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Abstract 
Highly accurate algebraic relations between the fine structure constant α  
and a wide range of particle masses are given, ranging from  

( ) 72.1 0.1 10α α −∆ = ± ×  to ( ) 82.7 0.3 0.6 10α α −∆ = − ± ± × , and with a very 

large standard deviation, ranging to 95.5 10α α −∆ = − × . The analysis is based 
on empirical relations that exist among some particle masses, and also on 
several theoretical assumptions, of which the most significant is that the 
electromagnetic contribution to the electron’s mass is finite, and given by 

ebf mα , where f is a dimensionless parameter that is shown to be equal to 
1.032409810 (63), and where ebm  is the electron’s “bare mass.” The relations 
for α  and f are homogeneous degree zero in the particle masses. The rela-
tions for f in terms of particle masses are found by trial and error. A quadratic 
equation is given relating α  to f and e pm m . This equation is used in the 

application to cosmological measurements of α , and p em mµ ≡ , where it 

is shown that, to a few percent accuracy, δα α δµ µ≈ − . This relation can 
serve to test the validity of measurements of α  and µ .  
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1. Introduction 

There is a long standing interest in the underlying basis of the dimensionless fine 
structure constant 2e cα ≡   (Gaussian units) following its appearance in 
Sommerfeld’s [1] special relativistic correction to the Bohr orbit model of the 
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hydrogen atom that gave the fine-structure splitting of the energy levels in 
agreement with experiment. This result, followed by the quantum mechanically 
and relativistically correct derivation of the fine-structure splitting from the Di-
rac equation [2] [3] [4] led to numerous efforts to derive α  from first prin-
ciples, of which the attempt by Eddington, summarized in [5], in which the em-
phasis is on the value of 1 137α− ≈ , is the most well-known. Later considera-
tions to investigate or comment on the significance of the fine structure constant 
include those of Born [6], Teller [7], Landau [8], Peebles and Dicke [9], Pauli 
[10], Wyler [11], Peres [12], Isham, et al. [13], MacGregor [14], Rozenthal [15], 
Barrow and Tipler [16], Good [17], and Várlaki et al. [18]. As yet another effort 
to study α , the purpose of this paper is to derive relations of very high accuracy 
between α  and some of the masses of the elementary particles. This approach 
will be based on two empirical relations, and several theoretical assumptions that 
are eventually falsifiable. In Section 2, the two empirical observations, based on 
the work of Nambu [19], and the author [20], are shown to lead to an approx-
imate empirical value for the fine structure constant, denoted by empα  that de-
pends on the ratio of the electron mass em  to the charged pion mass m

π ± , and 
that results in an agreement given by ( ) 33.4 10empα α α −− = × . Although it is 
possible to proceed further working with the ratio em m

π ± , because the value 
of the charged pion mass is not known sufficiently to deal with the very high ac-
curacy that will be achieved below for the theoretical value of α  denoted by 

thα , and also because of the interest in the value of the ratio of the electron mass 
to the proton mass e pm m  (although usually expressed in terms of its reci-
procal), as well as the fact that pm  is known to very high accuracy, subsequent 
work makes use of the ratio e pm m . In Section 3, several theoretical assump-
tions are given that involve introducing the so-called “bare mass” of the electron, 
i.e. the mass of the electron that it would have in the absence of its interaction 
with the electromagnetic field. In addition, there are the assumptions that the 
electromagnetic self-energy of the electron is finite and small, and, in terms of 
mass, is given by ef mα , where f is a dimensionless parameter that, in the 
course of the analysis, turns out to be slightly greater than unity. These assump-
tions lead to an expression for the bare mass that is eventually falsifiable. The 
next assumption involves replacing em  in the ratio e pm m  with the electron’s 
bare mass. This yields a quadratic equation for thα  whose solutions are ex-
amined, first for f = 1, that leads to an agreement given by ( ) 42.3 10thα α α −− = × . 
A further expression for f, that was obtained through trial-and-error, that in-
volves the masses of a suitable number of elementary particles, and that main-
tains the homogeneous degree zero in the masses behavior of e pm m , yields a 
substantially greater agreement of ( ) 0.6 8

0.52.1 10thα α α + −
−− = − × . With further 

trial-and-error in the choice of particle masses used in f, it is possible to improve 
the agreement for thα  still further, albeit with a larger standard deviation. Thus, 
with a suitable choice of masses in f, one obtained ( ) 1.6 8

1.81.4 10thα α α + −
−− = × . 

The standard deviation is due to that in the particle masses used in f. However, 
the homogeneous degree zero in the masses behavior for f, and more generally 
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that of thα , is still maintained. In Section 4, since the values for the masses in f 
involved hadrons that only contained the up, down, and strange quarks, expres-
sion for f are extended to include the masses of mesons and baryons that contain 
the charm quark, and masses of mesons that contain the bottom quark. For the 
case of f containing the mass of the charmed D± meson, among the other masses 
involved, one obtained ( ) 0.6 8

0.43.3 10thα α α + −
−− = × . While, for the case of f con-

taining the mass of the charmed lambda baryon c
+Λ , the result was  

( ) 6.9 9
8.25.5 10thα α α + −
−− = − × . For f containing masses of the bottom B0 and B± 

mesons ( ) ( ) 82.7 0.3 0.6 10thα α α −− = − ± ± × . For the bottom baryon 0
bΛ , the 

best value was ( ) 0.5 0.5 8
0.6 0.71.8 10thα α α + + −
− −− = × . In all these cases in which f is a 

function of the various particle masses, the standard deviations in the value of 
( )thα α α−  are due to the standard deviations in the particle masses. In Sec-
tion 5, the analysis is extended to include the gauge bosons W and Z, and the 
Higgs H0 boson, with agreements comparable to those found above. In Section 6, 
there is an application to the cosmological measurement of α , where it is 
pointed out that, since thα  is homogeneous degree zero in the particle masses, 
any change in the particle masses of the form ( ), ,i im z RA mφ δ→  where z is 
redshift, RA is right ascension, and δ  is declination, would leave thα  inva-
riant, and hence α  itself, to the level of agreement found in the previous sec-
tions. Hence, it is noted that if there were a change in α , some of the masses 
would have to change differently than the others; a requirement that would be 
even more difficult to reconcile with the standard model than the above change 
of the form, i im mφ→ , but it cannot be ruled out on the basis of present know-
ledge. Since, as pointed out above, that because of the accurate agreements in-
volved, the expression for thα  can be regarded as holding for α , and since the 
above quadratic equation, that under these circumstances holds for α , involves 
the ratio e pm m , and since the reciprocal of this ratio is defined as µ , it fol-
lows that a cosmological variation in α  is not independent of a cosmological 
variation in µ . It is shown that δα α δµ µ≈ − , the departure from strict equal-
ity being of the order of a few percent. This relation provides the possibility of an 
important test of such measurements that presently does not exist, since α  and 
µ  are treated as independent, In Section 7, there are concluding remarks. 

2. Empirical Relations 

It is well-known that the mass of the muon is related to the mass of the electron 
in the form 

13
2 em mµ α −≈ .                           (1) 

This relation leads the empirical list of particle masses given by Nambu [19] 
that are of the form, integer or half-integer times 1

emα− . It is also known em-
pirically, and that also follows from Nambu’s list that the mass of the charged 
pion satisfies 

4
3

m mµπ ± ≈ .                           (2) 
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Such a relation was also found by the author [20] to hold for two classical 
electron models that were compensated differently, one with the Poincaré pres-
sure, and the other with transverse stress, so that the energy and momentum of 
these two models transformed properly under a Lorentz transformation. The 
former was identified with the charged pion, and the latter with the muon. The 
relation (2) emerged later in the form ( )3 4m mµ π ±=  in the author’s [21] em-
pirical extension of Nambu’s list [19] to include particle masses im  that are  
approximately of the form, ( )( )4i i im a b m

π ±= +  where ia  are suitable in-

tegers, and 0,1,2,3ib = ; for example, the proton mass satisfies 36
4pm m

π ±≈ .  

However, for the purposes of this work (2) is to be regarded as a purely empiri-
cal relation. Upon inserting the value of mµ  from (1) into (2) and rewriting it 
as a relation for α , one has  

2 em m
π

α ±≈ .                          (3) 

This purely empirical result yields an approximate value for α , denoted by 

empα , with the value 0.007322empα = , for 0.511em =  MeV/c2 and  
139.57m

π ± =  MeV/c2 [22]. More accurate values for these masses from [22] 
will be used below. Hence an agreement with 0.007297α =  given by  

( ) 33.4 10empα α α −− ≈ × ,                     (4) 

A more accurate value for α  will be used below. Although one can continue 
working with (3). It turns out that the standard deviation in the mass of the 
charged pion, as given by 139.57039 0.00018m

π ± = ±  MeV/c2, yields too great 
a standard deviation in the theoretical values for α  in some of the examples 
that will be found below, consequently, it turns out to be desirable to replace (3) 
with the ratio of the electron mass to the proton mass. From Nambu’s second 
hint empirical mass list in [19], the proton mass obeys the relation.  

113.5p em mα−≈ , and since the list also gives 12 em m
π

α÷
−≈ , one has  

36
4pm m

π ±≈ , as does the neutron mass, and, as was found later, the tauon mass 

satisfies 312 6
4 nm m m mτ π π± ±≈ = + . Hence, substituting for m

π ±  with pm  in 

(3), one has 
13.5emp e pm mα ≈ .                         (5) 

With 938.272pm =  MeV/c2, this yields the value 0.007352empα ≈ , and 
hence an agreement of  

( ) 37.5 10empα α α −− ≈ ×                       (6) 

Although this agreement is clearly poorer than in (4), it will turn out from the 
theoretical work in the next section that considerably more exact agreements 
will be obtained. 

3. Theoretical Assumptions and Improved Agreements 
The above expressions for α  are of a purely empirical nature: no theoretical 
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assumptions went into obtaining them, However, in the following analysis much 
more accurate expressions relating α  to particle masses will be obtained, that 
are based on several theoretical assumptions that are all eventually falsifiable. 
The first assumption is that instead of em  in the numerators of (3) and (5), one 
should have the bare mass of the electron ebm , that is defined by 

eb e em m m= − ∆ ,                        (7) 

where em∆  is the addition to the bare mass of the electron due to its interaction 
with the quantized electromagnetic field. According to current ideas, the bare 
mass would arise as a consequence of the electron’s interaction with the expecta-
tion value of the Higgs field [23], although there are no generally accepted re-
sults in the literature, and in any case, it is irrelevant to this work as to just how 
the bare mass arises. As is well-known, em∆  diverges logarithmically in a first 
order perturbation expansion, as obtained by Weisskopf [24] using hole-theory, 
in which he acknowledged it to have been found by Furry as a correction to his 
previous work, Weisskopf [25]. In contrast, in QED, the logarithmic divergence 
follows from the one-loop Feynman diagram [26], and is removed by renorma-
lization [27]-[33], that regrettably fails to give a value for em∆ , since all the final 
answers are in terms of em , and hence the electromagnetic self-mass never ap-
pears. Here, in contrast, it will be assumed, secondly, that the self-mass is finite, 
and thirdly, that it is given by 

e ebm f mα∆ = ,                       (8) 

where the factor f is of order unity, and will be determined below. A non-rigorous 
justification for assuming that em∆  is a small contribution to the mass of the 
electron can be made by appeal to the quark model. The u and d quarks have 
masses comparable to that of the electron, but since the electric charge of the u 
quark is 2e/3 while that of the d quark is −e/3, if the electromagnetic contribu-
tion to the masses of these quarks were dominant, then since it would behave as 
the square of the charges, one would expect 4u dm m ≈ , but instead it has been 
found that 0.5u dm m ≈  [22]. Further justification follows from Feynman’s 
[34] remark that he suspected, “renormalization is not mathematically legiti-
mate.” A possible reason for such a suspicion is that the subtraction of one infin-
ity from another infinity is mathematically ambiguous: the difference need not 
vanish, it could be a finite quantity such as (8). However, as emphasized above, 
the basic justification for using (8) is the highly accurate results that are obtained 
below using it. Upon inserting the value of em∆  from (8) in (7), and solving for 

ebm , one obtains 

1
e

eb
m

m
fα

=
+

,                        (9) 

from which, using (7) one has that ( )1eb em f m fα α∆ = + . Upon replacing em  
in (5) with the value of ebm  from (9) one obtains the following quadratic equa-
tion  
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2 13.5 0.e

p

m
f f m
αα + − =                     (10) 

The physically desired solution is the positive root that will be denoted by 

thα , and is given by 

( )( )1 54 1 2th e pf m m fα = + − .              (11) 

The physical significance of the negative root, if any, is left unresolved at this 
writing. 

As a first approximation for the value of thα , it will be assumed that f = 1. 
With more exact values of the masses from [22], ( )0.51099895000 15em =  
MeV/c2 and ( )938.27208816 29pm =  MeV/c2, one obtains, rounding off,  

0.007299054thα = , so that in comparison with the present full value of α  that 
will be needed further on, i.e. ( )0.0072973525693 11α = , [22], one has 

( ) 42.3 10thα α α −− = × .                  (12) 

It is clear that there is already an improvement in accuracy over that given in 
(4) and (6) by more than an order of magnitude. Equation (10) can alternatively 
be used to determine p em m  in terms of α  and f. For f = 1, 1836.58p em m =  
in comparison with its empirical value of 1836.15, hence with the same accuracy 
as above, 2.3 × 10−4. Of interest is the fact that the value for thα  given in (11), 
with f = 1, is homogenous, degree zero in the masses, so that  

( ) ( ), ,th e p th e pm m m mα ϕ ϕ α= , and hence 

0th th
e p

e p

m m
m m
α α∂ ∂

+ =
∂ ∂

.                  (13) 

To proceed further, it will be necessary to determine the value of f more accu-
rately. It will be assumed that f is a function of particle masses, and that it main-
tains the homogeneous degree zero character of α in (5). In order to assist in the 
determination of f, which will be by trial and error, it is helpful to know the val-
ue of f that would lead to the current value of the fine structure constant that is 
given above. One has from (10) 

2

1 13.5 e

p

m
f

mα α
= − + ,                   (14) 

from which one obtains 

( )1.032409810 63f = ,                  (15) 

where the standard deviation in f is due mainly to the standard deviations in the 
masses of the proton and the electron, and less to that in α . Note also that (14) 
provides an upper bound on α  since on empirical grounds α > 0, and on 
physical grounds f > 0, hence one has α  < 13.5 me/mp, thus, rounding off, α  
< 0.00735233 = 1/136.0113. In what follows, approximations to f will be made 
that involve a suitable choice of particle masses. As the first example, guided by 
the fact that e pm m  involves a lepton mass divided by a hadron mass, it seemed 
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reasonable to try a ratio involving the muon mass divided by a suitable sum of 
hadron masses. The following expression for f is the result of such a trial and er-
ror search  

0

1 1
i i n K K

m m
f

m m m m m
µ µ

− ±Ξ

= + = +
Σ + + +

.           (16) 

From [22], with ( )105.6583745 24mµ =  MeV/c2, 1321.71 0.07m −Ξ
= ±  

MeV/c2, ( )939.56542052 54nm =  MeV/c2, 0 497.611 0.013
K

m = ±  MeV/c2, and 
493.677 0.016

K
m ± = ±  MeV/c2, one has 

23252.563 0.073 MeV ci imΣ = ± .              (17) 

Hence, after obtaining f = 1.03248465 (72), and using (11), one has  
( )0.00729734864 4thα = , and hence an agreement given by 

( ) ( ) 75.4 0.1 10thα α α −− = − ± × .              (18) 

Thus, by the above assumption about f, one has achieved nearly a thou-
sand-fold improvement over the agreement in (12). One can make a modest im-
provement to the above agreement in (18) by introducing in the denominator in 
(16) a different set of masses, consisting of the mass of the τ  lepton, that of the 
proton, and that of the η  meson, so that one has 

1 1
i i p

m m
f

m m m m
µ µ

τ η

= + = +
Σ + +

.              (19) 

From which, with 1776.86 0.12mτ = ±  MeV/c2, 547.862 0.017mη = ±  
MeV/c2, and pm  given above, one has 

23262.994 0.121 MeV ci imΣ = ± .             (20) 

After obtaining ( )1.0323808 12f = , and again using (11), one has  
( )0.00729735409 06thα = , and hence an agreement given by 

( ) ( ) 72.1 0.1 10thα α α −− = ± × .              (21) 

With a somewhat different choice of masses in the denominator of (16), it is 
possible to improve the agreement by an order of magnitude over that in (21). 
Thus with f given by 

0

1 1
i i n K K

m m
f

m m m m m m
µ µ

π+ ± ±Σ

= + = +
Σ + + + +

,        (22) 

with 1189.370 0.07m +Σ
= ±  MeV/c2, 139.57039m

π ± =  MeV/c2, and the other 
masses as given above, one has 

23259.793 0.073 MeV ci imΣ = ± .             (23) 

After obtaining ( )1.03241260 72f = , and using (11), one has that  
( )0.00729735242 4thα = , hence an improved agreement given by 

( ) 0.6 8
0.52.1 10thα α α + −
−− = − × ,               (24) 

where the standard deviation is due primarily to that in the mass of the +Σ , 
while the standard deviation in (18) is due primarily to that in the mass of the 
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−Ξ . 
It is possible to obtain comparable agreement for thα , albeit with a larger 

standard deviation, if in (16) one replaces mµ  in the numerator by m
π ± , and 

introduces another set of masses, that are found, as before, by trial and error, 
one has 

0 0 0

1 1
i i

m m
f

m m m m m m
π π

η π

÷ ±

ΛΞ Σ

= + = +
Σ + + + +

.         (25) 

With 0 1314.86 0.2m
Ξ

= ±  MeV/c2, 0 1192.642 0.024m
Σ
= ±  MeV/c2,  

1115.683 0.006mΛ = ±  MeV/c2, 0 134.9768 0.0005m
π

= ±  MeV/c2, and with 
the value of mη  as given above, one has  

24306.024 0.202 MeV ci imΣ = ± .              (26) 

Since the values of f, when the uncertainties in i imΣ  are taken into account, 
are significantly different, they are given separately; for 4306.024i im =Σ , f = 
1.03241282, for 4306.206i im =Σ , f = 1.03241275, and for 4305.822i im =Σ , f = 
1.03241434, from which 0.00729735241thα = , 0.00729735248thα = , and  

0.00729735233thα = , respectively. Hence, one has 

( ) 1.0 8
1.12.2 10thα α α + −
−− = − × .                 (27) 

In the above analysis, the standard deviation in m
π ±  has been ignored. When 

this is taken into account, and that in 4306.024 0.202i imΣ = ±  MeV/c2 is ig-
nored, one finds ( )1.03241282 04f = , and with this small standard deviation in 
f, the value for thα  remains the same as above. 

One need not replace mµ  in the numerator in f with m
π ± , one can instead 

replace it with, say 0m
π

, and to be sure, a different set of masses in the denomi-
nator, as the following example shows. One has  

0 0
1 1

i i

m m
f

m m m m m
π π

µ− − +Ω Σ Σ

= + = +
Σ + + +

.           (28) 

With 1672.45 0.29m −Ω
= ±  MeV/c2, 1197.449 0.03m −Σ

= ±  MeV/c2, and the 
other two masses as given previously, one obtains 

24164.927 0.30 M V cei imΣ = ± .              (29) 

Once again the values of f are sufficiently different, that they will be presented 
separately, for the different values of i imΣ  associated with its standard devia-
tion. For 4164.927i im =Σ  MeV/c2, one has 1.032407963f = , for  

4165.227i imΣ =  MeV/c2, 1.0324056288f = , and for 4164.627i im =Σ ,  
1.0324102975f = , from which one has 0.00729735267thα = ,  

0.00729735279thα = , and 0.00729735254thα = , respectively. Hence one has 

( ) 1.6 8
1.81.4 10thα α α + −
−− = × .                (30) 

The above analysis does not include the standard deviation in 0m
π

. However, 
it turned out to be negligible, when compared with that for i imΣ  in (29). Since 
the hadron masses used above only involved the u, d, and s quarks, in the next 
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section expressions for thα  will be given that involve the charmed c, and bot-
tom b quarks. In what follows in the next section, one will work with m

π ±  in 
the numerator of the expression for f, except for the case involving the bottom 
particles.  

4. Relations for thα  That Include Particles Containing  
Either a Charmed or Bottom Quark 

Following the example of the previous section, but in which one now introduces 
the charmed D± meson, one has 

1 1
i i D

m m
f

m m m m
π π± ÷

± − ΛΞ

= + = +
Σ + +

.             (31) 

From which, with 1869.65 0.05
D

m ± = ±  MeV/c2, with m −Ξ
 and mΛ  as 

given previously, one has 
24307.043 0.086 MeV ci imΣ = ± .             (32) 

Again, since the values of f, when the standard deviation in i imΣ  is taken in-
to account, are significantly different, they are given separately: for  

4307.043i im =Σ , f = 1.03240515, for 4307.139i im =Σ , f = 1.03240443, and for 
4306.957i im =Σ , f = 1.03240580, so that one has, 0.00729735281thα = ,  

0.00729735285thα = , and 0.00729735278thα = , respectively. Hence, since the 
contribution of the standard deviation thin m

π ±  is negligible, one has 

( ) 0.6 8
0.43.3 10thα α α + −
−− = × .                (33) 

As yet another example involving a charmed particle, the charmed baryon 

c
+Λ  will be introduced. One has  

0

1 1
c

i i

m m
f

m m m m m m
π π

η π π

÷ ±

+ − ±Λ Σ

= + = +
Σ + + + +

,         (34) 

from which, with 2286.46 0.14
c

m +Λ
= ±  MeV/c2, 1197.449 0.0030m −Σ

= ±  
MeV/c2, and the other masses that have been given previously, one has 

24306.318 0.144 MeV ci imΣ ±= .              (35) 

From which ( )1.03241061 108f = , for the mean one has  
0.00729735253thα = , and for 4306.462i imΣ =  MeV/c2, 0.00729735258thα = , 

and for 4306.174i imΣ =  MeV/c2, 0.00729735247thα = , so that finally one has 

( ) 6.9 9
8.25.5 10thα α α + −
−− = − × .                (36) 

The contribution from the standard deviation of m
π ±  is ±0.3 × 10−9, and 

hence negligible. 
For the case of a particle containing the b quark, one will work here with the 

masses of the B± and B0 mesons, and then with the bottom baryon 0
bΛ . Because 

of the large mass involved in the denominator of 1f − , one has to choose a 
larger mass in the numerator than m

π ± , and 0K
m  will be chosen., This choice 

in turn leads to an increased number of masses in the denominator, which will 
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also include the mass of a particle containing the charm quark, and since f will 
also include the masses of particles containing the three lighter quarks, all the 
quarks will be represented in the masses in f, except that of the top quark. One 
has 

0 0

0 0

1 1K K

i i n pB B D K

m m
f

m m m m m m m mη± ±

= + = +
Σ + + + + + +

.     (37) 

From which, with 0 5279.65 0.12
B

m = ±  MeV/c2, 5279.34 0.12
B

m ± = ±  
MeV/c2, and the masses of the other particles in the sum given previously, one 
has 

215351.95 0.18 MeV c± .                   (38) 

Just taking into account the standard deviation in the above sum, one has 
( )1.03241354 38f = , and hence ( )0.00729735237 2thα = . Next. just taking the 

standard deviation into account in 0K
m  in the numerator, since its contribu-

tion to the standard deviation in i imΣ  is negligible, ( )1.03241354 85f = , and 
( )0.00729735237 4thα = . One therefore has  

( ) ( ) 82.7 0.3 0.6 10thα α α −− = − ± ± × ,              (39) 

where the first standard deviation in (39) is due to that in i imΣ , and the second 
is due to the that of 0K

m  in the numerator.  
Next, one will take up the case when there is the mass of the bottom baryon 
0
bΛ  in the denominator of 1f − . One has  

0

0

0 0 0

1

1
b

K

i i

K

n p K K

m
f

m
m

m m m m m m m m m m mτ π− − ± ±ΛΛ Ξ Ξ Σ

= +
Σ

= +
+ + + + + + + + + +

 (40) 

From which, with 0 5619.60 0.17bΛ = ±  MeV/c2, and other masses as given 
previously, one has 

215354.853 0.30 M V cei imΣ = ± .              (41) 

Again, just taking into account the standard deviation in the sum, one finds
( )1.03240741 63f = . From which one obtains for the mean  

0.00729735270thα = , for the plus standard deviation, 0.00729735274thα = , 
and for the minus, 0.00729735266thα = . The standard deviation from that in 

0K
m  in the numerator is not the same at that above, hence one has 

( ) 0.5 0.5 8
0.6 0.71.8 10thα α α + + −
− −− = ×                  (42) 

where, as above, the first deviations are due to the standard deviation in the mass 
sum, and the second is due to that in 0K

m  in the numerator. For brevity values 
of f and thα  are omitted. 

In all the cases considered above, the denominator in 1f −  has only in-
volved a sum of masses, based on the possibility that in a future theory, the de-
nominators would arise as a consequence of a quantum theoretical mass sum 
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rule. However, in the present absence of such a theory, there is no obvious ob-
jection to having some of masses appear with a minus sign, so that the sum 

i imΣ  gets replaced with ( )i ii mΣ ± . For brevity only one case will be considered 
involving the baryon 0

bΛ . One has 

( ) 0 0

1 1
b

i ii K

m m
f

m m m m m
π π

π

± ±

− ±Λ Ω

= + = +
Σ ± − + −

.           (43) 

From which, with 0 5619.60 0.17
b

m
Λ

= ±  MeV/c2, and the masses of the other 
particles that have been given previously, one has 

( ) 24305.85 0.34 Me cVi ii mΣ ± = ± .               (44) 

Since the values of f and thα  are sufficiently different when the standard 
deviation is taken into account, they will be presented separately. However, the 
change in thα  due to the standard deviation in m

π ±  in the numerator is neg-
ligible. For the mean, one has f = 1.03241413, for the plus standard deviation, f = 
1.03241157, and for the negative, f = 1.03241669, so that one has  

0.00729735234thα = , 0.00729735247thα = , and 0.00729735221thα = , re-
spectively. Hence, one has 

( ) 1.8 8
1.73.2 10thα α α + −
−− = − × .                  (45) 

Another issue is whether one could add or subtract the mass of the electron to 
the denominators to possible improve the agreement. For example, in the above 
case, if one adds em  to the denominator, one gets f = 1.03241029, and hence 

0.007297352544thα = , and hence an agreement ( ) 93.4 10thα α α −− = − × . But 
the standard deviation in the result is an order of magnitude greater, and makes 
the result questionable. But again, in absence of a proper theory, one cannot rule 
out such a contribution to the denominator. 

Although the most accurate agreement for thα  up to now has been of order 
10−9, albeit with a large standard deviation, and most agreements are of order 
10−8, one could actually improve agreements by one to two orders of magnitude 
were it not for the large standard deviations in many of the particle masses. 
Therefore, it seems reasonable that with further improvement in particle mass 
measurements, it will be possible to fit the value of α  given in [22] to within 
its experimental standard deviation of ±1.5 × 10−10. Interestingly, as this work 
was in the process of being completed, Morel et al. [35] presented an even more 
precise value of α , with a standard deviation of ±0.81 × 10−10. Since this is only 
about a factor of two increase in accuracy over α  in [22], if with improved 
particle mass measurements one will be able to fit α  in [22], one should also 
be able to fit this new value in [35]. In any case, the majority of the agreements 
found here, of the order of several parts in one hundred million, are more than 
sufficient to deal with the application to the cosmological measurement of α  
in section 6. However, for completeness, before going on to this application, it 
will be shown in the next section that the above analysis applies to the gauge W 
and Z bosons, and the Higgs H0 boson.  
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5. Relations for thα  with Gauge W and Z, and Higgs H0  
Bosons 

With the numerator of 1f −  given by the bottom meson, 0
1B , and for brevity, 

rather than dealing with them individually, just the sum of the masses of W and 
Z, will be utilized in the denominator, along with earlier used particle masses. 
One has 

0 0
1 1

0

1 1B B

i i Z W n p K K

m m
f

m m m m m m m m mη− ±Ω

= + = +
Σ + + + + + + +

.    (46) 

From which, with 91.1876 0.0021zm = ±  GeV/c2 and 80.379 0.012Wm = ±  
GeV/c2, and with the other masses given previously, one has 

2176.656 0.012 GeV ci imΣ = ± .                (47) 

With 0
1

5.7261 0.0013
B

m = ±  GeV/c2, one obtains for the mean,  
1.03241384f = , for the plus standard deviation, 1.03241164f = , and for the 

negative, 1.03241605f = , and hence 0.00729735236thα = ,  
0.00729735247thα = , and 0.00729735224thα = , respectively, so that one has 

( ) 1.5 8
1.62.9 10thα α α + −
−− = − × .                  (48) 

The standard deviations in the masses of the Z and 0
1B  were negligible com-

pared to that of the W. For the case of the Higgs H0 boson, the numerator of 
1f −  will be taken to be the mass of the 1cχ  cc  meson, so that one has  

1 1

0 0 0

1 1c c

i i H D K K

m m
f

m m m m m
χ χ

±

= + = +
Σ + + +

.           (49) 

From which, with 0 125.1 0.14
H

m = ±  GeV/c2, 0 1864.83 0.05
D

m = ±  MeV/c2, 
and 

1
4146.8 2.4

c
mχ = ±  MeV/c2, and the values of the other masses given pre-

viously, one has 
2127.956 0.14 GeV ci imΣ = ± .                (50) 

From which one obtains for the mean, 1.03240802f = , for the plus standard 
deviation in (50) (that in 

1c
mχ  will be evaluated separately) one has  

1.03240447f = , and for the minus, 1.03241156f = , and hence,  
0.00729735266thα = , 0.00729735285thα = , and 0.00729735248thα = , re-

spectively. Next, the same evaluations will be made for the standard deviation in 

1c
mχ . For the plus, one has, 1.03242677f = , and for the minus, 1.03238926f = , 
and hence, one has 0.00729735168thα = , and 0.00729735365thα = , respec-
tively. From the above one arrives at the following agreement 

( ) 2.6 14 8
2.4 111.2 10thα α α + + −
− −− = × ,                (51) 

where the first standard deviation is due to that in the mass of the H0, and the 
second, to that in the mass of the 1cχ . 

6. Application to the Cosmological Measurement of α 

Over the years there has been an interest in whether the fundamental constants, 
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such as the fine structure constant, vary with time, so that α  would become 
( )zα , where z is the redshift back to an earlier epoch. More generally, there is 

the question as to whether α  would vary spatially as well, because of possible 
spatial anisotropy, so that one would have ( ), ,z RAα α δ= , where RA is right 
ascension, and δ  is declination. The following is a reduced list of references to 
this much researched subject: [7] [36]-[56]. For a detailed discussion, see, e.g., 
[16] and [50]. The present work has shown the dependency of thα  on particle 
masses has an accuracy given by ( )thα α α−  in the range 10−7 to 10−9, and 
since current astronomical determinations α  are of the order 10−5, e.g., in [54], 
Wilczynska, et al. give ( ) ( ) 52.18 7.27 10zα α α −− = − ± × , while in [46], Rein-
hold et al. give for a weighted fit, ( ) 52.4 0.6 10µ µ −∆ = ± × , it follows that 
statements here, based on the properties of thα , can be taken to hold for the 
properties of α  as they exist physically, and are determined astronomically. 
Thus, in what follows, the subscript “th” on α  can be dropped, and one can 
assume the properties of α  are the same as those of thα . This leads to two in-
teresting consequences. First, since α  is homogeneous degree zero in the par-
ticle masses, since ( ),fα α µ= , and both f and µ  are homogeneous degree 
zero in the particle masses of which they are functions, it follows that any change 
of the particle masses im  of the form ( ), ,i im z ra d mφ→ , necessarily leaves 
α  invariant, so that 

( )( ) ( ), , i iz ra d m mα φ α= ,                  (52) 

which entails that 

0i i
i

m
m
α∂

Σ =
∂

.                       (53) 

Thus, for there to be a change in α , not all the masses of which α  is a 
function can change in the same way. Consequently, there would have to be one 
or more changes in particle mass ratios, of which the simplest would be a change 
in the ratio that is the most accurately determined astronomically, i.e., p em mµ ≡ . 
Needless to say, such changes are not expected according to the standard model, 
since it is based on special relativity for which there is invariance under time and 
space translations. 

To determine how a small change in α  is related to a small change in µ  it 
is convenient to rewrite (11) as 

( )11 54 1 2f fα µ−= + − ,                (54) 

and expand, just keeping the first two terms, which yields 

( )1 213.5 182.25fα µ µ− −= − + ,              (55) 

from which, upon varying α , one has 

( )2 3 213.5 364.5 182.25f fδα µ δµ µ δµ µ δ− − −= − + − .      (56) 

Since one is going to divide δα  by α , it is helpful to determine the relative 
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magnitude of the terms in these two equations, so as to see what can be neg-
lected. With 1 45.446 10µ− −= ×  and 1.03241f = , (55) becomes 

3 57.35 10 5.58 10α − −= × − × .                (57) 

Since the second term is less than one percent of the first term, and since the 
measurements are not of this accuracy, it will be neglected in what follows. 
Therefore upon dividing δα  in (56) by just the first term in (55), one has 

1 127 13.5f fδα δµ δµµ µ δ
α µ µ

− −= − + − .             (58) 

Inserting the values for 1µ−  and f into (58), it takes the form 

30.015 7.4 10 fδα δµ δµ δ
α µ µ

−= − + − × .             (59) 

Since one has already neglected two terms of order one percent, the second 
term on the right hand side can be neglected. Also, since ( )f f f fδ δ= , and 
since 1f ≈ , f f fδ δ≈ . Under the assumption that f fδ  is no greater in 
magnitude than δµ µ  which according to the latest measurements, if it exists 
at all, would be of the order 10−5, so that this third term is less than one percent 
of the first term, and hence can also be neglected. Thus, to within a few percent, 
one has 

δα δµ
α µ

≈ − .                         (60) 

This relation should prove helpful in ruling out false determinations, such as 
the ones that have been made in the past: since if there is a report of, say, a de-
crease in α  of a certain magnitude for a given cosmological location, then, ac-
cording to (60), there should be a simultaneous report of an increase in µ  of 
very nearly the same magnitude at the same location, and vice versa.  

7. Concluding Remarks 

This work shows that it is possible to fit the empirical value of the fine structure 
constant to several parts per 109, albeit with a large standard deviation, and very 
likely fit it to its current determination, by employing more accurately measured 
particle masses. These relations, that are homogeneous degree zero in the par-
ticle masses, were found partly by empirical considerations, partly by trial and 
error, and partly by several theoretical assumptions about the mass of the elec-
tron that lie outside the current realm of QED. Most importantly, it was as-
sumed that the contribution to the mass of the electron from the electromagnetic 
field is finite, and of the form: e ebm f mα∆ = , where ebm  is the so-called “bare 
mass” of the electron, that is defined in Equation (7), and where f is a new para-
meter that is a homogeneous degree zero function of particle masses that are 
chosen by trial and error. It is shown to have the value ( )1.032409810 63f = , 
where the standard deviation in f is due mainly to the standard deviation in the 
masses of the proton and electron that are involved in the determination of f ac-
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cording to Equation (14). With em∆  as above, the bare mass of the electron 
according to Equation (9) is given by ( )1em fα+ , and this value for ebm  
should be falsifiable when a generally-accepted determination of the contribu-
tion to the mass of the electron from its interaction with the Higgs field becomes 
available. What would help in this investigation would be the experimental de-
termination of em∆ . However, a glance at the literature, e.g. [31], shows that 
although there have been substantial efforts over many years to deal with the lo-
garithmic divergence of the electron’s self-energy, of which renormalization is 
the prime example, little attention has been paid to the issue to how to measure 

em∆ , or whether in principle it is measurable at all. Thus it is hoped that this 
work, as well as an earlier comment by the author [57] will serve to direct atten-
tion to this long neglected area.  

As indicated in the previous section, this work has significant bearing on the 
cosmological determination of whether α  depends on time and space. It was 
pointed out that since some of the expressions given here for thα , with im-
proved particle mass determinations, most likely can finally arrive at 0thα α− = , 
to within the empirical uncertainty of α  itself, then, because the expression for 
α  would be homogeneous degree zero in the particle masses determining it, any 
variation of the particle masses of the form ( ), ,i im z RA mφ δ→  would necessari-
ly leave α  unchanged, so that at least one mass would have to change diffe-
rently than the other masses in the relation for α . Although this seems highly 
unlikely on the basis of the standard model, based as it is on special relativity, 
nevertheless, since the model does not predict the masses of the particles, such 
behavior cannot be ruled out, and therefore continuing efforts to look for possi-
ble cosmological changes in α  are fully justified. With regard to such investi-
gations, it was shown that because of the relation between α  and µ , as given 
in Equation (54), such possible changes in α  would be accompanied by 
changes in µ , which would satisfy the relation, δα α δµ µ= − , to within a 
few percent. Consequently, when possible changes in α  and µ  are reported, 
the determination of whether they satisfied this approximate relation would 
provide a critical test as to whether the reported changes were true, or whether 
they were due to some previously unrecognized source of error. 

Finally, it is a prediction of this work that a new approach to QED is possible, 
in which the electron’s self-energy is finite, and the value of α  emerges from 
the theory, rather than being inserted from empirical measurement. In view of 
the relation of α  to the particle masses found here, such a theory might shed 
new light on the particle mass spectrum as well. 
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