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Abstract 
The genesis of physical particles, a foundational aspect of physics, is still a 
mystery. Quantum field theory creation operators provide an abstract me-
chanism to bring particles into existence. The assumption of a primordial 
field underlies the Standard Model (SM), yet the forces have failed to con-
verge to such a field. Current treatments of a superfluid-based universe 
[Huang, Volovik, and Svistunov, Babaev, Prokof’ev] focus heavily on vortices 
and Yang-Mills theory, so we analyze self-interaction of the primordial field 
in the context of Yang-Mills. We show that a self-stabilizing higher-order 
self-interaction interpretation of the Yang-Mills non-Abelian term yields a 
stable quantum gravity explanation of the mass-gap. In future we will address 

the spin- 1
2

 and conserved charge aspects in terms of this fundamental theory 

of particle creation. 
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“The invention of Yang and Mills was not the first non-Abelian gauge field 
known to physicists; the gravitational field has that honor.” Bryce DeWitt. 

1. Introduction 

Particle creation is still a mystery. Since 1954 the Yang-Mills gauge field theory 
of self-interaction has been believed to be the appropriate framework in which to 
formulate the problem, but it has so far been impossible to explain the “mass- 
gap” issue. The mass-gap is the finite value of the lowest particle mass above the 
vacuum energy state. The insurmountability of this problem has inspired a mil-
lion-dollar Millennium Prize, but the prize has been unclaimed for two decades. 
In this paper I analyze the Yang-Mills formalism and propose a reinterpretation 
of the non-Abelian self-interaction term that is dynamic in nature. I show that 
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this interpretation leads to a stable state for particle mass with finite energy 
above the vacuum state. In the next section I summarize the Quantum Field 
Theory approach and contrast this with the approach taken herein. 

2. Quantum Field Theory Approach to Particle Creation 

Quantum field theory (QFT) provides a bookkeeping system with symbolic cre-
ation operators bringing particles into existence while annihilation operators 
subtract particles from the ledger. The operators operate on particle-specific 
quantum fields. In QFT the quantum fields are more fundamental than the par-
ticles, which are viewed as excited states of the fields. For quanta such as photons, 
the oscillations in the field were viewed as arising from oscillators, which exist at 
every potential minimum. Zee [1] presents QFT as a mattress, idealized as a 2D 
lattice of mass points connected to each other by springs, a series of harmonic 
oscillators. He remarks that, even after a century has passed, the whole subject of 
QFT remains rooted in this harmonic paradigm; unable to break from the basic 
notions of oscillations and wave packets. He hopes to get beyond this conception, 
yet the math formalism fit the oscillator ladder so beautifully with “raising” and 
“lowering” operators promoted to “creation” and “annihilation” operators. The 
idea then extended to particles as excited states of quantum fields, with each par-
ticle arising from a specific field—the electron field, the muon field, etc. such 
that, when Feynman [2] developed a quantum field theory of gravity he treated 
gravity as the “31st field”. Instead of a “field per particle”; we assume a “field per 
universe”, a primordial field existing at the Big Bang, and ask how the field pro-
duces a known particle spectrum based on a “mass gap”, or finite energy above 
the vacuum state. The Standard Model assumes all forces converge to such a 
primordial field, but such has not yet been shown.  

Physics is largely based on formulating interactions as changes induced by 
sources, represented as = jψ∇ , where ∇  is a change operator that generates 
changes in the field ψ  induced by source j , separate from field ψ . For pri-
mordial field ψ  nothing is separate from ψ ; only field ψ  exists. Thus, any 
change operator operating on field ψ  must be equivalent to ψ  interacting with 
itself. This Self-Interaction Principle [3] is represented by self-interaction eqn: 

ψ ψψ∇ =                            (1) 

To be meaningful, field ψ  and operator ∇  must depend on some variable 
parameter ξ , so we extend our formalism via ( )ψ ψ ξ→  and ξ∇ → ∂  with 
two formal solutions—for scalar ξ  and for vector ξ . 

( ) 1ψ ξ ξ −= − , ( ) 1ψ −=ξ ξ                      (2) 

We assign physical meaning to these terms; if scalar ξ  = time, then 1ξ −  is 
frequency; if vector ξ  = location in space, then 1−ξ  is inverse distance. Cor-
responding operators are t t∇ = ∂ ∂  and ∇ = ∂ ∂r r  so we attempt to solve 
self-interaction Equation (1). Almeida [4] noted: “choice of a particular algebra 
is irrelevant from the point of view of the mathematical validity of the equation, 
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but it may make a significant difference to the perception and comprehension of 
the physics behind the equation.” If so, the question arises as to the optimal al-
gebra for solution of the self-interaction equation. Einstein and Wheeler viewed 
physics as geometry, with differential geometry the optimal algebra. Quantum 
physicists evolved Hilbert-space algebra and group theory symmetry represented 
by matrix algebra. In 1965 Hestenes evolved Clifford algebra to Geometric Alge-
bra; the only mathematical framework in which every term has both an algebraic 
and a geometric interpretation [5]. For 3-spatial-dimensions-plus-time the terms 
include scalars, vectors, bivectors, trivectors, and pseudoscalars, interpreted as 
duality operators represented by i, that transform an entity into its dual. The 
new relation is geometric product = ⋅ + ∧uv u v u v . Bivector ∧u v  is a di-
rected area representing rotation of u  into v . Duality operator i transforms 
this bivector into an axial vector: i∧ = ×u v u v . Substituting the vector deriva-
tive for u  the geometric product is: 

/ | \
gradient div curl

= ⋅ +

= +

∧v v v∇ ∇ ∇
                     (3) 

No other math formalism has this relation. When ( ) ( ), ,t i tψ = +G r C r  and 

t∇ = + ∂∇ , then Equation (1) takes the form 

( )( ) ( )( )t i i i+ ∂ + = + +G C G C G C∇                (4) 

Expansion of (4) in terms of geometric products and grouping of like terms 
yields: 

Self-Interaction equations      Heaviside equations 

⋅ = ⋅ − ⋅G G G C C∇             ρ⋅ = −G∇                        (5a) 

2i i⋅ = ⋅C G C∇                0⋅ =C∇                         (5b) 

t∂ − × = × ± ×G C G C C G∇      tρ× = − + ∂C v G∇                  (5c) 

0ti i× + ∂ =G C∇              t× = −∂G C∇                     (5d) 

The equations on the left-hand side of (5) derive from (4) in straightforward 
fashion. With physical meaning assigned to field ψ , one obtains the equations 
on the right side, derived in 1893 by Heaviside [6], wherein G  is gravity and 
C  is the gravitomagnetic field. Decades later the eqns were erroneously labeled 
the weak field approximation to Einstein’s non-linear field equations.  

Self-interaction Equation (6a) yields the Heaviside-Newton equation. The 
Poynting-like ×G C  terms are momentum density and can be transported in 
opposite directions, based on initial and boundary conditions imposed locally; 
hence the ± in (5c); they are represented as ρv  in Heaviside (5c), while field 
energy density terms, ⋅C C  and ⋅G G , are represented by ρ  in (5a). The 
time independent gravitational field in (5d) is irrotational, shown by Michael-
son-Gale in 1925. 

If local field density accelerates, then local gravitomagnetic circulation alters 
appropriately; the moving density drives the local field. If local density decele-
rates, change in circulation induces a gmf, a gravito-motive force d dt= −F p  
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to drive the particle forward. In the vacuum state (the local ether) this Lenz- 
law-like behavior explains conservation of momentum, which Feynman claimed 
was inexplicable. In (5b), 0⋅ =C∇ , we use of vector identity 0⋅ × =A∇ ∇  to 
replace C  with a potential vector × A∇ . Compatible with Equation (5) are the 
gauge field equations: 

= ×C A∇ , tφ= − − ∂G A∇ , 0tφ∂ + ⋅ =A∇             (6) 

The first two Equations in (6) define the fields in terms of the four-potential A, 
while the last equation specifies the Lorenz gauge condition, 0Aµ

µ∂ = . The 
scalar potential m rφ = − , and vector potential =A v . In analogy with Max-
well’s equations, we formulate gauge field four-potential { },A φ= A . Since 

tφ= − + ∂G A∇  if φ  is constant then t= ∂G A , but since G  is the accelera-
tion of gravity, then d dt= ⇒ =G v A v . Since = ×C A∇  then = ×C v∇  is 
dimensionally correct; 1~ t−C . With gravitational potential M rφ = −  the 
G -field has spatial dependence 2~ r−G ; correct for Newtonian mass. For the 
primordial field, as shown in several of the references, 1~ r−G . Physically, all 
Newtonian mass is treated as entirely within the sphere of radius r, whereas the 
mass of the primordial gravitational field is based only on the portion of the field 
within the sphere. In all cases, with local mass density ρ  the interaction energy 
density of the field is ⋅j A  where ρ=j v . Heaviside current density j  is 
momentum density ρ=p v ; the interaction density of the field is  

2vρ⋅ = ⋅ =p A p v . The field strength matrix constructed from the above [7] is 
shown: 

0
0

0
0

x y z

x z y

y z x

z y x

G G G
G C C

F
G C C
G C C

µν

 
 − =
 −
 

−  

                  (7) 

A full unification of gravitation, electromagnetism, the strong and weak nuc-
lear forces, has not yet been derived. Nevertheless, the four fundamental interac-
tions are generated by a single principle, the gauge principle [8]. Weyl, in 1929, 
derived the conservation laws and expressed the Riemann tensor in the tetrad 
form: ,

aa a a a c a c
b b b c b c bb

R D D A A A A A Aµν µ ν µ ν ν µ µ ν ν µ= = ∂ − ∂ + −   . For Yang-Mills, ex-
pression of field strength ,F D Dµν µ ν =    as commutation was not common at 
the time; direct expression as a curl was so simple: Weyl’s equation is expressed 

[ ],R A A A= ∂ ∧ + . Yang stated that, when they presented their theory, they had 
no idea it might be related to gravitation: 

“…when Mills and I worked on non-Abelian gauge fields, our motivation was 
completely divorced from general relativity, and we did not appreciate that 
gauge fields and general relativity are somehow related.” 

Little surprise that, in search of a generalization of isotopic spin for applica-
tion to the nuclear physics of the “50’s, Yang and Mills, as particle physicists, did 
not have tetradic formulations of general relativity in mind, nor the fiber bundle 
approach developed through differential forms. Today our preferred framework 
is Hestenes” Geometric Calculus. 
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3. Aspects of Isospin 

Initially Pauli added spin to the Hamiltonian based on energy ⋅Bµ  in mag-
netic field B  where magnetic moment µ  is proportional to spin s  of the 
charge, conceived classically. The equation of motion = ×s B s  results [9] in 
spin precessing about the B -field lines of force in two stable configurations, 
± ⋅Bµ . Pauli invented 2 × 2 matrix operator σ̂  to satisfy ˆ s sσ = ±  for  

state 
up
dn
 

=  
 

s , with 
0 1
1 0xσ
 

=  
 

, 
0

0y

i
i

σ
− 

=  
 

, 
1 0
0 1zσ
 

=  − 
.  

Heisenberg conceived of the known nucleons, proton and neutron, as a single 
particle with two states, ignoring electric charge. Instead of up or down spin 
state he formulated the nucleon state with internal “isospin” symmetry to allow  

Pauli’s σ  matrix to switch between internal symmetry states, 
proton
neutron

ψ
 

=  
 

.  

Matrices are representations of group symmetry, yet isospin is not an exact 
symmetry; it is only approximate since the masses of the proton and neutron are 
not equal. The matrices { }, ,x y zσ σ σ  represent the 2 × 2 Pauli spin matrices of 
quantum mechanics. Hestenes constructs an equivalent orthonormal basis of 
three bivectors { }, ,x y zβ β β  satisfying x y ziβ β β= − . The algebras (with Kro-
necker delta jkδ  and Levi-Civita alternating symbol jkl ) are written:  

Pauli matrix algebra      Hestenes bivector algebra 

j k jk jkl liσ σ δ ε σ= − − ,     j k jk jkl liβ β δ ε β= − −            (8) 

Bivector algebra is identical to spin matrix algebra, by inspection. Since the 
algebras are identical, their physical implications should be the same; our ex-
pressed preference is for the geometric algebra formulation with geometric ele-
ments providing visible structures. Attempts to make gauge fields visible in dif-
ferential geometry center around fiber bundles, with cartoon-like representa-
tions of the type shown in Huang’s Fundamental Forces of Nature [10]. As Pe-
nrose has remarked [11] Yang-Mills isospin fields don’t exist in the physical 
world as far as we know. They are non-physical abstractions. 

Systems coupled to the electromagnetic field possess global gauge invariance be-
fore the coupling is turned on, so Schrödinger’s equation is invariant under a con-
stant phase change eiαψ ψ→  where α  is constant, since ( ) ( )e ei iα αψ ψ∂ = ∂ . 
Global phase has no physical consequence. Based on Noether, global gauge inva-
riance guarantees existence of a conserved current that yields charge conserva-
tion, and Yang and Mills hoped to find such gauge conservation principles in 
their treatment of isospin. But the system is not invariant under local transfor-
mation ( )ei xβψ ψ→  since Schrödinger’s equation is not invariant:  

( )( ) ( ) ( )e ei x i xβ βψ ψ∂ ≠ ∂ . Global gauge invariance is extended to local gauge inva-
riance by replacing derivative ∂  with covariant derivative D: 

D∂ → , iqAD →∂ +


.                     (9) 

In quantum mechanics qA is combined with momentum p therefore qA   
has dimension 1/length, appropriate to the derivative term. Such derivatives in 
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physics typically represent translations or rotations in local space, parallel 
transport along a path. A U(1) rotation through angle θ  can be represented by 
eiθ  phase factor, which, for infinitesimally small angles, reduces to 1 iθ+ . An 
arbitrary rotation about a fixed axis can be constructed from successive infinite-
simal rotations about that axis. For three axes there are three possible infinite-
simal rotations: 1 11 i Lθ+ , 2 21 i Lθ+ , 3 31 i Lθ+ . While the U(1) group of trans-
formations about one axis is Abelian (commuting), continuous transformations 
about 3 axes form a non-Abelian Lie group satisfying [ ],a b abc cL L i Lε= , (see bi-
vector algebra of Equation (8)). The iL  cannot be numbers since they do not 
commute. Since any 2 × 2 matrix is a linear combination of the Pauli spin ma-
trices; a generator of rotations about 3 axes can thus be represented 2a aL σ= ,  

with general transformation exp
2 a a
iU ω σ =  

 
 where aω  are real numbers.  

The 2 × 2 unitary matrix U has symmetry group SU(2) so isospin is an “internal” 
symmetry with SU(2) symmetry by construction; operation on any two-component 
wave function [ ]T1 2,ψ ψ ψ=  with rotation U satisfies Uψ ψ→ . In this way the 
geometry of classical physics is applied to abstract internal symmetry such as 
isospin. 

Yang and Mills, in terms of the infinitesimal charge generator aL  of SU(2), 

replaced derivative ∂  by covariant derivative a a
igD L A= ∂ +


 in equation of  

motion ( ) 0igA ψ∂ − =  where aA  is a 4-vector gauge field with three internal 
components corresponding to the generation of the gauge group of isospin rota-
tions. D generates a coupling between the particle and the gauge field with inte-
raction energy density a aj A  where aj  is conserved isotopic spin current den-
sity. “But in the real world, isotopic spin is not conserved; the gauge symmetry is 
not exact.” Yang and Mills next guessed that adding quadratic terms to the field 
strength would represent self-interaction of the gauge field: 

,F A A ig A Aµν µ ν ν µ µ ν = ∂ − ∂ +                   (10) 

Yang-Mills gauge theory is based on an abstract, non-physical, idea of ap-
proximate isospin symmetry. Yang-Mills theory does not explain the mass gap 
that is the key to particle physics, so we switch to the exact symmetry derived 
from the fundamental principle of self-interaction: 

ψ ψψ∇ =  ⇒  Heaviside equations ⇒  Einstein field equations. 
Whereas general relativity is derived from an approximate principle, the 

Equivalence Principle, the Heaviside equations are derived from an exact prin-
ciple, the Self-Interaction Principle. There are several consequences of these facts, 
treated in [12] [13] [14] [15]. Two key facts: 1) Heaviside theory is equivalent to 
curved space theory, and 2) Heaviside’s equations hold at all scales, from Planck 
scale to Cosmic Microwave Background. 

4. Details of Yang-Mills Theory 

Yang & Mills [16] formulate Bµ  with 12 independent components: 4 × 4 less 
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diagonal elements. For a two-component wave function, ψ , describing a field  

with isospin 1
2

, the isotopic gauge transformation Sψ ψ ′=  where S is a 2 × 2  

matrix with determinant unity, and all drivatives of ψ  appear in combination 
( )i Bµ µ ψ∂ −   where Bµ  are 2 × 2 matrices for 1,2,3µ = . Invariance requires 

( ) ( )S i B i Bµ µ µ µψ ψ′ ′∂ − = ∂ −  . 

The Yang-Mills isotopic gauge transformation on Bµ , corresponding to 

1A A
e xµ µ

µ

α∂′ = +
∂

 is 

1 1i SB S B S S
xµ µ
µ

− − ∂′ = +
∂

                    (11) 

with the last term like the gradient term in the gauge transformation of electro-
magnetic potentials. To obtain gauge invariant field strengths they define the 
analog of the electromagnetic case 

( )B B
F i B B B B

x x
µ ν

µν µ ν ν µ
ν µ

∂ ∂
= − + −
∂ ∂

  with 1F S F Sµν µν
−′ =        (12) 

Yang and Mills next introduce isotopic spin “angular momentum” matrices 

( )1,2,3i iτ =  which correspond to the isotopic spin of the field ψ  under con-
sideration. The B field is then defined as 2B bµ µ τ= ⋅  where both bµ  and τ  
are 3-component vectors in isotopic space. Interaction with any field ψ  of ar-
bitrary isospin requires replacing ordinary derivative of ψ  by ( )i bµ µ τ ψ∂ − ⋅  
with τ  representing isotopic spin “angular momentum” as above. The isotop-
ic-gauge covariant field strengths Fµν  are expressible F fµν µν τ= ⋅  where 

2
b b

f b b
x x
µ ν

µν µ ν
ν µ

∂ ∂
= − − ×
∂ ∂

                   (13) 

and fµν  transforms like a vector under an isotopic gauge transformation. The 
field equations derive from the total Lagrangian density 

1
4

f fµν µν= ⋅ .                      (14) 

Finally, they define 

2J b fµ µ ν µνℑ = + ×                     (15) 

with equation of continuity 0xµ µ∂ℑ ∂ =  and the supplementary condition 
(corresponding to the Lorenz gauge) 0b xµ µ∂ ∂ =  which eliminates the scalar 
part of the field in bµ . Equation (15) shows that isotopic spin arises from both  

spin 1
2

 field ( Jµ ) and from the bµ  field itself, thus making the field equations  

for the bµ  field nonlinear. This is as far as we will carry Yang and Mills theory 
in its original form. Writing for the Clay Mathematics Institute, Jaffe and Wit-
ten: 

“There is no known way of deriving the mass gap from the original theory.” 
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5. Angular Momentum and Yang-Mills 

Linking to our primordial field iψ = +G C  we identify gravitomagnetic gauge 
field v  with the Yang-Mills bµ  field. The problem is to create a mass-gap that 
has evaded physicists since the introduction of the theory. The gravitomagnetic 
field has also evaded physicist’s standard model of particle physics, suggesting a 
need to reinterpret non-linear fields. 

Yang and Mills introduce and discuss isotopic spin “angular momentum” in 
quotes and are unsure what it means physically. They adapt Pauli’s SU(2) spin 
matrices to Heisenberg’s isospin; a mathematical formalism applied to an ab-
stract internal symmetry. The nature of spin, at least classically, is rotation, and 
rotation in 3D space entails angular momentum. Exactly what is entailed in the 
space of internal symmetry, represented by gauge field bµ , is unknown. How-
ever, the nature of this gauge field is captured by the curl operation, so it must 
somehow entail an analog of angular momentum, as Einstein and deHaas [17] 
showed to be possessed by the magnetic field. Yang and Mills “define isotopic 
gauge as an arbitrary way of choosing the orientation of the isotopic spin axis at 
all space-time points.” 

The matrix 1 SS
xµ

− ∂
∂

 appearing in Equation (11) is a linear combination of  

isotopic spin “angular momentum” matrices iτ  ( 1,2,3i = ) corresponding to 
isotopic spin of the field we are considering. The Bµ  matrices contain a linear 
combination of matrices ( ) ( )1

n a
aaB x b xµ µ τ

=
= ∑  or 2B bµ µ τ= ⋅  where bµ  

and τ  are 3-component vectors in isotopic space. In Heaviside isotopic space, 
the bµ  vector is the vµ  velocity vector determining the linear combination of 
the bivector angular momenta. 

Although there is no well-defined idea of isotopic spin “angular momentum”, 
gravitomagnetic C-field possesses angular momentum; and is proportional to 
angular momentum: ( )2g c= ×C r p  with dimension 1 3t l− . For Fµν  de-
picted in Figure 1 we pair yC  with yC− , and cyclical iterations, where the in-
dex represents the axis about which these components of the field rotate. In oth-
er words, the formalism contains the angular momentum aspect of the compo-
nents. The C-field components are compatible with the three bivectors shown in 
the 3-space representation at the right, defined by the x, y, and z axes. The na-
ture of C-field circulation, from every perspective, is angular momentum.  

Consider Yang-Mills term ,A Aµ ν   . The   corresponds to the isospin 
charge analogous to electric charge q that interacts with electromagnetic gauge 
Aµ  in the Hamiltonian, appearing as qAµ , the momentum term. For the C-field, 
  corresponds to mass, hence m→A v , the field momentum (actually ρv  
the momentum density). In the original Yang-Mills the 1µ =  term interaction 
with the 2ν =  term concerns the x ymA A  term. The geometric algebra prod-
uct ( )x y x y x yA A A A i A A= ⋅ + × . The scalar product vanishes while the curl is 
proportional to zA . The curl is antisymmetric, so we have 

2x y y x zA A A A A− = .                     (16) 
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SU(2)         ≥          SU(3) 

Figure 1. The circulating field, the C-field, can be labeled by the (row, col) component or 
by the orthogonal axis about which the (row, col) component circulates. For example, the 
(x,z) element is labeled yC  and the (z, x) element is labeled yC−  since both of these 

terms rotate about the y-axis; similarly for the other components. These rotations are 
shown abstractly in the representation of the field strength Fµν  matrix on the left. The 

right-hand illustration maps the three bivector diagrams into 3-space. Colors are used for 
visual convenience and for suggested correlation with SU(3) × SU(2) × U(1) symmetry.  

 
Isotopic gauge covariant field equations fµν  are expressible in terms of 

Yang-Mills gauge field µνb  

2
mv

C

m
x x

µν
µν

µ ν
µν µ ν

ν µ

∂ ∂
= − − ×
∂ ∂

b b
f b b





                  (17) 

In this case the kinetic term of the Lagrangian, 1
4 µν µν= ⋅f f , will contain a  

product term proportional to ( )( )C mvµν µν  and a quadratic term ( )2
mvµν . 

The scalar multiplier ( )2g c  has dimension length massl m =  hence  
( )( ) ( )22 2 lengthg c mv mvµν ⇒ ⋅ . The product term corresponds to  

2mµν µν×f v  which, in Equation (15), shows up as a new source term. In other 
words, our treatment of the gravitomagnetic gauge field matches Yang-Mills’ 
original treatment. 

If it were obvious how to achieve mass gap at this point, it would have been 
solved in 1954. 

6. Higher-Order Self-Interaction 

The Yang-Mills ,A Aµ ν    term covers all gauge field component interactions, 
discussed above in terms of the original Yang-Mills paper. Yet neither mass gap 
nor quark confinement can be formulated successfully in this approach, so we 
examine a different self-interaction framework. The gravitomagnetic C-field has 
energy density, hence mass density, and circulates or rotates about an axis in 
space. The motion of the field, at any local point, results in momentum density 
at that point. But momentum density is the source current generating C-field 
circulation to begin with. Thus, the field itself induces more field and these fields 
interact; exactly what the Yang-Mills non-Abelian term is supposed to represent. 
Therefore, we should investigate the real physical field interacting with itself in-
stead of an abstract “internal” symmetry. The mass density of the second order 
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induced circulation field is not equal to the mass density that induced the first 
circulation. The self-induced circulation is iterative; the first induced field in-
duces a second order field circulation, and this, at any local point, induces a 
third order circulation, etc.  

Physical spin is associated with circulation of the C-field; ×C∇  represents 
bivector circulation, a spinning region of field such as a cross-section through a 
vortex, possessing angular momentum. Figure 2 illustrates first and second or-
der induced fields caused by source momentum density, 0p . Higher order in-
ductions of C-field circulations can be illustrated successively.  

The first conclusion is that successive orders do not interact to any degree; the 
force ×p C  is always orthogonal to the velocity, hence the work done is zero: 
Work d 0= ⋅ =∫F x . Alternate orders, on the other hand, do interact, as they are 
parallel or anti-parallel. To schematically illustrate this, we take the tangent vec-
tors to the circulation loops at the nearest and farthest points and “square the 
circle”, using the straight lines as heuristic devices to facilitate the expression of 
forces involved via analogy with electromagnetic forces between parallel currents 
(Figure 3).  

 

 

Figure 2. Momentum density 0p  (red) induces C-field circulation at position r . The 
C-field circulation at r  yields momentum density 1p  (green) orthogonal to 0p . Mo-

mentum 1p  induces the C-field at distance δ  from 1p . This induced C-field yields 
momentum density 2p  (red) with components parallel and anti-parallel to 0p . 

 

 

Figure 3. Focusing on (blue) loop1 and loop3 of the structure; source current and second 
order induction, loop2, are shown as red dashed lines. Since the loop3 bottom current is 
parallel to the rightmost current of loop1, the currents exert attractive forces upon each 
other, while top of loop3 is parallel to the current at the left of loop1 so the currents at-
tract each other. The attractive force lines are shown in green. Similar same arguments 
apply to anti-parallel currents which exert repulsive forces (not shown). 
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The self-linking field formalism of Figure 2 shows that second-order induc-
tion reinforces the primary inducing agent, i.e., local momentum density ρv . 
The electromagnetic force ijF  between two current elements d ij  and d jj  a 
distance ijr  apart guides us to write the gravitomagnetic equivalent.  

3

d d
d j i ij

ij
ijr

   × ×   =
p p r

F .                    (18) 

Since 3d d ij
i i

ijr
= ×

r
C p  where d ip  is the mass current element inducing the  

field then d dj i×p C  and Equation (18) is seen to be compatible with the Lo-
rentz force law = ×F p C  for the force on momentum p  in gravitomagnetic 
field C . In Figure 2, first-order C-field induction from momentum source 
density 0p , is used to derive second order C-field induction from the momen-
tum of the first-order field, 1 1 1~ ⋅p C C . Figure 3 focuses attention on loop1 
and loop3 of the structure, showing the source current, and second order induc-
tion, loop2, as dashed lines. The bottom current in loop3 is parallel to the 
rightmost current of loop1, and therefore the currents exert attractive forces 
upon each other. Similarly, the current at the top of loop3 is parallel to the cur-
rent at the left of loop1 and the two currents attract each other. The same argu-
ments apply to the anti-parallel currents which exert repulsive forces. The above 
follows from 

01 1 0d d d 0= × =F p C  since 0 1||C p                (19) 

02 2 0d d d 0F = × ≠p C  since 0 2⊥C p               (20) 
The force between 0p  and 1p  is zero since these mass density current flows 

are orthogonal to each other. On the other hand, the force acting between 0p  
and 2p  is maximal or minimal according to whether these flows are parallel or 
anti-parallel. 

This schematic organization guides calculation of the forces involved in the 
self-interaction of a turbulent primordial field. We seek first a qualitative under-
standing of dynamic behavior. All squares in the diagrams represent extensions 
of the tangent vectors depicted in Figure 3 and restore the dashed red loop2 to 
its true circular form. With this revision current loop3 should rotate about loop2, 
under the influence of the forces, eventually rotating into the xy-plane as de-
picted in Figure 4. 

Loop3, shown in blue above loop1, is simply a slice through a torus sur-
rounding loop2. It has no independent existence such that it can be pulled down 
into the plane. Nevertheless, if a “slice” is pulled into the plane, the field that 
replaces that slice will experience the same forces; the net result is a dynamic 
tension that tends to shrink the system of circulations into a lower energy con-
figurational state. The final state of an arbitrary slice is depicted in Figure 5. 

Despite having higher order constructions, the behavior is almost certainly 
governed by interactions between 1st and 3rd order induced circulations, as 
shown in Figure 4, consisting of the loop1 currents into and out of the page and 
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the two loop3 circulations, each with parallel currents into and out of the page. 
To formalize these interactions, we define the interaction between momentum 
density currents ip  and jp  as [ ] [ ],f p i p j    divided by the absolute dis-
tance between the currents and construct the interaction matrix over all six rele-
vant currents, shown numbered in Figure 5.  

7. Path Integrals over the Lattice 

In Figure 3 a (blue) loop3 is vertically aligned over one leg of loop1. Figure 4 is 
a snapshot of loop3 rotating about loop2 from the initial vertical state ( 0θ = ) to 
the horizontal state in the loop1 plane ( 2θ = −π ). The loop is symmetric and 
supports an inverse image behavior from another loop3 on the left side of the 
diagram. To proceed from the initial state to the final state, we step through a 
sequence of rotations. The paths through the local space surrounding loop1 are 
traced out by rays originating on loop1 and rotating by d iθ  rotations from 

0θ =  to 2θ = −π . Two paths are traced—the lower leg of loop3, and the up-
per leg of loop3 as loop3 rotates from vertical to horizontal. This lattice of points 
defines the points at which we want to calculate forces between loops. Four 
snapshots of such lattice-based dynamics are shown in Figure 6. 

 

 

Figure 4. Cartoon snapshot depicting third-order loop (blue) dynamics 
interacting with first order loop (blue) of C-field circulation induced by 
(red) source momentum 0p . 

 

 

Figure 5. The result of dynamic forces acting on slices of higher order 
loops whose currents are numbered as shown. In this progression the con-
figuration shown exerts attractive forces (green) between higher order 
loops and lower order loops, and repulsive forces (orange) between dis-
placed higher order loops. This behavior follows at all orders.  
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Figure 6. Shows positions and directions from initial vertical state represented 
by parameter 0θ = , successively transforming to parameter 2θ = −π . At-
tractive forces are shown as solid lines, with repulsive forces represented by 
dashed lines. Black lines represent forces to be calculated, while green lines 
represent symmetric forces; identical to forces corresponding to black lines. 

 
A time-sliced adaptation of Figure 4 shows the relevant portions of the cur-

rent loops directed into the page (red) and out of the page (blue). Attractive 
forces are shown as solid lines, repulsive forces by dashed lines. Black lines 
represent forces to be calculated, while green lines represent symmetric forces, 
identical to forces corresponding to black lines. Thick lines correspond to one 
power factor α  while thin lines are interactions with factor 2α . Figure 6 
shows positions and directions from initial vertical state (parameter 0θ = ) suc-
cessively transforming to 2θ = −π . 

Calculations of work done by the forces have the form ( ) ( ) ( )dij ij iW θ θ θ= ⋅F x  
where indices i and j vary from one to six as shown in Figure 5 and θ  varies 
from 0 to –π/2 as currents 3 and 6 move from initial vertical position into the 
xy-plane. The displacement ( ) ( ) ( )d di i iθ θ θ θ= − +x x x . Examination shows 
that 5dx  and 6dx  are greater than 4dx  and 3dx  for the same dθ . 

In Figure 6, for example, when currents 5 and 6 come together in the plane 
from initial vertical position, they oppose each other and the field between them 
increases, hence the energy density of the field increases, representing positive 
work shown by 56W . Currents 3 and 5, on the other hand, are parallel and at-
tract each other, minimizing their joint field between them and reducing the 
energy, thus representing negative work, shown by 35W  in Figure 7.  

The forces and displacements are calculated for every step of travel along the 
lattice path. The current force ( )ij θF  applied over ( )d i θx  describes the work 
done for that step. The inner product ( ) ( )dij iθ θ⋅F x  is maximum when 

( )ij θF  and ( )d i θx  are parallel. Since we began calculations at 0θ = , the ini-
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tial ( )1d 0x  is ( )d ,0,0x−  while the initial force ( ) ( )0 , ,0ij x yα= − −F . The 
two vectors are not parallel. They become parallel when ( ) ( )|| dij k i kθ θF x . Thus, 
in Figure 8 the energy is seen to peak at ~ 6kθ −π . From that point onward, 
each successive step will lead to a lower energy state, and mass-energy density of 
the field structure becomes more “locked-in”. In this way particles emerge with 
mass-energy greater than the vacuum state.  

8. Brief Summary of Physics 

The above physics is based on vorticity as the ubiquitous aspect of turbulent su-
perfluid. Energy flows from large vortices to smaller vortices, which are circu-
lating regions in the ultra-dense gravitomagnetic gauge field, with positive ener-
gy over a small region. The motion of the local field circulation induces further 
circulation and this in turn induces even higher order circulation. The topology 
is such that orders differing by one do not interact, whereas orders that differ by 

 

 

Figure 7. The work ( )ijW θ  representing the interactive force ( )ij θF  between mo-

mentum currents i and j at angles θ . The horizontal axis runs from 0θ =  to 
2θ = −π  while the vertical axis represents work ( ) ( ) ( )dij ij iW θ θ θ= ⋅F x . At 2θ = −π  

all displacements are down while all forces are horizontal, so no work is done at the final 
angle. 

 

 

Figure 8. Summing all the (arbitrarily scaled) works involved, we find that the net energy 
decreases, thus the self-interaction of the field leads to a more stable configuration. 
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an even number do interact. We have employed a fractal structure and defined a 
path based on the relevant self-interactions. The forces act to move the induced 
flows into the primary circulation plane while shrinking the boundary of the 
field. This movement drives the system to a lower, but still positive, energy 
which is denser than the initial vortex energy. This ultra-dense stabilized spin 
energy is the “mass-gap” that yields particle mass greater than the vacuum state. 
We have thus shown that the primordial field “condenses” to a positive energy 
structure that we identify as a fundamental particle. We know that this particle 
will have quantized spin and quantized charge, and these aspects must be in-
cluded to calculate the actual mass of the particle. This is in progress.  

9. Discussion of Results 

The years 1954 and 1964 witnessed revolutionary mathematics introduced into 
physics—Yang-Mills non-Abelian gauge theory and Hestenes’ geometric calcu-
lus, supporting physical intuition relevant to Yang-Mills theory wherein the 
non-Abelian term , ~A A A Aµ ν µ ν  ×   represents the interaction of the gauge 
field with itself. This term ,A Aµ ν    is supposed to cover all the gauge field 
self-interactions, yet neither mass-gap nor confinement has been formulated 
successfully in this approach. “Free” gauge field propagation through space can 
conceivably self-interact, but nothing stable arises from such interactions. It is 
intuitively obvious that a “mass gap” can arise only locally, which seems to imply 
either a boundary or a local potential well. Alternatively, a local circulation may 
be invoked, almost certainly the reason for the focus on “angular momentum” in 
isospin space, which is abstract, based on approximate symmetry. As Weinberg 
states [18]: “Many symmetries…were approximate because they weren’t funda-
mental symmetries at all; they were just accidents.” Despite their approximate 
nature, there has been much focus on symmetry aspects in Yang-Mills. In 
“Yang-Mills Origin of Gravitational Symmetries” [19] many gravitational sym-
metries are derived linearly, including general covariance, two-form gauge inva-
riance, local supersymmetry, and local chiral symmetry, following flat-space 
Yang-Mills theory. They remark that an important improvement would address 
the issue of dynamics as well as symmetry. Finally, “we might speculate that the 
supergravity µφ , the left Yang-Mills ( )iV L , the right Yang-Mills ( )iA Rµ

′  and 
the spectator ii′Φ  live in different worlds with their own Lagrangians.” By con-
trast, our approach begins with one primordial world and nothing else, with an 
implicit self-interaction equation, the solution of which leads straightforwardly 
to higher order self-interactions. The stability of these interactions yields a mass 
gap that failed to appear from prior symmetry analysis. 

In our derivation of Yang-Mills from the Self-Interaction Principle, the Hea-
viside C-field circulation is proportional to classical angular momentum. Equa-
tion (16) shows bivector-based ( ), , 2A A m A A mvµ ν µ ν µν  ⇒ =  . The Yang-Mills 
non-Abelian term is proportional to angular momentum of the gravitational 
gauge field, rather than some isotopic “angular momentum” in abstract space; 
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our approach is based on a real physical field, with real angular momentum, 
formulated in terms of bivector rotations in real 3-space. ,A Aµ ν    represents 
different interacting flows of the same field, locally distributed over space. The 
key Heaviside equation involving mass current density ρv  induces local circu-
lation ρ× = −C v∇  of the C-field with local energy density ~ ⋅C C  energy 
circulating with velocity v′  in the medium. This momentum density  

( )ρ ′= ⋅v C C v  will, in turn, induce second-order C-field circulation. 
This is Self-Interaction; if stable, it will lead to a mass gap. Our approach de-

monstrates stability via iterative self-induction and shows that, while alternating 
inductions do not interact, even-order self-induced structures do interact, and 
do so in a manner that increases the stability of the locally circulating field 
structure. In this calculation the scale is unknown, and the coupling parameters 
are not rigorously specified, but the dynamical behavior of the model is correct. 
The forces between points on the lattice represent gauge field flows in and out of 
the plane of the paper which are time-linked. The dynamical energy exchange is 
a function of flow topology and distances. Global scale parameters will not 
change the direction of the energy evolution, only the magnitude of the effect. 
The resulting self-interactions lead to a lower energy and a greater density state. 
Like a skater pulling in her arms, a decreasing radius leads to increased angular 
velocity. For simplicity we have suppressed this “shrinkage” of the structure, but 
in reality we expect the radius of the circulating field to decrease and the local 
velocity v′  to increase, such that m v r′ ′ ′  is the conserved angular momentum, 
where v′  is the increased rotational velocity, m′  is the relativistic mass  

( ) ( )( )0 ~m v m vγ γ′ ′ ′= ⋅C C  and r′  is the reduced radius. Quantized angular 
momentum ( ~  ) should prevent this circulation from shrinking to an infinitely 
dense “point” particle, and therefore should evolve to a finite sized toroidal field 
structure whose mass spectrum is based on parameters to be specified, but 
whose existence as a stable field structure has been demonstrated. Following pa-
pers will address half-integer spin and electric charge aspects of the particle, 
however they will inevitably trace back to this re-interpretation of the Yang- 
Mills term representing non-Abelian self-interaction: ( ) ( )2,i iA Aµ ν

+ 
   where (i) 

refers to induction order.  

10. Summary 

Our goal has been to formulate higher-order self-interaction of the gauge field 
and re-interpret the non-Abelian term based on this, to derive fermions from the 
gravitational gauge field. Previous papers have shown the derivation of Heavi-
side’s equations from an exact principle, the Self-Interaction Principle, is equiv-
alent to Einstein’s nonlinear field equations derived from the Equivalence Prin-
ciple, and have treated general relativity-based problems such as Quasi-Local 
Mass. Key is that the Heaviside derivation is field-strength independent, whereas 
Einstein’s derivation erroneously implies that Heaviside is a “weak field ap-
proximation”. 
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A mass-based understanding of gravity, as well as the weak field approxima-
tion misunderstanding, causes physicists to generally ignore gravity in particle 
physics. A mass-density-based understanding of gravity leads to a gravitational 
basis for particle physics. Burinskii [20] has suggested that particles arise from 
gravity with the structure of the Kerr black holes, while Christian and Diether 
[21] suggest particle radii on the order of the Planck length. In other words, 
mass densities associated with the big bang are effectively limitless. Huang [22], 
Volovik [23], and others view the primordial field as a superfluid. Circa 2006 
physicists at the LHC were expecting a quark gas from heavy-ion collisions but 
instead [24] 

“It is well known that the properties of the Yang-Mills plasma turned out to be 
unexpected…the plasma is similar rather to an ideal liquid than to a gluon gas 
interacting perturbatively.” 

They conclude with an analogy between phenomena in Yang-Mills theory 
with physics of superfluidity. Our underlying premise has been the superfluid 
nature of the primordial field, with ultra-dense fields, in which we identify high-
er-order self-induction modes. 

Einstein (1919) asked “Do gravitational fields play an essential part in the 
structure of the elementary particles of matter?”, suggesting the possibility of a 
theoretical construction of matter out of gravitational field and electromagnetic 
field alone. From’t Hooft’s perspective: “Einstein’s theory of general relativity 
has a mathematical structure very similar to Yang-Mills theory.” And Zee re-
marks: “there is increasing evidence that the Einstein theory of gravity is just 
Yang-Mills squared.” Yet the Millennium prize declares that: 

“Yang-Mills theory is now the foundation of most of elementary particle 
theory, but the mathematical foundation is still unclear.”  

Physical ideas may have been the source of Yang-Mills failure on key issues, 
not mathematical ideas. Density-based gravity may open realms of physics to 
gravitational phenomena that have been overlooked since Newton. This paper 
has presented a density-based re-interpretation of Yang-Mills gauge field self- 
interaction leading to stable gravitational gauge field structures to explain the 
mass gap. Future papers will explore half-integer spin and genesis of electric 
charge. These two issues should allow derivation of mass of fermions whose 
mass-gap was derived herein.  
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