
Journal of Modern Physics, 2022, 13, 1080-1092 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2022.137061  Jul. 18, 2022 1080 Journal of Modern Physics 
 

 
 
 

Circular Scale of Time as a Guide of the 
Schrödinger’s Perturbation Theory 

S. Olszewski 

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland 

 
 
 

Abstract 
The paper is a kind of a review which considers an investigation of the scale 
of time suggested by an application of the Schrödinger perturbation method, 
especially when the perturbation of a non-degenerate quantum state is ex-
amined. In fact the method was applied in numerous cases—also by 
Schrödinger himself—without any use of the notion of time. Simultaneously, 
because of the development of computers, their use in solving the perturba-
tion problems gradually decreased. However, the point of importance in the 
paper became the time. We demonstrate that collisions of a quantum system 
with the perturbation potential can be arranged along a circular scale of time 
whose properties provide us precisely with the energy terms obtained by the 
Schrödinger perturbation theory. This validity of results is checked till the 
perturbation order N = 7. 
 

Keywords 
Scale of Time, Schrödinger’s Perturbation Theory, Non-Degenerate Quantum 
State 

 

1. Introduction. Different Kinds of Approach to the Time  
Parameter in the Everyday Life and Science 

Evidently the time was an important parameter in the human existence from its 
very beginning. 

Duration and repetition of the days, nights, seasons, years became a well-known 
observation of everybody. This situation did not change in course of centuries. 
Simultaneously we had, in general, a strict qualitative distinction between the 
intervals of time and space. 

The space intervals were easy to manipulate in their arrangement, both in 
imagination and practice: there was no difficulty to have or put any such interval 
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in an arbitrary position or direction chosen by the observer. A totally different 
property concerned the intervals of time: they had always a definite property of a 
future object, or a past object, or an object being actually present in our interest. 

Nevertheless the science, especially mechanics, could be developed in spite of 
a difficulty concerning the actual “historical’’ position of an interval of time. In 
effect the time interval entering the mechanical process could be considered in-
dependently from its “history’’ for, in many occasions, the mechanics could be 
liberated from its historical background associated with time. 

A special point which made the sense of mechanical laws questionable was 
connected with an examination of the physical laws concerning the whole me-
chanical systems. In this case the main result became that a mechanical system, 
having a constant velocity, should not obey several kinetic laws other than those 
obtained for a system at rest; see e.g. [1]. This is usually presented by a require-
ment that the Galilean transformation laws for the mechanical parameters have 
to be valid. But the development done in physics in the 19th century led to con-
clusion that the laws of the Maxwell electrodynamics should be equally valid in a 
moving system as well as they are satisfied for a system at rest. 

A well-known consequence of that conclusion was the replacement of the Ga-
lilean transformation of the mechanical parameters by the Lorentz one. In fact, 
the Galilean transformation keeps its good accuracy solely when the speed of the 
moving mechanical system remains low in comparison with the speed of light 
c—the effect which holds in the most part of situations met in the everyday life. 

2. Present Approach to the Problem of Time and Its  
Scientific Position 

A competition between the Galilean and Lorentz transformations done by the 
Lorentz formula, presented a well-known subject of the special relativistic theory. 
This theory applies the joint metrics of the time interval  

dt                               (1) 

and space intervals  

d ,d ,dx y z                            (2) 

by combining them into the formula  

( ) ( ) ( ) ( ) ( )2 2 2 2 22d d d d ds c t x y z= − − −                (3) 

representing the square of a small distant ds  of the moving body. In the gener-
al theory of relativity the metrics (3) is replaced by a more complicated one [2]  

( )2d d d .ik i ks g x x− =                        (4) 

in which summation does apply over the parameters i and k. Usually the space 
coordinates are 1x , 2x  and 3x  and the time coordinate is denoted by 0x . In 
general the terms in (4) being  

ikg                               (5) 

are some functions of ix  and kx . A scientific advantage of the metrics due to 
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(4) and (5) over the metrics (3) is that (4) and (5) can take into account several 
special physical effects, like the gravitational interaction between mass and light 
confirmed next by the observation. 

An outline of the ideas and formulas given above concerns mainly the classical 
physics. They allow us, however, to present the role of time in a different prob-
lem, referred mainly to the quantum theory. This theory, began by the Planck’s 
treatment of the oscillators entering the black-body ensemble, allowed him to 
discover the oscillator quanta of energy, as well as the roles of the oscillator fre-
quency and the constant carrying the Planck’s name. 

The next large step towards quanta was connected with a partly quantum and 
partly classical approach to the hydrogen atom developed by Bohr; see [3], Vol. 1. 
Because of its very good agreement with the observed data, the model was con-
sidered as practically perfect in calculating the light frequencies connected with 
the electron transitions in the atom. But next the applications of the quantum 
theory occurred rather limited because of the difficulty connected with a treat-
ment of the many-electron systems present in the non-hydrogen atoms. This 
difficulty was successfully defeated by Schrödinger—and his successors—in the 
wave-mechanical approach to the electron structure of the atoms; see e.g. [3], 
Vol. 2.  

3. Schrödinger’s Quantum Problems and Simplification  
of Their Solutions  

The main idea of Schrödinger was to follow the de Broglie concept and consider 
the electron as a wave-like particle of matter.  

Then a corresponding wave-like equation can be built up and next solved. 
One side of the equation is a sum of the kinetic energy operator of one or many 
electrons presented in a system, and the next term in the sum is the potential 
energy operator which takes different particle interactions necessary to be con-
sidered into account. Another side of the Schrödinger equation is given by a 
product of the energy constant E multiplied by the electron wave function ψ . 
In effect we obtain the eigenequation for E and ψ . In general its solution 
represents a complicated mathematical task—only for very simple physical sys-
tems the equation can be rather readily solved. 

The Schrödinger equation—on its one side—is a sum of the kinetic and po-
tential energy operators kinÊ  and potÊ , viz.  

kin pot
ˆ ˆ ˆH E E= +                        (6) 

called the Hamiltonian—or energy—operator. This operator is acting on the 
wave function ψ , so  

ˆ ,H Eψ ψ=                         (7) 

is giving the Schrödinger equation. The right-hand side of the Equation in (7) 
represents a product of the eigenenergy E, considered as a constant number, and 
ψ . The effect of solution of (7) is usually a discrete set of values of E and dis-
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crete set of functions ψ . The case when solutions provide us with only different 
E in the set is called a non-degenerate case of solution, the degenerate case oc-
curs when some of the E in the set are equal, though these E are corresponding 
to different eigenfunctions ψ . 

4. A Simplification of the Solution of Equation (7) Done by  
Schrödinger  

His simplified solution was usually based on a separation of the Hamiltonian 
Ĥ  into two parts, namely  

per
0

ˆ ˆ ˆH H H= +                        (8) 

where the eigenequation  

0 0 0 0Ĥ Eψ ψ=                         (9) 

is expected to be more simple to solve than that given in (7). Briefly a more sim-
ple Equation (9) is called the unperturbed equation with eigenvalues 0E  equal 
to the unperturbed energies and 0ψ  are called the unperturbed eigenfunctions. 
Because of (8) the perturbation potential entering the unperturbed Equation (9) 
is equal to:  

per per
0

ˆ ˆ ˆ .H H H V− = =                     (10) 

Usually it is assumed that  

( )per perˆ ,H V r=
�                       (10a) 

so (10a) is taken—for the sake of convenience—as equal to a term independent 
of the momentum operator, or operators. Having solutions of (9) we can calcu-
late the matrix elements  

( ) ( )per per
0 0 d .m pm V p V Vψ ψ= ∫                   (11) 

The matrix elements (11) combined with the eigenvalues 0E  entering (9) can 
provide us—according to the Schrödinger perturbation formalism—with the 
approximate energy eigenvalues of the more complicated eigenproblem (7). 

This calculation can be done gradually for different perturbation orders N, 
beginning successfully with the lowest order 1N = . Huby [4] and Tong [5] cal-
culated the number NS  of kinds of the perturbation terms which should be 
built up from the matrix elements (11) for a given order N, on condition the 
perturbation concerns a non-degenerate quantum state. This number is equal to  

( )
( )

2 2 !
.

! 1 !N

N
S

N N
−

=
−

                      (12) 

But the derivation of a detailed shape of terms entering the number NS  can 
be a complicated task, especially for large N. One of the aims of the present pub-
lication is to demonstrate that the perturbation calculation proposed by 
Schrödinger, especially its part referred to the NS  terms, can be drastically sim-
plified if the collision events of an originally unperturbed system with the per-
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turbation potential  

( )per perV V r=
�                         (13) 

are arranged along a special scale of time. The scale has a circular-like shape and 
the number of collision kinds with the perturbation potential for each N occurs 
precisely equal to NS . Moreover, any collision kind, or collisions ensemble, is 
represented by a specified diagram created on the time scale. Simultaneously, the 
shape of the diagram provides us with a rule for calculating the corresponding 
contribution to the perturbation energy. 

A final result for the perturbation energy obtained in this way for a given N 
agrees with a corresponding energy obtained by the Schrödinger method. The 
details of calculations concerning the time scale and its applications are pre-
sented in the original author’s papers; see [6]-[22]. 

5. Use of a Circular Scale of Time in the Schrödinger’s  
Perturbation Problem 

In fact only the perturbation of a non-degenerate Schrödinger quantum state n 
was thoroughly considered with the aid of the mentioned scale. From the begin-
ning of its application the circular scale of time was developed systematically for 
subsequent perturbation orders N:  

1,2,3,4,N = �                        (14) 

A physical meaning of N was to give a number of collisions of an unperturbed 
system with the perturbation potential. This potential was usually assumed to 
depend solely on the position coordinate r�  of the particle:  

( ) ( )per per perˆ ˆH H r V r= =
� �                   (15) 

Therefore the considered perturbation is independent of the time parameter t. 
The number 1N =  refers to a single collision of the system with the pertur-

bation (10), the number 2N =  refers to two collisions with ( )perV r� , etc. Any 
scale labelled by N is assumed to be composed of the beginning-end (b.e.) point 
of time, in effect the scale represented by 1N =  has solely a single time point 
(b.e.) necessary for consideration. 

The scale of 2N = —giving the perturbation order 2—has two points of im-
portance: beyond of a single beginning-end point it has the second point which 
refers to any non-perturbed state p different than the considered unperturbed 
state n:  

.p n≠                            (16) 

The energy correction of state n due to the perturbation of order 1N =  is 
represented by a single term  

per
1 .E n V n∆ =                       (17) 

On the other hand, the perturbation energy belonging to the order 2N =  is 
given by a sum  
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( ) ( )

per per

2 0 0
p n p

n V p p V n
E

E E
∆ =

−
∑                 (18) 

where evidently the relation (16) does hold. 
According to the formulae given by Tong and Huby [4] [5], the number of 

kinds of the perturbation terms entering order N [see (12)] becomes:  

1 2 1S S= =                         (19) 

which are in agreement with the number of NS  given by the formula (12), see 
Figure 1 and Figure 2. 

But in general we have  

1NS >                           (20) 

and our dominant interest is to calculate these NS  terms. 
In the case of 1N =  the diagram has only a single point—the beginning-end 

point—presented by Figure 1; for 2N =  the diagram is represented by Figure 
2 having two isolated points. In the next step let us consider 3N = . In this case  

3 2.S =                           (21) 

The circular scale for 3N =  has three points on it; see Figure 3. One point is 
the beginning-end (b.e.) point, the other time points are labelled on Figure 3 by 
the numbers 1 and 2.  

The first of the 3S  terms in (9) is represented by the formula ( ,p q n≠ )  

( )
( ) ( )( ) ( ) ( )( )

per per per
part 1

3 0 0 0 0
.

p q n p n q

n V p p V q q V n
E

E E E E
∆ =

− −
∑∑          (22) 

 

 
Figure 1. The diagram is corresponding 
to the perturbation order 1N = .  

 

 

Figure 2. The diagram is corresponding 
to the perturbation order 2N = .  

 

 

Figure 3. The diagram is corresponding 
to the perturbation order 3N = , part 1.  
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The second energy term dictated by (21) originates from contraction of the 
time points 1 and 2 which are present in Figure 3. This contraction 1:2 gives a 
diagram presented in Figure 4. 

In fact the diagram in Figure 4 can be considered as representing the product 
of two terms: the first term is a time loop identical with the diagram characteris-
tic for 1N =  (see Figure 1), the other term is similar to the diagram for 2N =  
(see Figure 2). A difference from the term given in (22) is represented by the 
formula  

( )
( ) ( )( )

per per
part 2

3 120 0
.

p
n p

n V p p V n
E E

E E
∆ = − ∆

−
∑             (23) 

In effect the full perturbation energy term for 3N =  is  
( ) ( ) ( )3 part 1 part 2

3 3 .E E E∆ = ∆ + ∆                  (24) 

The problem of sign attributed to ( )part 1
3E∆  and ( )part 2

3E∆  will be discussed 
below; see Section 6. 

6. Abbreviated Formulae Applied in Calculating the Energy  
Perturbation Terms  

The abbreviated formulae for 1E∆ , 2E∆ , ( )first part
3E∆  and ( )second part

3E∆  can be 
expressed as follows:  

1 ,E V∆ =                         (25) 

2 ,E VPV∆ =                       (26) 

( )first part
3 ,E VPVPV∆ =                    (27) 

( )second part 2
3 ,E V VP V∆ = −                  (28) 

where 1E∆  is given by (17), 2E∆ —by (18), ( )part 1
3E∆ —by (22) and ( )part 2

3E∆
—by (23). 

A characteristic feature is that the case of 1N =  has no P terms entering 

1E∆ . The symbol P in (26) refers to the ratio  

( ) ( )0 0

1

n pE E−
                        (29) 

entering only once for any state p considered in the summation process in 2E∆ . 
On the other hand 3E∆  has two kinds of P terms, viz.  

 

 

Figure 4. The diagram is corresponding 
to the perturbation order 3N = , part 2.  
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( ) ( ) ( ) ( )0 0 0 0

1 1,
n p n qE E E E− −

                    (30) 

and product 2P  in (28) represents the term  

( ) ( )( )20 0

1

n pE E−
                       (31) 

entering the expression ( )part 2
3E∆  in (23). 

In general, a sum of powers P entering any energy term NE∆  should be equal 
to 1N − . 

The sign of NE∆  is dependent on the number of terms entering the product 
representing a given NE∆ : an odd number of terms in the product implies a 
positive sign before it, so it is in the case of 1E∆ , 2E∆  and ( )part 1

3E∆ ; an even 
number of terms entering the product implies a negative sign [see ( )part 2

3E∆  in 
(23)]. 

7. Contractions of the Time Points on the Scale of Time and  
the Number SN 

The number represented by NS —and the formulae for the NS  terms—can be 
obtained by considering the allowed contractions of the time points on the scale. 
An example of such contractions is given by the time points 1 and 2 represented 
by the symbol  

1:2                           (32) 

entering the time scale for 3N = . No other contractions than (32) can be ad-
mitted for 3N =  and its time scale. 

But let us consider the time scale for 5N = . In this case—beyond of the be-
ginning-end time point (b.e.)—we have the time points  

1, 2, 3, and 4                       (33) 

on the scale; see Figure 5. 
Since the point b.e. is excluded from contractions with the other time points, 

the allowed contractions to which the time points in Figure 5 can be submitted 
are:  

1: 2, 1: 3, 1: 4, 1: 2 : 3, 1: 2 : 4, 1: 3 : 4,
2 : 3, 2 : 4, 2 : 3 : 4,
3 : 4, 1: 2 : 3 : 4.

          (34) 

We see that the time points entering any contraction (34) should increase 
from smaller ones to larger ones. 

But this property does not complete the limits of contractions choice. There 
are allowed also two combined contractions:  

1: 2 and 3 : 4,                       (35) 

1: 4 and 2 : 3                        (36) 

but there are n o t allowed contractions like  
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Figure 5. The time point b.e. 
and the free time points 1, 2, 3, 
and 4 on the scale.  

 
1: 3 and 2 : 4.                         (37) 

The geometrical property which has to be satisfied for any set of contractions 
is that the lines (loops) associated with them should n o t cross. 

In effect, together with the case of a single set of points given in (33), which 
are free from any contraction on the scale (see Figure 5), we have  

51 6 5 2 14 NS S+ + + = = =                   (38) 

diagrams concerning points 1, 2, 3, and 4 when the points are submitted to con-
tractions. Expression (38) is equal precisely to the result of the formula (12):  

5 14.S =                           (39) 

The above procedure can be extended to an arbitrary perturbation order N. 
The order 7N =  having 7 132S =  terms was examined in [21] [22]. 

The diagrams representing the perturbation energies corresponding to con-
tractions (34) are as in Figure 6.  

The diagrams giving contractions (35) and (36) are as in Figure 7.  
The diagram presented in Figure 5 (having no contractions of the time points) 

gives the perturbation energy  
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1
5

per per per per per

0 0 0 0 0 0 0 0
p q r s n p n q n r n s

E VPVPVPVPV

n V p p V q q V r r V s s V n

E E E E E E E E

∆ =

=
− − − −

∑∑∑∑
 

(40) 

where  
, , , .p q r s n≠                        (40a) 

The energy terms represented by Figure 6 are:  

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2 2
5

per per per per

120 0 0 0 0 0

1: 2 or a

p q r
n p n q n r

E VP VPVPV V

n V p p V q q V r r V n
E

E E E E E E

→∆ = −

= − ∆
− − −

∑∑∑
      (41) 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

3 2
5

per per per per

120 0 0 0 0 0

2 : 3 or g

p q r
n p n q n r

E VPVP VPV V

n V p p V q q V r r V n
E

E E E E E E

→∆ = −

= − ∆
− − −

∑∑∑
      (42) 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

4 2
5

per per per per

120 0 0 0 0 0

3 : 4 or j

p q r
n p n q n r

E VPVPVP V V

n V p p V q q V r r V n
E

E E E E E E

→∆ = −

= − ∆
− − −

∑∑∑
      (43) 
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Figure 6. The diagrams representing the b.e. time points and 
contractions (34) on the time scale.  

 
( ) ( )

( ) ( )( ) ( ) ( )( )

5 2
5

per per per

220 0 0 0

1: 3 or b

p q
n p n q

E VP VPV VPV

n V p p V q q V n
E

E E E E

→∆ = −

= − ∆
− −

∑∑
          (44) 

( ) ( )

( ) ( )( )
( )

6 2
5

per per
part 1

320 0

1: 4 or c

.
p

n p

E VP V VPVPV

n V p p V n
E

E E

→∆ = −

= − ∆
−

∑
             (45) 

In the next step  
( )6 2 2
51: 4 2 : 3 E VP V VP V V′∩ → ∆ =             (45a) 

[see diagram (b’) in Figure 7] gives together with ( )6
5E∆  the result:  

( ) ( )

( ) ( )

6 6 2 2
5 5

part 1 part 22
3 3

2
3;

E E VP V VPVPV VP V V

VP V E E

VP V E

′  ∆ + ∆ = − − 
 = − ∆ + ∆ 

= − ∆

         (46) 
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Figure 7. The diagrams representing the b.e. time points 
and contractions (35) and (36) on the time scale.  

 
see (22) and (23). This implies that (46) provides us with two Schrödinger per-
turbation terms for energy. 

The remaining contractions of the time points give:  

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

27 3
5

per per per
2

130 0 0 0

1: 2 : 3 or d

p q
n p n q

E VP VPV V

n V p p V q q V n
E

E E E E

→∆ =

= ∆
− −

∑∑
          (47) 

( ) ( )

( ) ( )( )

8 3
5

per per

1 230 0

1: 2 : 4 or e

p
n p

E VP VPV V VPV

n V p p V n
E E

E E

→∆ =

= ∆ ∆
−

∑
           (48) 

( ) ( )

( ) ( )( )

9 3
5

per per

2 130 0

1: 3 : 4 or f

p
n p

E VP VPV VPV V

n V p p V n
E E

E E

→∆ =

= ∆ ∆
−

∑
           (49) 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

211 3
5

per per per
2

130 0 0 0

2 : 3 : 4 or i

p q
n p n q

E VPVP V V

n V p p V q q V n
E

E E E E

→∆ =

= ∆
− −

∑∑
          (50) 

( ) ( ) ( )

( ) ( )( )
( )

212 3
5

per per
3

140 0

1: 2 : 3 : 4 or k

.
p

n p

E VP VPV V

n V p p V n
E

E E

→∆ = −

= − ∆
−

∑
          (51) 

The energy term represented by (a’) in Figure 7 is  
( ) ( )

( ) ( )( ) ( ) ( )( )
( )

213 2 2
5

per per per
2

12 20 0 0 0
.

p q
n p n q

E VP VP V V

n V p p V q q V n
E

E E E E

∆ =

= ∆
− −

∑∑
       (52) 

Equation (40a) should be satisfied in all summations. 

8. Summary of Results 

The main idea of the paper presented by the author—and in former his papers 
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quoted here—was to demonstrate that a rather tedious approach to the 
Schrödinger perturbation energy can be much simplified when a circular scale of 
time in classifying the perturbations events is applied. As a special case a pertur-
bation of a non-degenerate quantum state is examined. 

First the number of terms entering the calculation is in a perfect agreement 
with the number of the formulae expected by Huby and Tong. The next point is 
that an arrangement of the time points on the scale gives a ready mathematical 
access to the formulae entering the Schrödinger perturbation theory for a given 
perturbation order N. This is a convenient situation because—for example in 
applying the Feynmann diagrams—the number of the perturbation terms and 
their character are much larger and more complicated than those necessary to 
perform the proper Schrödinger calculations for a chosen 1N � . 

In references [6]-[22] are given the diagrams of the time scale and their appli-
cations corresponding to the Schrödinger perturbation terms whose orders do 
not exceed 7N = . Some philosophical repercussions concerning the shape of 
the applied time scale and its use are also presented. In [9] a rather thorough 
comparison is done between the Feynman approach based on an infinite 
(straight-linear) time scale and a circular-time approach to the Schrödinger per-
turbation theory. Another comparison done in [22] does refer to the present 
perturbation calculation to the Leibniz theory and that outlined in the Ziman 
book [23]. 

The arrangement of the perturbation events on a special, viz. circular, scale of 
time, allowed us to obtain the perturbation energies of a non-degenerate quan-
tum system without solving the corresponding perturbation equations. 
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