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Abstract 
Einstein claimed Bohr’s theory is incomplete: “the wave function does not 
provide a complete description of the physical reality” [1]. Their views 
represent two physics in schism [2] [3]. Quanta are fundamental. The theory 
of diffraction in quasicrystals, that is summarized here, is falsifiable and veri-
fied. The quanta are not only harmonic; but harmonic in dual series: geome-
tric and linear. Many have believed the quantum is real; rather than concep-
tual and axiomatic. The quasicrystal proves its reality. 
 

Keywords 
Quasicrystal, Icosahedra, Hierarchic, Periodic, Harmonic, Irrational, Geometric 
Series, Metric, Resonant Response, Dispersion Dynamics 

 

1. Introduction 

The most profound physical effect [4] that is found in a quasicrystal (QC), such 
as icosahedral Al6Mn, is diffraction in geometric series. The effect is incompatible 
with Bragg’s law, nλ = 2d∙sin(θ), where diffraction in crystals occurs in integral 
order n; with probe wavelength λ; interplanar spacing ( )2 1 22 2d h k l= + +a  in 
the case of a cubic crystal having lattice parameter a , and reflection indices 
h,k,l. In high energy electron scattering, the Bragg angle θ, is about half the scat-
tering angle. Bragg’s orders n are due to the physical harmonies that occur in 
3-dimensions, at a Bragg condition, between a periodic crystal that scatters a pe-
riodic probe of photons, electrons or neutrons etc., from planes of atoms that are 
ordered and periodic. The order quantizes the scattering in momentum space. 

By contrast, the QC was described as a “Metallic phase with long range order 
and no translational symmetry [5]”. Part of the evidence for long range order is 
its sharp diffraction; and there is imaging evidence for hierarchic symmetry, 
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certainly in the reasonably short range of ~1500 atoms, and by indefinite exten-
sion in 3 dimensions. This symmetry is translational though not typically ob-
vious because it occurs across planes. The 5-fold pattern of the supercluster, for 
example, may repeat above and below a given plane [6]. Furthermore, numeric 
and analytic simulations show that the probe’s quasi-Bloch wave has, at the qua-
si-Bragg condition, translational symmetry about mτa , and where a  is the 
measured and calculated quasi-lattice parameter [6] [7]; where ( )1 5 2τ ≡ +  
is the golden section; and m is integral. 

Bragg diffraction is a quantum effect [6] in momentum space. It resembles 
quantized transitions between energy states in the hydrogen atom, since these 
states are harmonic in time and space precisely because they are spherically 
harmonic solutions to Schrödinger’s equation. These harmonies are absent in 
classical, Newtonian, corpuscular physics that must be supplemented in modern 
physics by the wave nature of matter: the particle has a probable extension that is 
greater than Heisenberg’s contrived uncertainty “limit” [8] and that will be 
simply expressed by the normal wave packet in the next section. 

In 19th century physics, wave theories of light displaced Newton’s corpuscular 
theory: in the diffraction of Huygens, Fraunhoffer and Fresnel, light diverged 
from motion in straight lines. In the 20th century, matter—including the elec-
tron—was found to follow similar laws but with the extra property of non zero 
rest mass mo. The similarity is now indeed obvious in electron and optical mi-
croscopes. There is a third, mathematical description by axiomatic simplification 
and imagination, such as the notion of a point particle. Simplification is a stan-
dard route to understanding complexity, but conclusions may not be true1. 
Planck quantized Maxwell’s electromagnetic wave; Bohr and Schrödinger har-
monized the electronic wave. Philosophically, physics is never complete, but al-
ways falsifiable [3]. Is the quantum constitutive or a phenomenal? Is harmony its 
cause or consequence? Quasicrystals display complex harmonies that signify the 
answer. 

2. Wave-Particle Duality 

The facts of wave-particle duality are instances in quantum-field theory. When 
we include together: electromagnetism, relativity, Planck’s law and the de Brog-
lie hypothesis in the simplified units  = c = 1 for Planck’s reduced constant and 
the speed of light, we find simply [9]: 

( )( )2 2 2
om k k kω ω ω= − = + −                   (1) 

where ω is the wave angular velocity and k the wavevector. The functions sepa-
rate conserved quantities (mass, charge, spin, energy, momentum, etc.) from 
elastic response waves (interference, superposition, creation, annihilation, en-
tanglement, etc.) For a normal free particle, the functions may be expressed: 

 

 

1Dirac did not believe truth is possible; but instead believed his theories beautiful [Pais A., in Paul 
Dirac, the man and his work, ed. Goddard, P., Cambridge (1998) ISBN 0 521 58382 9]. His was a 
mathematical perspective; In physics, falsification leads, by experimental elimination of competing 
explanations, progressively to truth [3]. 
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= ⋅ + 

   
with imaginary: ( )X i t kxω= −       (2) 

where σ depends on initial conditions that determine coherence of a packet in 
space and time (in manifold rank ℜ4) and A2 is a normalizing constant2. These 
constants are here represented in one dimension for simplicity, but are extensi-
ble to the transverse plane with σy, σz etc. Meanwhile the angular frequencies ω 
and wave vectors k are in fact distributed, as represented in Equation (2) by 
mean values. The intensity φ*φ is a probability density function for a particle, or 
for a photon having mass mo = 0. Notice that the response is elastic because its 
absolute, measurable value is unity: (eX)*eX = 1, everywhere and at all time. In 
absence of external force, ω  and k  are conserved quantities by Newton’s first 
law of motion. For the photon, the electric and magnetic fields are real: E = 
Re(φ) and B = Im(φ). 

The first term in the exponent of Equation (2) is Gaussian, and represents 
conserved properties; the second term is imaginary, so that the exponent de-
scribes an infinite wave, or field, in the complex plane (Figure 1). Of course, 
without the envelope function, the field amplitude is negligibly small. Some 
consequences of dispersion dynamics (Equation (1)) are given in Appendix 1. 

3. Summary of Failures and Discoveries 

Nowhere among the many reviews and summaries of quasicrystals in main-
stream journals, is there to be found a complete description of the diffraction of 
this unique class of materials. 

Though “long range order” is not disputed because of the sharpness of the 
diffraction pattern, the original claim that there is “no translational symmetry” is 
falsely apparent in planar images, since the symmetry is in fact three dimension-
al. Repetitive patterns that occur on adjacent planes can easily be simulated but 
not, regularly, imaged in specimen sections [6] [7]. 

 

 
Figure 1. Normal wave packet including conservative function (orange) enveloping infi-
nite elastic complex wave (red and blue), with uncertainty 2σ. 

 

 

2 ( )( ) 1
2 2exp d 2A A X σ τ

−
∗ = ⋅ ⋅∫  
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Because of the geometric series in the diffraction patterns, the common mis-
conception that the phenomenon is Bragg diffraction [10] (i.e. in linear series) is 
grossly mistaken. Moreover, attempts to describe the pattern have generally em-
ployed six unexplained dimensions, i.e. “multiplied without necessity”. Without 
the proper explanation for the geometric series diffraction, the widespread ob-
session with Penrose tiling is confused, misguided and inconsequential. 

All of these failures are overcome by the hierarchic model (Figure 2). This has 
been systematically published in several monographs and multiple, refereed ar-
ticles in scientific journals e.g. [6] [11] [12] [13]. The explanation is consistent, 
verified, and, in essentials, complete. 

In summary: 
The unit cell is consistent with imaging scales: it contains a central Mn atom 

surrounded by 12 Al atoms, icosahedrally coordinated. It is extremely dense. 
The atoms and cells are hierarchically arranged in geometric spatial order. 
The model is infinitely extensive, uniquely aligned from cell to cell, and uni-

quely icosahedral except for minor fillings with interstitial atoms or structures. 
The fillings occur because the cells are edge sharing and not strictly space filling 
as are the cells in crystals. Nevertheless the fillings contain a small and negligible 
percentage (~2%) of the bulk volume. 

In the absence of Bragg diffraction, the patterns are successfully indexed in 3 
spatial dimensions, including both stereographic axes (Figure 2(c)) and the dif-
fraction planes [14] that are normal to them. Dimensions should not be multip-
lied without necessity. 

In a further major break from Bragg diffraction, the indexation of axes and 
planes occurs generally in irrational and geometric orders. 

Whereas the diffraction is not Bragg diffraction, so that relationships between 
wavelength, order, interplanar spacing and scattering angle are a priori unde-
fined; nevertheless, the structure factor method can be used to simulate the QC 
diffraction. This is because the method is a priori independent of scattering an-
gle, and so has an extra degree of freedom. This freedom is critical. 

Again, in the absence of Bragg diffraction, the scattering has been accurately 
simuated by modified structure factors. Two modifications are introduced into 
the Quasi-Structure-Factor calculations (Appendix 2, Figure 3): 

Firstly a coherence factor cs is introduced to account for the multiple inter-
planar spacings that occur in diffraction from hierarchic icosahedral structure 
and verified in imaging. (By contrast, crystallography assumes unique d for each 
Bragg beam.) 

Secondly, because the cells are not linearly periodic, the normal summations 
are made over a whole quasicrystal of given order; not just over a unit cell as is 
the practice of crystallography. 

The calculations have proved, surprisingly, high coherence of the scattering 
from the hierarchic model, with line widths a small fraction of the correspond-
ing quasi-Bragg angle (~10−4) in a supercluster order 6, having about 108 atoms) 
[6] [10] [15]. 
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Figure 2. (a) Icosahedral unit cell with central Mn atom and 12 Al atoms. Notice 5-fold axis (red) normal to two 
circles of 5 Al atoms. Ten cells, covering two circles, is a typical cluster group in imaging [6]. The cell is extremely 
dense. (b) Hierarchic icosahedral structure. Notice the stretching factor (τ2) from the unit cell (side width 1 × 
length τ) to cluster (τ2 × τ3). (c) Stereogram of the principal axes for the icosahedral structure. Normal to them are 
the principal diffraction planes. They are all 3-dimensional with indices τm where the golden section  

( )1 5 2τ = + . After William of Ockham, “Dimensions should not be multiplied without necessity.” All of the 

beam intensities in the original data [5] have been indexed and calculated [11]. 
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Figure 3. Quasi structure factors (supercluster order p = 2) calculated (Appendix 2) by 
scanning for five peaks in geometric sequence against the coherence factor cs. At cs = 1, 
there is no Bragg diffraction, the same quasi-Bragg condition occurs at cs = 0.894 for all 
diffracted beams. Geometric series indices are shown level with the tops of corresponding 
QSF peaks. Intensities match experiments. 

 
The diffraction from the hierarchic structure model accurately simulates rec-

orded diffraction pattern intensities. 
The coherence factor shifts the scattering angle (double the Bragg angle) by a 

factor that is the same throughout all beams in all diffraction patterns. Know-
ledge of the factor is essential in measurement and verification. 

The factor has been analysed to an accuracy of 3 figures. Given the 3-dimensional 
indexation in geometric and irrational series, it is possible to separate the irra-
tional part from an approximate natural part that is Bragg-like (cs = 1). The irra-
tional residue forms a metric function that is identical for all indexations and all 
orders of beams in the diffraction pattern. The analytic function is the exact in-
verse of the scattering factor that was introduced in the QSF method and simu-
lated numerically. This discovery is extraordinary and highly significant in the 
explanation for diffraction in QCs. 

The proof of both cs value and general understanding, that is obtained by ex-
actly matching numerical and analytic methods, verifies the new Quasi-Bragg 
law for this icosahedral solid: 

( )2 sinm
sd cτ λ θ′= ⋅                       (3) 

where the quasi-Bragg angle is larger than the corresponding Bragg angle by the 
factor 1/cs after taking also into account the geometric orders instead of linear n. 
In 3-dimensions, m and d' are correspondingly vectorial. 
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The success in understanding the coherence factor, enables verification of the 
model and theory by measurement: the quasi-lattice-parameter, measured by 
standard methods that are modified to apply to QSFs, is the same as the known 
diameter of Al atoms, as indeed it must be under the model (Table 1, Figure 4, 
Appendix 3). 

This hierarchic model is adaptable to space filling by interstial defects. The 
general structure is that of quasi-spheres of multiple order that are densely 
packed, each sphere being identically oriented by sharing of multiple icosahedral 
edges. 

 
Table 1. Comparison between Bragg and quasi-Bragg optics. 

Bragg Quasi-Bragg Comment 

( )2 sinn dλ θ=
 ( )2 sinm dτ λ θ′ ′=

 
Harmonic laws 
Give scθ θ′ =  

( )cos 2hkl i hkl iS f= Σ π ⋅h r
 

( )cos 2hkl i s hkl iS f c′ = Σ π ⋅h r
 

Including iterations 
(Appendix 2) 

q-Structure factors 
Give cs, ′a  and d' 

d h= a  sd c τ′ = a  
( )2 2 12 2

d h k l
−

= + +a  

sd dc′ =  

hastily Measured a  
0.205 nm=a  

Corrected measurement 
0.29 nm′ =a  

(Appendix 3) 

Measured 
quasi-lattice-parameter 

0.29 nm = dia(Al) 

n: Bragg order; Shkl: Structure factor; λ: wavelength; fi: atomic scattering factor 
for atom i; d: interplanar spacing; cs: coherence factor; θ: Bragg angle; ri: location 
of atom i; τ: golden section; hhkl: normal to (hkl) plane; Prime: hierarchic equiv-
alent; a : lattice parameter. 

 

 
Figure 4. Golden-rectangle cross-section of the icosahedral unit cell in i-Al6Mn, having 
side width ′a  (the quasi-lattice parameter) and length τ ′a . The unit cell contains 15 
identical sections at various orientations. It is therefore quasi-spherical. This unit cell is 

extremely dense and depends on atomic diameter ratios 2
Mn Al 1 1d d t= + − . 

https://doi.org/10.4236/jmp.2022.136052


A. J. Bourdillon 
 

 

DOI: 10.4236/jmp.2022.136052 925 Journal of Modern Physics 
 

4. Dual Harmonies in Diffraction That Occurs in Irrational 
and Geometric Order 

Further illustration with quasi-Bloch waves in QCs at the quasi-Bragg condition, 
illustrates consequences of the irrational QC diffraction (Figure 5). In a crystal 
oriented to a first order Bragg condition an advancing electron beam interacts 
with the reflecting lattice to form two momentum dispersed Bloch bands. Their 
relative intensities depend on specimen thickness; on orientation; and they form 
regular fringes in wedge foils; and lattice images in high resolution imaging [16]. 
The fringes are commensurate with the unit cell and with all cells periodically 
repeating as represented in the blue wave of the figure. However, these Bloch 
waves are incommensurate with the hierarchic quasi-lattice that is geometric 
and irrational. When the scale is multiplied by the metric function (Table 2) 
[17]; 

4

1

21 11
0.894

m
m

s m

F
c F

τ +

+

−
= + =                    (4) 

the (red) wave becomes commensurate with the geometric quasi-lattice both 
long range, and at linear short range on each geometric intercept, i.e. all m. In 
equation 4, Fm represents the Fibonacci sequence base (0, 1). The quasi-Bloch 
wave is translationally invariant about all geometric intercepts mτa . Notice that 
the spacings between intercepts are in Fibonacci series that are represented by 
the denominator in Equation (4), Fm+1. 

Most Important is the fact that the quasi-Bloch wave is dual harmonic. The 
irrational part of any index is represented by the fraction in the metric function 
and this digitizes the periodic probe onto the hierarchic lattice while effectively 
decreasing the quasi-d-spacing by cs. The dual harmony enables the periodic 
probe to scatter coherently from the hierarchic lattice into a geometric reciprocal 
lattice with a peculiar and precise quasi-lattice constant. 

It is obvious that the dual harmony forces the quantization of the quantized  
 

 
Figure 5. Crystalline Bloch waves (blue) are commensurate with their unit cell and corresponding periodic crystal lattice at the 
Bragg condition. When this wave is stretched horizontally by the inverse coherence factor 1/cs, the quasi-Bloch-wave (QBW in 
red) commensurates with the irrational, geometric and hierarchic, quasi-lattice. Its geometric order is represented by the inter-
cepts on the horizontal line above it. The digitized number of periodic cycles between successive intercepts is in Fibonacci se-
quence (denominator in Equation (4)), and the diffraction is logarithmically periodic. The natural and irrational parts of the in-
dices are separable: the irrational part is expressed by the metric stretch; the natural part scatters with sharp, coherent diffraction. 
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Table 2. Analytic solution for the metric function. Irrational parts are colored red. Fm 
represents mth term (m = 0,1,2,∙∙∙) of Fibonacci sequence on bases in brackets. Delta is 
the Dirac function. The metric function is (1 + irrational residue), and is the same for all 
m. The analytic solution is identical to the numeric QSFs to three figures. 

Fact:  τm = Fm(1, τ) = ∂(m,1) + Fm-1(0, 1) + Fm(0, 1)τ 

∂ + Fm-1 + Fmτ = τm  m = 0, 1, 2, 3, ∙∙∙   

1 + 0 = τ 0       

0 + τ = τ1       

1 + τ = τ2       

1 + 2τ = τ3       

2 + 3τ = τ4       

3 + 5τ = τ5 = F4(01) + F5(0, 1)τ = F5(1, τ) 

        approx   

Approx    τm − Fm-1(01) − ( ) 301
2mF

 
= residue 

           

Metric fn : { 1+(τm − Fm+4/2 ) /Fm+1} = 1/cs 

 
momentum that is evident in the diffraction pattern. It is reasonable to make the 
hypothesis that all quantization is the result of—not the cause of—harmonic 
dynamic variables. Further confirmation may, in future, be found from mul-
ti-slice calculations of quasi-Bloch wave intensities as probe interacts with spe-
cimen. This becomes more feasible now that cs is known and understood and 
applied with geometric, band-gap potentials [18]. 

More generally it follows that since “matter tells space how to curve” while 
“space tells matter how to move”, then, without harmony, quantization of the 
graviton is a profoundly problematic notion until a harmonius wave can be 
identified. 

5. Discussion 

It is not enough for mainstream (self-styled) quasicrystallographers to fail over a 
period of 40 years to describe the physics of geometric series diffraction, while at 
the same time to censor the correct solution by unscientific quasi-reasoning (e.g. 
[15] pp. 89-109). 

The diffraction requires dual harmonies: one long range; the other short. That 
this happens proves that the dual harmony determines, and ranks higher than, 
the quantum that they produce. The importance of this result is that it shows 
that mathematical axiomatization of the quantum is not a complete representa-
tion of the physics; nor is a common fixation on small spaces and quantities. 
Large scale bridges resonate as atoms do and this is the unified basis of modern 
physics. The realism we share with Einstein [19]. 
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6. Conclusions 

Our exact match between analytic and numeric calculations for the coherence 
factor justifies the following conclusions. Quantization is a mathematical device 
that, in physics, applies only to harmonic entities. If gravity is not harmonic 
around matter there is little reason, in physics, for the graviton to exist. Where 
material wavefunctions are harmonic—in the H atom, nuclear particles etc.—then 
obviously, by Newton’s law of gravitation and Einstein’s general relativity, grav-
ity is quantized by the quantized masses. 

We wonder why for so long, mainstream QC theory failed to explain geome-
tric diffraction? Momentum quanta cause the sharp diffraction in dual short 
range and long range. After Planck discovered the quantum in the photoelectric 
effect, and before Schrödinger quantized the basis states of the hydrogen atom, 
Bragg demonstrated crystal diffraction wherein momentum changes, ordered by 
integral n, are quantized by harmonic interference between periodic crystal 
planes. This diffraction is due to harmonic interactions in space and time. Now 
we find that quasicrystals diffract, uniquely, with dual harmonies in both geo-
metric and periodic series. The quantum is therefore second fiddle to harmony: 
as consequence to cause. 
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Appendix 1. Dispersion Dynamics 

Differentiation of Equation (1) provides the equations for dispersion dynamics 
in simplified units, including: 

d 1
dk k

ω ω
⋅ =                         (A.1) 

where the normalized phase velocity of the wave vp/c = ω/k. The integrated beat 
velocity in Equation (2) is the normalized group velocity, vg/c = dω/dk, as fol-
lows: consider two tuning forks, off pitch with frequencies ω ± Δω/2. The fre-
quencies with mean phase frequency ω; beat as waves that continuously con-
struct and destruct. Their beat varies in time with frequency Δω. Likewise, the 
phase and beat wavevectors are k and Δk respectively, since generally k = 2π/λ, 
where λ is wavelength. The beat velocity is therefore Δω/Δk. Then summing Δω 
over all frequencies in Equation (2), reveals the group velocity since vp∙vg = c2 is 
constant in the theory of relativity. This relationship is the same for massless 
photons as for massive particles. In special relativity vg ≤ c and this is the velocity 
of reference frames; while, in vacuo, vp ≥ c. The wave is elastic and does not car-
ry energy. Energy, like momentum, is described by the conserved envelope func-
tion. 

Equation A.1 has many consequences. Notice that Equation (2) linearizes the 
second order equation 1 of special relativity, and so they perform a similar func-
tion for the free particle that Dirac’s equation serves for the bound electronic 
states in an atom. Moreover the equations 1 separate the propagation direction 
from transverse directions and this has many consequences including: solutions 
for negative mass [20]3, phase velocity [7], uncertainty, Newton’s second law, 
electron spin (as resistanceless paramagnetism in phase space, that is consistent 
with Hundt’s rules in atomic structure), intrinsic magnetic radius [21] and fine 
structure constant, reduction of the wave packet, [22] etc. The equations apply in 
harmonius diffraction by quasicrystals and crystals, as they do in the time inde-
pendent Schrödinger equation that operates on steady-state harmonic bases. The 
diffraction orders and quantum numbers respectively describe interaction re-
quirements that are quantized by necessary constructive interference over space 
and time. The formalism in Equation (2) enables our understanding of the fun-
damental interaction required in the coherent diffraction in QCs as described 
above. 

In particular, the mystery in Planck’s law that was discovered in photons, is 
that—for each independent photon—the energy is quantized and is therefore 
equal to the integral 2 2

0 02 2d d dx y zεε µµ ω+ ⋅ ⋅ =∫ E B   (where εε0 is the me-
dium’s electric permittivity and μμ0 its magnetic permeability). The fact was a 
synthetic proposition, empirically discovered. It compares with equations 2 from 
which densities ( )2 * 2d d d 1c x y z mcρ φ φ⋅ ⋅ ⋅ = ⋅∫ , which is also quantized and 
analytic. However, in the quasicrystal the quantized changes in momentum Δp 

 

 

3To avoid unphysical singularities in vg and vp when k = −mo in the antiparticle, the switching prin-
ciple is switched back [8]; the antiparticle mass is switched instead. 
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that occur in diffraction are in no way mysterious; but are necessitated by dual 
harmony and constructive interference. This quantization is both synthetic and 
analysed4. 

Appendix 2. Quasi-Structure-Factor (QSF) 

Since quasicrystals do not obey Bragg’s law of diffraction, nothing is known a 
priori about corresponding relationships between θ', λ and d'. However, the 
structure factor (SF) method is independent of θ: we can use the method by 
applying the known relationship between interplanar spacing d and the index 
hhkl in the case of crystalline cubic symmetry: 2 2 2d h k l= + +a . Here a  
represents the lattice parameter, and subscripts h, k and l represent the 
3-dimensional indices in the diffraction pattern [12] [15]. It turns out (e.g. Fig-
ure 4) that all structure factors in the quasicrystal are zero. The implied absence 
of diffraction should be expected in a solid whose images demonstrate multiple 
interplanar atomic spacings. However it turns out further, that by introducing a 
coherence factor cs, specific to the hierarchic icosahedral (HI) structure, a qua-
si-Bragg condition is discovered that is as sharp as the Bragg condition com-
monly observed by rocking crystals. The coherence factor is discovered by si-
mulations in which the factor is numerically scanned while evaluating the QSF, 
first by summing over the unit cell with atomic scattering factors fi = fAl,Mn in 
Equation (A.2), and secondly over clusters order (p − 1) ≥ 0, by iteratively add-
ing cluster centers at r = rcc in equation A.3 [6]: 

( )( )Al,Mn cos 2hkl i i s hkl iS f c= Σ π⋅ ⋅h r                (A.2) 

( )( )1 2cos 2p p p
hkl hkl cc s hkl ccS S c τ−= ⋅Σ π⋅ ⋅h r              (A.3) 

All atoms scatter. 
In crystals by contrast, the SF is simpler and is represented by equation A.2 

with simulated cs = 1. There, the calculation is comparatively easy because the 
summation is limited to one unit cell that repeats periodically. Symmetry in the 
unit cell often forces Shkl → 0, or to a small range of values. In quasicrystals, by 
contrast, the QSFs are calculated over all the atoms in a selected order of HI after 
scanning for optimum cs (Figure 3). The QSFs contain a spectrum of amplitudes 
whose corresponding intensities match experimental beam intensities reasona-
bly well [15]. 

Under the quasi-Bragg law, 2 2 2d a h k l′ ′= + + . The quasi-lattice parame-
ter is calculated on the (τ00) reflection, since it is the strongest line in the five 
fold axial pattern and corresponds to both the length of the unit cell and the 
typical separation of unit cells, is sc τ′ = ⋅ ⋅a a , where (unprimed) a  was pre-
viously calculated under the false assumption of Bragg diffraction [23] [24] and 
′a  is the (unit) width of the quasicrystal unit cell (Figure 4). 

  

 

 

4In two independent steps: experimental a posteriori and theoretic a priori. 
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Appendix 3. Verification of Quasi-Lattice-Parameter ′a  

Bragg’s law of crystal diffraction is written ( )2 sinn dλ θ= . 
In cubic crystals, ( )2 1 22 2d h k l= + +a . This formula applies in part to the 

quasicrystal because O8 is a subgroup of the icosahedral point group symmetry. 
This fact provides advantage in 3-dimensional, Euclidean indexation. 

The quasi-Bragg law of diffraction should be written ( )2 sinm dτ λ θ′ ′= . Here, 
indices (Table 2) are separable into natural and irrational parts. Simulations of 
imaginary structures that have the following basis in the natural approximation  

( ) ( ) ( )1,1
301 01
2

m
m mm F Fτ +→ ∂ + + , show such concepts to be Bragg-like with  

cs= 1. They actually have multiple peaks because of misalignment of cells, but the 
conclusion is simple: there is a change in scattering angle due to the irrational 
residue. Optical considerations show scθ θ′ = , and this is confirmed by simu-
lations. 

It follows from a comparison of Bragg’s law with the quasi-Bragg law that 

sd dc′ =  and therefore that sc′ =a a . There is however a further complication: 
the line that we used to “measure” the lattice parameter shown in Table 1, col-
umn 1, row 5 is the indexed line (τ00). This is because it belongs to the “third 
bright ring” in Shechtman’s data [5] which was mysterious at the time. In axial 
diffraction patterns it is normal for brightness to fall on beams away from the 
central (000) zero order beam owing to increasing deviation parameter [16]. 
However, the quasicrystal is not so simple: the reason why the third ring is 
bright is because it corresponds to the length of the unit cell and also the typical 
distance between unit cells in the hierarchic structure. This ring is also brightest 
in simulations, regardless the deviation parameter. 

The further correction is thus: ( ) ( )100 00 scτ τ′ =a a  i.e. correcting for the index in 
line 2 of this appendix. Then 0.29 nm′ =a  as on Table 1, column 3, row 5. The 
quasi-lattice-parameter is the same as the diameter of the Al atoms in Figure 4. 
This is a necessary form of verification in normal crystallography. 
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