quantum theory on the manifold of general relativity.
Ghosh and Mukhopadhyay [11] have discussed the geometric (Berry) phase for
a Dirac Hamiltonian theory in a gravitational field, pointing out the similarities
between the effects of gravitation and magnetism. We study here the geometrical
(Berry) phase on a wave function associated directly with a rigorous quantum
theory on the manifold. In this paper, we follow a narrow wave packet trans-
ported on a geodesic around a black hole [12] and show that a semicassical ar-

gument leads to such a geometrical phase.
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For any conserved vector S, infinitesimal parallel transport along a geodesic

is given by
ds, =-TI7,dx’S, (1)
where dx“ is along the curve. For the Schwarzchild coordinates t,r,8,¢, we

assume a geodesic circle [12] at constant t,6 and rand carry out the integra-

tion over ¢ with measure dg . The change in the vector with ¢ is

ds, =-I,deS, (2)
The only non-vanishing components that enter (e.g. [2]) are:
o 1
ro r
Iy =cotd 3)

0 o
FW =-sin@cosd

The parallel transport equations can then be written

ds, _ —ES

de r’

di:—cotes (4)
de ?

ds .
—~ =sinfcos S,
de

Due to the non-diagonal structure, we see that this system is, in fact, second

order. At fixed 6,r, differentiating the second and third equations of (4), with

respect to ¢ , we obtain

d’s,

do* =S
(5
d*s
2 =—k*S
d¢2 - ®

where k = |Cos 9| . The solutions of these oscillator type equations are given by

S, = A(6,r)cos(kp)+B(0,r)sin(ke)

. (6)
S, =C(0.,r)cos(kp)+D(0,r)sin(kp)
These solutions determine the equation for S, :
ds 1 .
—L=—=|C(8,r)cos(ke)+D(8,r)sin(k 7
do = rLC(On)cos(ke)+D(O.r)sin(ke)] @)
so that (up to a arbitrary function of 8,r,t which we set to zero).
S, = —% C(6.r)sin(kp)—D(6,r)cos(ke)] (8)
We must now set initial conditions at ¢ =0. From Equation (6) we have
AO1)=(5,), o
c(or)=(s,),
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and from (8),
D(6,r)=kr(S,), (10)
Since our equations are second order there must be just two independent con-

stants of integration. One can eliminate, say, B, D, with initial conditions.

Using our solutions (6) and (8) and the original Equations (4), we see that

ds, ) _ 1.
d(p0 r
di =—cotd = Bk (11)
do|,
9yl _g _
=singdcos@A = Dk
de 0

so that, substituting for Band D, we have the solutions

S, = Acos(k¢)—C¥sin(k¢)
S, =Ccos(kp)+ Awsin(k(p) (12)

s, =_%(c sin(kgo)—AwCOS(k(ﬂ))

with 4 and Cgiven by the initial conditions (9) one finds the vector for any ¢
and in particular for ¢ =2n at any given 6 for k= |cos 49| . Note that there is
no singularity at € =7/2 (k =0). Substituting (9) into (12), and replacing S u
by p, we obtain:

sindcosé .

Ap, =p,(¢=2n)-p,(¢=0)=cos(2rk)-1+A(6,r) sin(2nk)

A9, = By (9= 25) - B, (9= 0) = A(0,1) (cos(2ek) ~1) - = Zsin(2nk)

Ap, = p, (p=2n)-p,(¢=0)

(13)

- _%{sin (2nk)+ A(6,r)sin Hcosecos(an)(lJr%H

Therefore, after transportin ¢ from 0 to 27,
P, = P, (¢=21)=p, (¢ =0)+4p, =p, +4p,
Py = P, (¢ =2m) = p, (¢ =0)+Ap, = p, +Ap, (14)
Pl =p, (¢ =2r)=p,(¢=0)+Ap, = p, +Ap,

This means that the momentum after parallel transport is equal to the original
momentum plus the change Ap, found explicitly in Equation (13). Now, for a
wavepacket narrow in both energy-momentum and spacetime, we assume that
the classical computations are a good semiclassical approximation. For a wave
packet of the form [6]:

W(x“)=ﬁf d‘p,(p,)e"" " (15)
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We have then

@ (p,) == [0 (x, )" (16)

Vanh

where X* =(t,r,0,9)
After the change in the momentum in transport of the function from 0 to 2n

in ¢, we obtain

, 1 —ip),x*
(D( p#) :mjd‘txyw(xy)e o
_ 1 —i(p#+Apﬂ)x“/h
=—— [dg*
m.’. Xul//(xﬂ)e (17)
TC

= p/,)e’mp”x”/"

where p, =(E, Py Py pq,).

We remark that a convolution is not necessary since the support of the wave
packet is very narrow.

Now substitute this result into the expression for i//(x”) in (15) at the initial

i u
point X at @ =27 to obtain the additional phase factor € 1 "

v (x) =y (x e

We therefore find, in our semiclassical calculation, that a wave packet trans-
ported on a closed geodesic curve around a black hole acquires a geometrical
(Berry type) phase. Quantum scattering [6] on a black hole should display, as for
the Aharonov-Bohm [13] experiment, a corresponding interference effect.
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