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Abstract 
Two concepts of phenomenological optics of homogeneous, anisotropic and 
dispersive media are compared, the younger and more general concept of 
media with spatial dispersion and the older concept of (bi)-anisotropic media 
with material tensors for electric and magnetic induction which only depend 
on the frequency. The general algebraic form of the polarization vectors for 
the electric field and their one-dimensional projection operators is discussed 
without the degenerate cases of optic axis for which they become two- 
dimensional projection operators. Group velocity and diffraction coefficients 
in an approximate equation for the slowly varying amplitudes of beam solu-
tions are calculated. As special case a polariton permittivity for isotropic me-
dia with frequency dispersion but without losses is discussed for the usual 
passive case and for the active case (occupation inversion of two energy levels 
that goes in direction of laser theory) and the group velocity is calculated. For 
this active case, regions of frequency and wave vector with group velocities 
greater than that of light in vacuum were found. This is not fully understood 
and due to large diffraction is likely only to realize in guided resonator form. 
The notion of “negative refraction” is shortly discussed but we did not find 
agreement with its assessment in the original paper. 
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ab  scalar products, [ ],a b  vector products, [ ], ,a b c  volume products, ⋅a b  
dyadic products, 

AB  operator products, ,a aA A  products of operators with vectors, a aA  bi-
linear (and quadratic) forms. 

In Euclidean spaces with a symmetric metric tensor ijg , the dual tensor 

ik ijk jb b≡   to a vector jb  ( ijk  Levi-Cicita symbol) can be also seen as anti-
symmetric operator and in coordinate-invariant form we can write this anti-
symmetric operator as [ ]b  with the advantage that vector and also volume 
products can be written only by displacement of the squared brackets, e.g., 
[ ] [ ],≡a b a b , [ ] [ ],≡b c b c , [ ] [ ] [ ] [ ], , , ,≡ ≡ ≡a b c a b c a b c a b c .  
In mathematical texts I write three-dimensional operators by serif-less Capital 

letters. In physical texts this makes sometimes difficulties because one cannot 
reasonably write all operators with physical meaning by Capital letters and all 
vectors with physical meaning by small letters. Furthermore, in case of Greek 
letters, “Latex” (and also printing) does not provide serif-less letters. In these 
cases I write operators as a compromise by bold letters, e.g., ,ε µ  such as vec-
tors to distinguish them, in particular, from scalars. This means that in present 
physical text one must know which kind of quantities one has: scalars, vectors or 
operators. 

1. Introduction 

There are two concepts of phenomenological macroscopic optics of the linear 
constitutive equations for anisotropic dispersive media. The first and younger 
concept is spatial dispersion in the first time mainly developed by Russian phy-
sicist in the fiftieths, in particular, Ginzburg and Agranovich [1], Ginzburg [2], 
Silin and Rukhadze [3] and in shorter form considered in a new chapter in the 
new edition of vol. 8 of the course of Landau and Lifshits [4]. 

The second and much older concept is to use two material equations for the 
electric and magnetic induction in dependence on the electric and magnetic field 
using tensors of second and sometimes in addition of third rank (optic activity) 
depending on frequency only (dispersion) and now often called “bi-anisotropic 
media” (including also electrical anisotropy only). Three representative mono-
graphs of the many possible possible ones are that of Tamm [5], that from 
Sommerfeld [6] and that of Born and Wolf [7] and in addition the comprehen-
sive encyclopedic article from Szivessy [8]. We cite here also the most basic 
works of Fyodorov, the initiator of coordinate-invariant methods, and his fol-
lowers from Minsk [9] [10] [11] who in addition to this concept use last me-
thods and where the monograph [11] contains beside theory also experimental 
material to different media and crystals and by impression was mainly written 
by Filippov. Coordinate-invariant methods do not only write the starting equa-
tions in vector or tensor form but work from beginning up to the results only 
with vectors, operators and tensors which have a relation to the problem but not 
with arbitrary coordinate representations and which are mostly of advantage 

https://doi.org/10.4236/jmp.2022.134035


A. Wünsche 
 

 

DOI: 10.4236/jmp.2022.134035 576 Journal of Modern Physics 
 

compared with often voluminous coordinate representations but with more so-
phisticated algebra. We also apply in this article widely coordinate-invariant 
methods where it is possible and used them also long ago in the past, e.g., [12] 
[13] [14] [15]. 

As a special case we discuss in detail a permittivity which we call polariton 
permittivity and which is related to phenomenological theory of excitons, e.g., in 
addition to [1] [2] [3] [4] by Knox, Agranovich, Davydov, Galanin and Pekar 
[16] [17] [18] [19] [20]. It admits to consider two essentially different special 
cases called the passive and the active case. The active case is connected with 
occupation inversion of at least two energy levels in the medium and is described 
in certain parts of frequency or connected wave vectors by amplification and 
leads into the neighborhood to laser theory. It contains also a very interesting 
phenomenon of propagation of excitations with velocities faster than light that is 
not fully understood. 

In connection with my article [21] the notion of “negative refraction” of Pen-
dry [22] came into the focus of my considerations1. I never have used it and 
likely never would use the notion “negative refraction” in connection with my 
own results in this field. In Section 11 and in Appendix D I try to represent my 
imaginations to the content of this notion which seems to me as incorrect ones. 

Sections 2-8 are devoted to general characterization and comparison of both 
concepts including calculation of group velocities with and without taking into 
consideration the dispersion and Section 9 and Section 10 to the most simple 
model of a polariton permittivity. Section 11 was made to prepare short remarks 
to the notion of “negative refraction” in Appendix D. 

2. The Concept of Spatial Dispersion 

In this more general concept compared with the bi-anisotropic concept consi-
dered in next Section we write the equations of macroscopic electrodynamics in 
the form  

( ) ( ) ( )

( ) ( ) ( )

1, , , , , 0,

1, , , , , 0,

t t t
c t

t t t
c t

∂
+ = =   ∂

∂
− = =   ∂

E r B r B r

B r D r D r

0

0

∇ ∇

∇ ∇
             (2.1) 

where ( ), tE r  is the macroscopic electric and ( ), tB r  the macroscopic mag-
netic field2 The linear constitutive equation for spatially and temporally homo-
geneous but, in general, anisotropic dispersive media are written in the form  

( ) ( ) ( )3 ˆ, d d , , .i ij jD t r t t t E tε′ ′ ′ ′ ′ ′= ∧ − −∫r r r r              (2.2) 

We now make a Fourier transformation for ,E B  and D  according to the 

 

 

1Long ago I visited a lecture of U. Leonhardt about this which I did not fully understand but also did 
not trace the original paper to this time. However, it seemed to me that U.L. assessed this paper very 
positively and as correct. 
2Sometimes called magnetic induction but in this concept B  and H  are identical (see next Sec-
tion) and ( ), tD r  is the electric induction. 
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scheme  

( )
( )

( ) ( )

( ) ( ) ( )

i3
4

i3

1, d d , e ,
2

, d d , e ,

t

t

t k

r t t

ω

ω

ω ω

ω

−

− −

= ∧

= ∧

π
∫

∫

kr

kr

E r E k

E k E r
              (2.3) 

we find the transformed constitutive relation in the form  

( ) ( ) ( ), , , ,i ij jD Eω ε ω ω=k k k                    (2.4) 

with the definition of the general permittivity tensor ( ),ijε ωk   

( ) ( ) ( )i3 ˆ, d d , e .ij ij
ωτε ω ρ τ ε τ − −≡ ∧∫ kk ρρ                (2.5) 

In general, this tensor is non-symmetric. 
After Fourier transformation of (2.1) these equations take on the form  

( ) ( ) ( )

( ) ( ) ( )

, , , , , 0,

, , , , , 0,

c

c

ωω ω ω

ωω ω ω

− = =  

+ = =  

k E k B k kB k

k B k D k kD k

0

0
             (2.6) 

By elimination of B  from these equations and using the constitutive Equa-
tion (2.4) we find the following operator equation for the Fourier components of 
the electric field (in case of 0ω ≠ )  

( ) ( ) ( ) ( ) ( )
2

2
2 , , , , .c ω ω ω ω

ω
 

= ⋅ − + ≡ 
 

k k k k E k k E k0 εI L        (2.7) 

From this equation follows equivalently to the vanishing of the divergence of 
( ), tD r   

( ) ( ) ( ) ( ) ( )0 , , , , , .ω ω ω ω ω= = =k k E k k k E k kD kεL         (2.8) 

Equation (2.7) is an operator equation for the Fourier transforms of the elec-
tric field to the eigenvalue “zero” which in the original form can be written  

( ) ( ) ( )
2

2
2

2

i , i , i , i , ,c t t
t t

t

 
 ∂ ∂    = ⋅ − + − ≡ −    ∂ ∂∂     
 ∂ 

E r E r0 εI L∇ ∇ ∇ ∇ ∇    (2.9) 

with the differential operator (or integral operator in case of ε )  

( )
2

2
2

2

i , i i , i .c
t t

t

∂ ∂   − ≡ ⋅ − + −   ∂ ∂∂   
∂

εL I∇ ∇ ∇ ∇ ∇          (2.10) 

For the solution of these operator equations it is favorable to consider some 
algebra of the operators before this. 

The operator ( ),ωkL  in the wave Equation (2.7) is defined by  

( ) ( ) ( )
2

2
2, , .cω ω

ω
≡ ⋅ − +k k k k kεL I              (2.11) 

The invariants of the operator ( ),ωkL  are ( ( ),ω≡ kε ε ) 
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( ) ( ) ( )

( ) ( ) ( ) [ ]

( )

4 2
2 2

4 2

4 222 2
4 2

2
2

2

, ,

, ,

, 2 ,

c c

c c

c

ω
ω ω

ω
ω ω

ω
ω

= − − +

= − + +  

= − +

k k k k k k k k

k k k k k

k k

ε ε ε ε ε

ε ε ε

ε

L

L

L

        (2.12) 

which are involved in the Cayley-Hamilton identity [ ]3 2 0− + − =L L L L L L I  
for the operator ( ),ω≡ kL L  (see (A.1) in Appendix A). 

The vanishing of the determinant of ( ),ωkL   

( ), 0,ω =kL                          (2.13) 

is the dispersion equation and describes a three-dimensional (hyper)-surface in 
the four-dimensional space of variables ( ),ωk . In the specialization to only 
frequency dispersion ( ( ) ( ),ω ω=kε ε ) it is identical in content but not in form 
with the Fresnel Equation (e.g., [6] [7]). 

For the complementary operator ( ),ωkL  to ( ),ωkL  we find (see Appen-
dix A)  

( ) [ ]

( ) ( )( )

2

4 2
2

4 2

,

,c c

ω

ω ω

≡ − +

= ⋅ − ⋅ − ⋅ − ⋅ + +

k

k k k k k k k k k k kε ε ε ε ε

L L L L L I

I
 

( ) ( ) [ ] ( ) 11, , , , , , .ω ω −−= = = = =  k k εε ε ε ε ε ε ε ε ε
ε

L L  (2.14) 

The complementary operator ( ),ωkL  to ( ),ωkL  plays an important role 
in optics of anisotropic media. If the determinant of L  is vanishing, i.e., [ ] 0=L  
then the squared complementary operator 2L  is proportional to L , more pre-
cisely3 

( ) [ ]2
0 : , ,= ⇒ = =L L L L L L               (2.15) 

and Π  according to the following definition  

[ ]
2, , 1,Π ≡ = ⇒ Π = Π Π =

L L
LL

             (2.16) 

is projection operator to the eigenvalue 0λ =  of L . If a  and a  are arbi-
trary vectors then non-vanishing vectors aL  are right-hand eigenvector and 
non-vanishing vectors aL  left-hand eigenvector of L  to the eigenvalue  

0λ = , i.e.  

0, , 0 : 0, 0.= ≠ ≠ ⇒ = = = =a a a a a a  0L L L LL L LL L    (2.17) 

This follows from the Cayley-Hamilton identity. Arbitrary right-hand eigen-
values aL  are proportional to possible solutions for the Fourier transform of 
the electric field according to the Equation (2.7). One may introduce mutually 

 

 

3In the general case of three-dimensional operators if 0≠L  we have according to (A.5) the relation 

[ ] ( )2 = + −L L L L L L I  as can be straightforwardly calculated from the definitions using the Cay-

ley-Hamilton identity. 
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normalized “polarization” vectors e  and e  to the electric field by the condi-
tion  

2, 1, ,Π = ⋅ Π = = Π = ⋅ = Πe e ee e e    

( ) ( ), , 0, 0,Π = Π = ⇒ = =k k e e k e e k k e e k  ε ε ε ε ε ε     (2.18) 

where in dependence on the symmetries of the operator ( ),ωkL  the “co-vectors” 
e  can be often specialized, for example, to *=e e  for operators  
( ) ( )( ) ( )

** * *, , ,ω ω ω= ≡k k kL L L . 
Thus the explicit for of the projection operators for the determination of pola-

rization vectors of the electric field are ( ( ),ω≡ kε ε )  

( ) ( )
( )

( ) ( )( )

( ) ( ) [ ]

4 2
2

4 2

4 222 2
4 2

,
,

,

,

c c

c c

ω
ω

ω

ω ω

ω ω

Π =
  

⋅ − ⋅ − ⋅ − ⋅ + +
=

− + +

k
k

k

k k k k k k k k k k k

k k k k

ε ε ε ε ε

ε ε ε

L
L

I  

( ) ( )( ) ( )2
, 1, , , .ω ω ωΠ = Π = Πk k k              (2.19) 

The degenerate case ( ) ( ) ( ), 0 , , 0ω ω ω= ⇒ = =  k k kL L L  (but not true 
in inverse order) is the case of optic axes which we do not consider in present ar-
ticle in detail. However, isotropic media where all axes are “optic” axes also be-
long to this case. 

In coordinate-invariant calculations of polarization vectors by means of the 
projection operator (2.19) as vectors a  should be taken only vectors which 
possess a physical meaning of the considered system. According to (2.17) we 
have a great selection of possible choice of vectors a  and a  for determination 
of such polarization vectors but not all are advantageous. According to 0=k eε  
the right-hand polarization vectors e  are perpendicularly to the vector kε  
and one should not choose vectors which form a very small angle with this vec-
tor kε  as, for example, the vector k  since then in limiting cases →k kε  it 
becomes undetermined. It seems to be favorable to choose for this purpose vec-
tor products of the vectors kε  or of k  with other vectors where the last 
choice is favorable since in this case the most terms in the numerator of the pro-
jection operator (2.19) are canceled. We choose first the vector product [ ],k kε  
for which we find as (non-normalized) right-hand eigenvectors of the operator 
( ),ωkL  to the eigenvalue 0λ =   

( )[ ]
( ) [ ]

( ) ( ) [ ]

( )[ ]

( ) ( ) [ ]

2

2

4 222 2
4 2

2
2

2

4 222 2
4 2

,
, ,

, ,
,

c

c c

c

c c

ω
ω

ω ω

ω

ω ω

 
− 

 Π =
− + +

  + 
=

− + +

k k k k
k k k

k k k k

k k k k k k

k k k k

ε ε ε
ε

ε ε ε

ε ε ε ε

ε ε ε

I

     (2.20) 
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where the identity (B.6) was applied. This choice becomes inappropriate in li-
miting or other cases when [ ], =k k 0ε  that means if they become parallel. 

If we directly choose as vector a  one of the vectors vectors 2, ,k k kε ε  then 
we find as (non-normalized) polarization vectors of the electric field  

( )
( ) ( ) [ ]

( )
( ) ( )

( ) ( ) [ ]

( )
( ) [ ] ( )

( )

2 2
2 2

2 2

4 222 2
4 2

4 2
2 2

4 2

4 222 2
4 2

2 2 2 2
2 2 2 2 2

2 2 2 2
2

4
2

4

, ,

, 0,

,

c c

c c

c c

c c

c c c c

c

ω ω
ω

ω ω

ω ω
ω

ω ω

ω ω ω ω
ω

ω

  
− + +     Π =

− + +

 
− − + 

 Π = =
− + +

   
− + + + −   

   Π =

k k k k k
k k

k k k k

k k k k k k k k
k k

k k k k

k k k k k k k k k k k k k
k k

k

ε ε ε

ε ε ε

ε ε ε ε ε
ε

ε ε ε

ε ε ε ε ε ε ε ε ε
ε

( ) [ ]
22 2
2

.
c
ω

− + +k k kε ε ε

 (2.21) 

where kε  is inappropriate since it provides the zero vector and expresses that 
polarization vectors of the electric field are perpendicularly to kε . One may 
check that 0Π =k aε  (2.18) in all cases. 

Favorable representations of polarization vectors one may often find if we use 
in addition the vectors to optic axes in the representation of the permittivity 
tensor in principal axes form, most generally  

1 1 1 2 2 2 3 3 3 , ,i j ijε ε ε δ= ⋅ + ⋅ + ⋅ =c c c c c c c c   ε             (2.22) 

where all involved vectors and scalars may or may not depend on wave vector 
and frequency depending on the symmetry of the medium. In lossless case we 
have the simplification *

i i=c c  and under additional symmetry of the permit-
tivity tensor ε  for homogeneous waves (real wave vector and frequency) 

*=i ic c . One may choose as vectors a  for the determination of polarization 
vectors the vectors of the optic axes ( ), 1, 2,3i i =c  themselves or the vector 
products [ ], ik c . 

Another possible approach is via the vector field of the electric induction. 
From (2.7) using the representation (A.3) for the inverse operator ε  one may 
derive the following wave equation for the electric induction ( ),ωD k   

( ) ( )( ) ( ) ( ) ( ) ( )
2

2
2 , , , , .

,
c ω ω ω ω

ω ω

  = ⋅ − + ≡ 
  

Dk k k k D k k D k
k

0 ε
ε

I I L  (2.23) 

where we define the operator ( ),ωD kL  by  

( )
( ) ( )( ) ( ) ( )

( ) ( )
2

2
2

,
, , , , 0.

,,
c ω

ω ω ω
ωω ω
⋅

≡ ⋅ − + − =D Dk k
k k k k k k k

k k kk
ε

ε
εε

L I I L
 

(2.24) 

We have substituted taking into account 0=kD  the three-dimensional unit 
operator I  by a two-dimensional unit operator (or projection operator) ′I  
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2, , 2,⋅′ ′ ′ ′≡ − = =
k k

k k
ε
ε

I I I I I                  (2.25) 

in such a way the operator DL  possesses the properties  

( ) ( ) ( ), , , , .ω ω ω= =D Dk k k k k0 0εL L              (2.26) 

It is now a two-dimensional operator by multiplication from the left in the 
plane perpendicular to k  and from right in the plane perpendicular to kε . 
Landau and Lifshits [4] prefer for the treatment of some problems more directly 
the electric induction D  but, clearly, without formalizing this with introduc-
tion of an operator DL . The use of D  instead of E  possesses advantages 
(orthogonality to k ) but also disadvantages and we do not consider this. 

3. The Concept of Bi-Anisotropic Constitutive Equations 

The concept of bi-anisotropic media with the special case of bi-isotropic media 
is more specially than the concept of spatial dispersion discussed in last Section. 
The basic equations of macroscopic optics are written in this concept in the fol-
lowing way for the Fourier transforms  

( ) ( ) ( )

( ) ( ) ( )

, , , , , 0,

, , , , , 0,

c

c

ωω ω ω

ωω ω ω

− = =  

′ ′+ = =  

k E k B k kB k

k H k D k kD k

0

0
          (3.1) 

where by definition  

( ) ( ) ( ) ( ) ( ) ( ), , 4 , , , , 4 , ,ω ω ω ω ω ω′ π+ π′≡ ≡ −D k E k P k H k B k M k   (3.2) 

and where ′P  is the polarization in a narrow sense and M  the magnetization 
and with constitutive equations of the following form for the Fourier transforms  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,ω ω ω ω ω ω′ = =D k E k B k H kε µ       (3.3) 

where we do not assume that ( )ωε  and ( )ωµ  are symmetric tensors (e.g., 
magneto-optic effects). Usually, H  is called the magnetic field and B  the 
magnetic induction also B  is the averaged microscopic magnetic field [4]. 
These notions are made for the symmetries between E H  and D B  in 
the field equations but this may be confusing. 

In considered case it is favorable to introduce the notion of refraction vectors 
n  by the definition ( 0ω ≠ )  

.c
ω

≡n k                        (3.4) 

The basic equations for the Fourier transforms of fields (3.1) simplify the 
slightly and are  

[ ]
[ ]

, , 0,

, , 0,

− = =

′ ′+ = =

n E B nB

n H D nD

0

0
                (3.5) 

together with the constitutive equations 
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, ,′ = =D E B Hε µ                       (3.6) 

where we omitted to write the arguments in the fields and in the material tensors, 
e.g., ( ),ω ≡E k E , ( )ω ≡ε ε . 

From (3.5) follow for a given refraction vectors n  the orthogonalities  

[ ] [ ], 0, , 0.′= = = − =BE n E E D H n H H              (3.7) 

It is also important to mention here that the Equations (3.5) together with 
(3.6) remain unchanged under the simultaneous permutations  

, , , ,′↔ ↔ ↔ ↔ −E H D B n nε µ               (3.8) 

but, clearly, all this is well known. 
First, we derive a wave equation for the Fourier components E  of the elec-

tric field. For this purpose we use the formula (A.3) for the inverse operator and 
the mathematical identity (B.6) and, furthermore, the transposition of the appli-
cation of an operator to a vector T=x xA A  where TA  is the transposed oper-
ator to A  and find  

[ ] [ ] [ ]

( )

1

T T T T T T

, , , ,
, ,

, ,
.

−
       ′ ′ ′ ′= + = + = + = + 

     ⋅ −    ′= + = + 
  

n n E n n E
n H D n B D D D

n n E n n n n
D E

0
µ µ µ

µ
µ µ

µ µ µ µ µ µ
ε

µ µ

 (3.9) 

We write this Equation ( ,
c
ω ω ≡  
 

E E n )  

( ) ( ), 0,= ⇒ = =E En E n n E n E0 εL L              (3.10) 

with an operator ( )E nL  defined by  

( )
( )T T T T

.
⋅ −

≡ +E
n n n n

n
µ µ µ µ

ε
µ

L                 (3.11) 

Due to symmetry (3.8) in the starting Equations (3.5) and (3.6) one may im-
mediately write down an analogous equation for H   

( ) ( ), 0,= ⇒ = =H Hn H n n H n H0 µL L              (3.12) 

with an operator ( )H nL  defined by  

( )
( )T T T T

.
⋅ −

≡ +H
n n n n

n
ε ε ε ε

µ
ε

L                 (3.13) 

Both operators ( )E nL  and ( )H nL  possess the form of the operator L  dis-
cussed in Appendix C with the following substitutions in case of ( )E nL  which 
we consider now  

T , , .→ → = →x x nµ εA B                    (3.14) 

According to (C.7) and (C.10) its invariants are ( ) ( ),ω ω≡ ≡µ µ ε ε  
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( )

( )
( ) ( )( ) [ ]

( )
( )( ) ( )

2

2 T 2 T T

T T T

,

,

.

− +
=

− − − + +
  = 

− + +
=

E

E

E

n n n n
n

n n n n n n n n n
n

n n n n n n n n
n

µ µ µ µ ε
µ

µ µ ε µ ε µ ε µ µ εµ µ ε

µ

µ ε µ ε µ µ εµ µ ε

µ

L

L

L

 

(3.15) 

We wrote here the general case T≠µ µ  (and T≠ε ε ) but it was not neces-
sary to write the sign “T” at µ  for transposition in all cases because, e.g., 

T =n n n nµ µ  and for all invariants holds, e.g., T =µ µ  (however, e.g., 

( )TT T=µ ε ε µ )4. The complementary operator ( )E nL  obtainable from (C.11) 
is fairly complicated and we do not write it down. 

The dispersion equation for a bi-anisotropic medium is  

( ) 0,=E nL                          (3.16) 

or equivalently the analogous equation for the operator ( )H nL . Polarization 
vectors e  together with left-hand eigenvectors e  to the operator ( )E nL  for 
the electric field can be obtained by the projection operators  

( ) ( )
( )

( )
( )

( ), 1,Π = = = ⋅ Π = =
  

E E
E E

EE

n n
n e e n ee

nn
 

L L
LL

     (3.17) 

but this is complicated and we will it only do for the special case of bi-anisotropic 
uniaxial media in next Section. 

4. Bi-Anisotropic Media as Special Case of Spatial Dispersion 

The approach to the linear optics of media by spatial dispersion is much more 
general than the approach by bi-anisotropic media which is mainly interesting 
for its symmetries between electric and magnetic quantities and I am not a fan of 
the last for reason which will become clear in the following. Spatial dispersion is 
often discussed with expansion of the tensor ( ),ijε ωk  into powers of the wave 
vector as follows [1] [2] [3] [4]  

( ) ( ) ( ) ( )
2

2, i ,ij ij ijk k ijkl k l
c ck k kε ω ε ω γ ω α ω
ω ω

= + + +k   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

2
1 1

2

1 1 1

2
1 1 1

2

, = i

i

.

ij ij ijk k ijkl k l

ij im mnk nj k

im mnkl mpk pq qnl nj k l

c ck k k

c k

c k k

ε ω ε ω δ ω β ω
ω ω

ε ω ε ω γ ω ε ω
ω

ε ω α ω γ ω ε ω γ ω ε ω
ω

− −

− − −

− − −

+ + +

= −

− + −

k 



 

(4.1) 

 

 

4All these problems could be removed if one defines =B Hµ  instead of (3.6) but this possesses the 
danger to cause some confusion. 
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The concept of bi-anisotropic media with the constitutive Equations (3.3) can 
be expressed as a special case of the concept of spatial dispersion with the fol-
lowing dependence of tensor ( ),ijε ωk  on the wave vector k   

( ) ( ) ( )

( ) ( )( )

2

2

2
1

2

,

.

ij ij ijkl k l

ij ikm jln mn mn k l

c k k

c k k

ε ω ε ω α ω
ω

ε ω δ µ ω
ω

−

= +

= + −

k

 
           (4.2) 

This can be expressed in a representation without indices in the form of Equa-
tion (2.7) with the general permittivity ( ),ωkε  by ( TA  means transposition  

of A ; definition 
c
ω

≡k n  would shorten the following representation) 

( ) ( ) ( ) ( )
T T T2

2
2, .cω ω

ω

 ⋅ −
= + − ⋅ −  

 

k k k k
k k k k

µ µ µ µ
ε ε

µ
I       (4.3) 

In the general concept of spatial dispersion a bi-anisotropic medium appears 
as second-order effect in the expansion of the general tensor ( ),ijε ωk  in pow-
ers of the wave vector k . It does, however, not possess the general form of a 
tensor of forth rank ( )ijklα ω  with only symmetry in the last both indices 
( ),k l  and, furthermore, sum terms which are linear in the wave vector k  are 
completely absent (e.g., optic gyrotropy). The reason that the tensor ( )ijklα ω  
does not possess in the concept of bi-anisotropy the general form of such a ten-
sor comes from the neglect of electric quadrupole terms and also of higher elec-
tric and magnetic multipole terms in the expansion of the general polarization 
( ),ωP k  in powers of the wave vector k . Apart from the first term ( )ωP  

which mostly provides the greatest contribution and is uniquely defined the 
higher contributions are difficult to separate from each other since in multipole 
expansions only the first multipole moment which is non-vanishing is uniquely 
defined whereas the others depend on the chosen origin of the multipole expan-
sion. The magnitude of the different terms from the multipole effects is difficult 
to assess but one has to assume that within terms of the same order they should 
be comparable. 

The concept of bi-isotropy with ( )ε ω  and ( )µ ω  as scalars in the constitu-
tive equations is old and goes back under other names to the development of 
macroscopic electrodynamics by the Maxwell equations and its generalization to 
bi-anisotropy by transition to second-rank tensors ( )ijε ω  and ( )ijµ ω  is nat-
ural. However, the last leads usually to very complicated formulae if one calcu-
lates propagation and reflection and refraction problems (amplitudes included), 
moreover, if this is made by coordinate methods. The most comprehensive and 
unrivaled representation was given by Szivessy [8] and long ago I thought that it 
remains the last which works mainly with coordinate methods. However, more 
than in most other sources in this respect is made in the book of Fyodorov [9] 
with coordinate-invariant methods which he initiated and developed. In the 
book [10] of the same author the concept of bi-anisotropy (Fyodorov calls it 
“crystals with electric and magnetic anisotropy”) is extended to inclusion of op-
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tic gyrotropy that even by coordinate-invariant treatment leads as a rule to very 
complicated formulae. The last chapter in this book contains linear algebra in 
three-dimensional Euclidean space in a form which is very useful for the appli-
cation of coordinate-invariant calculations in three-dimensional spaces (chap. 
IV, pp. 362-450)5. 

An extended concept of bi-anisotropy in the basic equations is maintained, in 
particular, in the very versatile monograph of de Groot [23] and in nonlinear 
optics by Bloembergen [24] (called the “Netherland school” in [14] with inclu-
sion of some other authors). Furthermore, there are articles to the calculation of 
the dyadic Green functions to the Huygens principle for bi-anisotropic media 
([15] [25] and, e.g., Weiglhofer [26] with many citations published in: [27]). 

It is necessary to report here also about an unprecedented scientific plagiarism 
in form of a book from 1983 by Hollis C. Chen, a professor of the Ohio Univer-
sity in U.S.A, about which I was informed by Fyodor Ivanovich Fyodorov in the 
middle of the eighties. This book and papers of Chen cannot be cited in normal 
way under references and I make some remarks to this case in the following 
footnote6. 

 

 

5For inclusion of higher than second-rank tensors the concept of coordinate-invariant treatment 
without using tensor indices fails but in three-dimensional case also third-rank tensors which are 
anti-symmetric in two indices can be included since they may be mapped onto second-rank pseu-
do-tensors. 
6In the beginning of the eighties I sent my papers with application of coordinate-invariant methods 
(about 10) to Fyodorov who as it proved did not know them. Since this time we were in loose cor-
respondence up to the end of the eighties and I used a big Optics Conference in Minsk in the eigh-
ties especially to meet him there personally and this took place in the main building of Academy of 
Sciences of Belarus on the main boulevard in Minsk. Once in the eighties I received a letter from 
Fyodorov about an unprecedented plagiarism in a book of H. C. Chen “Theory of Electromagnetic 
Waves, A Coordinate-Free Approach” from McGraw-Hill (1983). Fyodorov is not cited there and all 
is made to camouflage the real authorship of these methods. When I tried to see this book I could 
not find it and, as usual in such cases, a search programme in the libraries of GDR was started. It was 
not found in GDR and then in such cases it could be searched in West-Germany. In West-Berlin 
(about 15 km airline from me but unreachable that time) it was found in the Library of the Technical 
University and I got it for one month. Altogether, it lasted almost three quarters of a year to get it. 
All what Fyodorov said turned out to be true. The main part of Chen’s book is almost a free transla-
tion of main chapters of the book of Fyodorov [9]. However, what Fyodorov obviously did not know 
was that two chapters of Chen’s book are a plagiarism of my paper [15] to Huygens principle. Ob-
viously also that Chen did not know my paper [25]. This journal was hardly known in the world and 
ceased to exist after the turn in GDR and he also did not use my papers to amplitude relations for 
reflection and refraction at anisotropic media in “Ann. d. Physik”, likely because my notations were 
too different from that of Fyodorov and were more adapted to Landau and Lifshits [4]. When I tried 
to inform a branch office of McGraw-Hill in Hamburg (FRG) by a letter about this and to get an 
exemplar without payment (I could not pay to this time West-German currency) my chief at this 
time Witlof Brunner demanded to write not about the “plagiarism” that was not acceptable for me 
and I renounced to send this letter. Later, after the turn in GDR, I found this same exemplar of the 
book of Chen which I earlier have had for a month in the reading room of the Library of the Tech-
nical University in West-Berlin and made a copy. Obviously, to this time it was already taken from 
market (I tried earlier to get it through a colleague, H. Haake, from Essen in West Germany whom I 
met at a Workshop in Poland but he wrote me then that it was impossible to order). Fyodorov and 
his scientific colleagues reached that in scientific media in the West and in Russian newspapers was 
written about the plagiarism. Weiglhofer [26] (see [27]) and also some others did not know all this 
and cite the fraud of Chen instead of the genuine authors (but in [26] a book of Chen from 1992 is 
cited which obviously later could appear in U.S.A.). My chief to this time, W. Brunner, was indiffe-
rent and uninterested in all this and was not ready to support me. 
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5. Optic Uniaxial Bi-Anisotropic Media 

We consider now the special case of optic uniaxial bi-anisotropic media which is 
determined by the following tensors ε  and µ   

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )2

,

, 1 .

e o

e o

ω ε ω ε ω

ω µ ω µ ω

= ⋅ + − ⋅

= ⋅ + − ⋅ =

c c c c

c c c c c

ε

µ

I

I
            (5.1) 

where the tensors ε  and µ  considered as operators are symmetric and com-
mute (as consequence of axial symmetry with the same axes for the electric and 
magnetic properties)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T, , .ω ω ω ω ω ω ω ω= = =µ µ ε ε µ ε ε µ       (5.2) 

With c  we have denoted a unit vector in direction of the common optic axis 
of the permittivity tensor ε  and the permeability tensor µ  of the uniaxial 
bi-anisotropic medium (notations of Fyodorov [9]) and ,e oε ε  and ,e oµ µ  
(upper indices “e” and “o” stand for “extraordinary” and “ordinary”) are fre-
quency depend material scalars. The complementary operators and the inva-
riants, for example, for ( )ω≡ε ε  are (similarly, ( )ωµ )  

( )( )
[ ] ( ) ( )2

,

2 , 2 , .

o o e

e o o e o e o

ε ε ε

ε ε ε ε ε ε ε

= ⋅ + − ⋅

= + = + = =

c c c cε

ε ε ε ε

I
      (5.3) 

Using this together with ( )E nL  in (3.15) and ( )H nL  in (3.13) one may 
specialize this determinant to  

( ) ( ) ( )( ) ( ) ( )
2 2

.e o o e o o e o e oµ µ ε µ µ µ ε ε ε ε= − − =E Hn n n n n nµ εL L    (5.4) 

The dispersion equation that means the vanishing of the determinants 
( )E nL  or ( )H nL  decomposes into a product of two separate equations as 

follows  

( ) [ ]

( ) [ ]

22

22

,
0 1,

,
0 1,

o e o
o o o e

o e o
o o o e

ε µ µ
ε µ ε µ

µ ε ε
µ ε µ ε

= − ↔ + =

= − ↔ + =

n cnc
n n

n cnc
n n

µ

ε

             (5.5) 

which for real positive parameters , , ,o e o eε ε µ µ  represent two rotation ellip-
soids with axes lengths which are the square roots of the denominators in (5.5) 
and with equal axis length in direction of the optic axis. This means that the two 
rotation ellipsoids touches in axis direction. The determination of polarization 
vectors via projection operators as described in Section 2 seems to be too tedious 
and we choose a more special approach. Due to 0=n Εε  polarization vectors 
of the electric field have to be perpendicular to the vector nε  and are therefore 
representable by the vector product of nε  with a vector which possesses a 
component in the plane perpendicular to nε . 

We consider this for the first dispersion equation o e oε µ µ=n nµ  in (5.5). 
Using this equation a (non-normalized) polarization vector ′e  for the electric 
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field with the proposition [ ],′ =e n cµ  according to (3.5) and (3.6) has to satisfy 
the equation  

( ) ( )( )[ ]

( )
[ ] ( )( ) [ ]

[ ]

2

,

, ,

,

o e o o
e o o

oe o

o o

ε µ µ ε µ µ µ
µµ µ

ε µ

⋅ − ⋅ −  ′ ′= + = + 
  

′= − + = − ⋅ + − ⋅ +

′= − +

n n n n n cn n n n
e e

n c e c c c c n c e

n c e

0
µ µ µ µ µµ µ µ µ

ε ε
µ µ

µ µ ε ε

ε

I  (5.6) 

from which follows  

[ ] ( ) [ ]

[ ] [ ]

1 1 1, ,

, , .

o o o o
e o

o
o

o

ε µ ε µ
ε ε

µµ
ε

−  ′ = = ⋅ + − ⋅ 
 

= =

e n c c c c c n c

n c n c

ε

ε

I
          (5.7) 

For a (non-normalized) polarization vector ′h  of the magnetic field follows 
then from (3.5) using (5.7) and in addition the first of the Equations (5.5)  

[ ] ( ) [ ]

[ ] ( ) [ ] ( ) [ ]

1 1

2

1 1, , ,

1, , , , , .

o
e o

o
o o

e e

µ
µ µ

µ ε µ
µ µ

− −  ′ ′ ′  = = = ⋅ + − ⋅   
 

   = − + = − =   

h b n e c c c c n n c

n c c nc c n c nc n c n n c

µ µ

µ

I
   (5.8) 

To get the analogous relations for the second dispersion equation o e oµ ε ε=n nε  
in (5.5) one has only to apply the symmetry relations (3.8). Thus we find in this 
case a (non-normalized) polarization vector h   

[ ] [ ], , ,
o

o
o

εε
µ

′ = =h n c n cµ                      (5.9) 

and a (non-normalized) polarization vector e   

( ) [ ]1 , , .o o
eµ ε

µ
′  = − =  e nc n c n n cε                 (5.10) 

For non-normalized polarization vectors scalar factors are unimportant and 
can be omitted. 

We now give preference to (non-normalized) polarization vectors of the elec-
tric field and omit there the unfavorable factors. Then we have for the first dis-
persion equations  

[ ] [ ] [ ] ( )( )
:

, , , , , ,

o e o

o o
o o o

e o o

ε µ µ

ε εε ε µ
µ µ µ

=

 = = = = − 

n n

e n c n c h n n c nc n c

µ

ε µ
  (5.11) 

and for the second dispersion equation  

[ ] ( )( ) [ ] [ ]

:

, , , , , .

o e o

e o
e o o e o

o

µ ε ε

ε εε µ ε ε ε
µ

=

 = = − = = 

n n

e n n c nc n c h n c n c

ε

ε µ
  (5.12) 

It is not difficult to make normalization of the polarization vectors. We left 
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the factors in such a way that to each dispersion Equations (5.11) and (5.12) 
separately the vector h  follows from e  without changing a factor. It is also 
easy to make a transition to normalized polarization vectors that we do not write 
down. 

The transition to the special case of “only electrically” uniaxial media can be 
made by definition in (5.13) by the substitution  

( ) ( ) ( )( ) ( ) ( ) ( ), , 1.e o e oω ε ω ε ω ω µ ω µ ω= ⋅ + − ⋅ = → = =c c c cε µI I (5.13) 

The two dispersion equations become asymmetric to each other and are the 
first for ordinary and the second for extraordinary waves  

( ) [ ]

( ) [ ]

22 2
2

22

,
0 1,

,
0 1.

o
o o

e o
o e

ε
ε ε

ε ε
ε ε

+
= − ↔ = =

= − ↔ + =

nc n c nn

n cnc
n nε

            (5.14) 

The (non-normalized) polarization vectors for the electric and magnetic field 
(5.11) and (5.12) become for ordinary waves  

[ ] [ ] [ ] ( )( )
2 :

, , , , , ,

o

o o o o

ε

ε ε ε ε

=

 = = = = − 

n

e n c n c h n n c nc n cε
    (5.15) 

and for extraordinary waves  

[ ] ( )( ) [ ]
:

, , , , .

e o

e o e o

ε ε

ε ε ε ε

=

 = = − = 

n n

e n n c nc n c h n c

ε

ε
       (5.16) 

Thus (electrically) ordinary waves are polarized perpendicular to the axis 
plane spanned by the axis vector c  and the refraction vector n  and extraor-
dinary waves within this plane. Amplitude relations for reflection and refraction 
at the boundary between an isotropic and a uniaxial medium can be found, e.g., 
in [9], in [11] (a little too complicated) and in [13]. 

6. Group Velocity and Diffraction Coefficients 

In a preliminary summary about the two discussed concepts one can say that 
spatial dispersion is the more general concept but the concept of bi-anisotropy 
leads to interesting symmetries between the electric and magnetic properties of 
media and is up to now often the only concept represented in excellent mono-
graphs, e.g., [7]. However, in the last concept it is difficult to include some phe-
nomena such as, for example, natural optical activity although this is tried to 
make in the book [10] of Fyodorov. The concept of bi-anisotropy is used in the 
whole work of the Minsk Group [9] [10] [11]. Practically, in all older works 
about classical optics the concept of bi-anisotropy is used but not under this 
name and this development is comprehensively represented in the encyclopedic 
article of Szivessy [8]. One cannot be sure that all terms of a same level of spatial 
dispersion in a certain order in the wave vectors are included in this more sym-
metric bi-anisotropic concept or are included in doubled way. In every case one 
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has to calculate anew such quantities as the group velocity in comparison to the 
classical optics with only one frequency-dependent permittivity tensor ( )ωε  
with and without taking into account frequency dispersion and this is mostly not 
easy. 

We now consider the concept of spatial dispersion with the permittivity tensor 
( ),ωkε  in the wave Equation (2.7) with the operator ( ),ωkL  given in (2.11) 

together with their invariants in (2.12). The dispersion equation that is the va-
nishing of the determinant of ( ),ωkL  can be resolved in a function ( )ω ω= k  
with different possible branches and if we insert this function into the dispersion 
equation one obtains identities of the form  

( ) ( )0 , , ,ω ω ω= ⇒ =k kL                 (6.1) 

where ( )( ),ωk kL  depends only on the wave vector k . We introduce two 
important notions and prepare its calculation for specialized cases. If we diffe-
rentiate the identity (6.1) one and two times with respect to k  according to 
(we abbreviate ( )( ),ω≡ k kL L )  

2 2 2 2 2

2

0 ,

0 .

i i

i j i j j i i j

k k

k k k k k k k k

ω
ω

ω ω ω
ω ω ω

∂ ∂ ∂
= +
∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

L L

L L L L
          (6.2) 

We define the group velocity  

,i
i

i

k
v

k
ω

ω

∂
∂∂

≡ = −
∂∂
∂

L

L
                        (6.3) 

and in addition the symmetric diffraction coefficients  
2 2 2

2

2

2

2 2

2

2

2

1 ,

i j i j j i
ij

i j

i j j i
ji

i j

k k k k k k
W

k k

k k k k
W

k k

ω ω
ω ωω

ω

ω ω

ωω

∂ ∂ ∂∂ ∂
+ +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
≡ = −
∂ ∂ ∂

∂
 ∂ ∂ ∂ ∂

+ ∂ ∂ ∂ ∂ ∂ ∂∂ = − − = ∂∂ ∂∂  
 ∂∂  

L L L

L

L L L L
L

LL

        (6.4) 

where ij jiW W=  is a symmetric bilinear form. Both become important for the 
beam propagation in second-order approximation. 

The formula for the group velocity in (10.1) using (2.18) can be written  

*

*

*
, ,i i

i

k k
v

ωω

∂ ∂
∂ ∂

= − = − ∝ ⋅
∂∂
∂∂

e e
e e

e e

L LL
LLLL

               (6.5) 
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where is taken into account that L  is proportional to the dyadic product of (in 
general, non-normalized) polarization vectors *⋅e e  of the electric field (see 
(2.18); *=e e  since we consider the lossless case). We find  

( )

( )

2

2

2
2

3

2 ,

2 ,

kl kl
k il ik l i kl

i i

kl kl
k l kl

L c k k k
k k
L c k k

ε
δ δ δ

ω

ε
δ

ω ωω

∂ ∂
= + − +

∂ ∂

∂ ∂
= − − +

∂ ∂
k

              (6.6) 

from which follows  

( ) ( )( )

( ) [ ]

2

2

2
2

3

2 ,

2 ,

ii i
i i

c k
k k

c

ω

ω ωω

∂ ∂
= + − +

∂ ∂

∂ ∂
= − − + =

∂ ∂

k k

k k k

ε

ε

LL L L L L

LL L L L L L
          (6.7) 

Neglect of spatial dispersion means that we do not take into account the term 

ik
∂
∂
εL  in the numerator and neglect of frequency dispersion the term 

ω
∂
∂
εL  in the denominator of the formula for the group velocity (6.5). 

Under neglect of dispersion one finds from ( ),ωkL  explicitly given in 
(2.12)  

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( )

2
2 2 2

2

2
2 2

2

2
.

2 2

ii i i i i i
i

c k
v

c
ωω

ω

+ + − + + +
=

 
− + 

 

k k k k k k k k k

k k k k k k k

ε ε ε ε ε ε ε ε

ε ε ε ε
 (6.8) 

From this follows after scalar multiplication with ik  follows, e.g., [4] [9]  

, 1,ωω
ω
∂

= ⇒ ≡ =
∂

kkv ns
k

                   (6.9) 

with definition of the refraction vector n  and of the ray vector s  by (nota-
tions as in [4])  

, .c
cω

≡ ≡
k vn s                        (6.10) 

One should not forget that the relation (6.9) is derived under neglect of the 
dispersion of the permittivity tensor ( ),ωkε  and the differences between ray 
vector and group velocity in regions near to resonance frequencies or zeros of 
the permittivity tensor can become very important and even the direction of the 
group velocity can be changed by this additional terms. 

7. Electrically and Magnetically Isotropic Media and Group  
Velocity 

The constitutive equations for bi-isotropic or electrically and magnetically iso-
tropic media are  
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( ) ( ) ( ) ( ) ( ) ( ), , , , , ,ω ε ω ω ω µ ω ω= =D k E k B k H k          (7.1) 

with scalar functions ( )ε ω  and ( )µ ω . The equation for the electric field 
(3.10) in the concept of bi-anisotropy with the specialized operator (3.11) after 
multiplication with ( )µ ω  becomes  

( ) ( ) ( ) ( ){ }2, ,
c c
ω ωµ ω ω ε ω µ ω ω   = = ⋅ − +   
   

0 E n E n n n n E nL I I    (7.2) 

or equivalently by transition to the more general concept of spatial dispersion 
with ( ) ( ) ( ),ω ε ω µ ω=kε I   

( ) ( ) ( ) ( ) ( ) ( )
2

2
2, , , .cω ω ε ω µ ω ω

ω
 

= = ⋅ − + 
 

0 k E k k k k E kL I I      (7.3) 

The dispersion equation for transversal waves polarized for both E  and B  
in the plane perpendicular to wave vector k   

( ) ( ) ( )
2

2 2
2 , , 0,c ε ω µ ω ω

ω
≡ = =k n kE k               (7.4) 

and for longitudinal waves  

( ) ( ) ( ) ( )0, , 0.ε ω µ ω ω ω= ≠ =0E B                (7.5) 

The longitudinal waves correspond in present approximation to pure tempor-
al oscillations of the electric field with arbitrary possible direction of polarization 
(since = 0k ). We are interested here merely in the transversal waves. 

The dispersion Equation (7.4) for transversal waves can be resolved in the 
form ( )ω ω= k  (6.1) with different branches for ( )ω k . In Sections 9 and 10 
we will consider in detail an example where the dispersion Equation (7.4) can be 
explicitly resolved in the form (6.1) with different branches, the permittivity for 
polaritons. By differentiation of the dispersion equation in the form (6.1) with 
respect to the wave vector k  one may derive a general formula for the group  

velocity ω∂
≡
∂

v
k

 for bi-isotropic media and also for higher coefficients 
2

i jk k
ω∂

∂ ∂
  

and so on which play a role in higher approximations of propagation of beam- 
like waves in such media (diffraction). For the group velocity v  one finds the 
general formula ( 22 =k k )  

( ) ( )( ) ( ) ( ) ( ) ( )( )

2

2

2 .

2

cc cω
ωω ε ω µ ω ω ε ω µ ω ε ω µ ω

ω ω

∂
≡ = =

∂ ∂∂  + ∂ ∂ 

kk kv
k k

 (7.6) 

Without taking into account the frequency dispersion of the permittivities we 
find  

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

2 .
cc ccω

ωε ω µ ω ε ω µ ωε ω µ ω ω
ω

∂′ ≡ = = =
∂∂
∂

kk k kv
k k k

  (7.7) 

One may introduce a dispersion factor ( )dispα ω  by 
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( )
( ) ( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( )

2

disp
2

.

2

ε ω µ ω ω
ωα ω

ω ε ω µ ω
ω

ε ω µ ω
ωε ω µ ω ε ω µ ω

ω

∂
∂≡

∂
∂

=
∂

+
∂

             (7.8) 

From (7.7) follows using the dispersion Equation (7.4)  

( ) ( ) ( ) ( )( )

( ) ( )( )( )
( )disp

2

1

1
2

1 ,
log

2

ω
ωω ε ω µ ω

ε ω µ ω ω

α ω
ω ω ε ω µ ω

ω

∂
=

∂∂ +
∂

= ≡
∂
∂

k
k

            (7.9) 

where we have given also a representation of the dispersion coefficient ( )dispα ω  
by a logarithmic derivative (useful or not?). Under neglect of dispersion that 
means if we do not take into account the first derivative of ( ) ( )ε ω µ ω  with 
respect to frequency ω  we have ( s  is called ray vector, e.g., [4], §97, or [9] 
( ) ( ), ,→n s m p )  



( )disp1, 1.
c

ω α ω
ω

≡

∂
≡ = ⇒ =

∂
s

k vn
k

               (7.10) 

Therefore, the dispersion coefficient ( )dispα ω  says by which factor one has 
to modify the group velocity in comparison to neglect of dispersion if one take it 
into account. It goes also into some other formulae as, for example, the energy of 
the wave solution. On this very general level of treatment we cannot say whether 
or not ( )dispα ω  is in every case positive for possible real-valued functions 
( ) ( )ε ω µ ω . In last case of negative ( )dispα ω  the genuine group velocity and 

the ray vector would have even opposite directions. The introduction of ray vec-
tors s  in addition to the refraction vectors n  is appropriate to formulate 
duality (or symmetry) relations between electric and magnetic quantities which 
leave invariant the basic equations of macroscopic optics [4], (§ 97) such as (for 
( )ω =µ I )  

1, , ,ij ijε ε −↔ ↔ ↔E D n s                   (7.11) 

but one should not forget that these are only approximate relations and are only 
true under neglect of dispersion of the permittivities. 

A second coefficient which we will consider is the relation of the modulus v  
of the group velocity v  to the light velocity c for which one derives from (7.7) 
the relation  

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ), 0 ,

2
c

ε ω µ ω
β ω ω

ωε ω µ ω ε ω µ ω
ω

= = >
∂

+
∂

v k k
k k

    (7.12) 
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with definition  

( )
( ) ( )

( ) ( ) ( ) ( )( )
( )

( ) ( )
disp .

2
c

ε ω µ ω α ω
β ω

ω ε ω µ ωε ω µ ω ε ω µ ω
ω

≡ = =
∂

+
∂

kv
k

    (7.13) 

For negative or complex ( ) ( )ε ω µ ω  it becomes imaginary or complex and 
is then not to interpret in easy way. 

Let us write down at this opportunity the general form of the second-order 

coefficients 
2

i jk k
ω∂

∂ ∂
 for bi-isotropic media which are  

( ) ( )( )
( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( )

2
2 2

2 2

2

2

2

2
2 2

2

2 2 2
2

2

2

2
1 .

ij i j

i j

i j i j
ij

c v v

k k

c

k k k k

δ ω ε ω µ ωω ω

ω ε ω µ ω
ω

ω ε ω µ ω
ω

ω ε ω µ ω ω ε ω µ ω
ωδ

ω ε ω µ ω
ω

∂
−∂ ∂=
∂∂ ∂
∂

=
∂
∂
  ∂  
 ∂ ⋅ − + −  ∂      ∂   

k k

 (7.14) 

As was to expect they are a linear combination of 2
i j

ij

k k
δ −

k
 and 2

i jk k

k
 the  

only second-rank symmetric tensors which can be built from vectors k  alone 
and which are covariant under transformations of the rotation group ( )3SO . 
The group velocity and the diffraction coefficients are involved in the expansion 
of the equation for the slowly varying amplitudes of beams with respect to spa-
tial and temporal derivatives. We will shortly consider the corresponding equa-
tions in next Section. 

8. Approximate Beam Equations for Homogeneous Isotropic  
Media 

We consider an isotropic medium with permittivity ( )ε ω  and for simplicity 
with ( ) 1µ ω = . The wave equation for the electric field with the involved oper-
ator ( ),ωkL  in such a medium is  

( ) ( ) ( ) ( )
2

2
2i , i , , , .ct

t
ω ε ω

ω
∂ = − ≡ ⋅ − + ∂ 

0 E r k k k kL L I I∇        (8.1) 

The necessary equation for solutions is the vanishing of the determinant  

( )i , i , .t
t
∂ = − ∂ 

0 E rL ∇                      (8.2) 

We make now the proposition of slowly varying amplitudes ( )0 , tE r   

( ) ( ) ( ) ( ) ( )0 0 0 0i i
0 0, , e , e .t tt t tω ω− − −∗= +k r k rE r E r E r              (8.3) 
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Inserting this into (8.2) we find first  

( ) ( )

( ) ( )

0 0

0 0

i
0 0 0

i
0 0 0

e i , i ,

e i , i , ,

t

t

t
t

t
t

ω

ω

ω

ω

−

− − ∗

∂ = − + ∂ 
∂ + − − − ∂ 

0 k r

k r

k E r

k E r

L

L

∇

∇
           (8.4) 

We suppose that both sum parts are separated in a way that we can set them 
equal to zero independently. For example, we may think that we include into 
one part all frequencies 0 ω< < +∞  and into the other part all frequencies 

0ω−∞ < < . With this assumption we have the equation  

( )

( )

0 0 0

2

0
0 0 0

2 2 2

02 2
00

i , i ,

1i
2

2 , ,

i j
i j

i
i

t
t

t k k

t
k t t

ω

ω

ω ω

∂ = − + ∂ 
   ∂ ∂ ∂ ∂     = − − − ∇ ∇        ∂ ∂ ∂ ∂ ∂      

   ∂ ∂ ∂ ∂ − ∇ + +     ∂ ∂ ∂ ∂ ∂    

0



k E r

k

E r

L

L L LL

L L

∇

∇        (8.5) 

where we wrote the first terms in an expansion in powers of the differential op-
erators. From this equation follows as necessary condition for all components of 
the solutions ( )0 , tE r  the vanishing of the determinant and with the analogous 
expansion as in (8.5)  

( )

( )

0 0 0

2

0
0 0 0

2 2 2

02 2
0 0

i , i ,

1i
2

2 , ,

i i j
i i j
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k t t
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ω ω

∂ = − + ∂ 

     ∂   ∂  ∂∂ = − ∇ − − ∇ ∇          ∂ ∂ ∂ ∂ ∂       
   ∂ ∂∂ ∂ − ∇ + +        ∂ ∂ ∂ ∂ ∂      

0



k E r

E r

L

L L L
L

L L

∇

      (8.6) 

plus the corresponding complex conjugate equation. With the general formula 

for the differentiation of the determinant 
λ λ
∂ ∂

=
∂ ∂

A A A  of an operator A   

with respect to a parameter λ  this equation may be also written (we do not in-
sert a more complicated formula for the second derivative of a determinant with 
respect to two parameters which also exists)  

( )

2

0 0
00 0

2 2 2

02 2
0 0

1i
2

2 , .

i i j
i i j

i
i

k t k k

t
k t t

ω

ω ω

    ∂ ∂ ∂ ∂    = − ∇ − − ∇ ∇         ∂ ∂ ∂ ∂ ∂      
   ∂ ∂∂ ∂ − ∇ + +        ∂ ∂ ∂ ∂ ∂      

0

 E r

LL LL L

L L
    (8.7) 

with  

( )0 0 0, 0,ω≡ =kL L                      (8.8) 

and where index 0 means that the derivatives are to take at ( ) ( )0 0, ,ω ω=k k . By 
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division of this equation with 0
0ω

∂ 
 ∂ 

LL  one finds  

( )

0
0

0
0

2 2 2 2

2 2
0 00

0

0
0

0 i

2
1 , .
2

i
i

i j i
i j i

k

t

k k k t t
t

ω

ω ω

ω

   ∂   ∂  ∂  
= − ∇  ∂ ∂      ∂  

     ∂ ∂ ∂∂ ∂
∇ ∇ − ∇ +          ∂ ∂ ∂ ∂ ∂ ∂ ∂     − + 

∂  
  ∂  

 E r

LL

LL

L L L

LL

  (8.9) 

The dispersion equation ( ), 0ω =kL  can be resolved in the form ( )ω ω= k  
for the different branches of the solution. In application to the slowly varying 
amplitudes with average wave vector 0k  and frequency 0ω ω=  this means the 
resolution  

( ) ( )

( ) ( )( )

0 0 0

0 0 0 0 0 0

i i ,

1i , , ,
2

t
t

t
t

ω ω

ω ω

∂ = + − − 
∂ 

 ∂  = + + + =  ∂  

0



k E r

v E r kW

∇

∇ ∇ ∇

     (8.10) 

with the group velocity 0v  and the quadratic form 0W  defined by  
2 2

0 0 0,
0 0 0

, , or .ij
i j

W
k k

ω ω ω   ∂ ∂ ∂   ≡ ≡ ≡       ∂ ∂ ⋅∂ ∂ ∂      
v

k k k
W       (8.11) 

Obviously (8.9) and (8.10) are identical and one may find the correspon-
dences. 

We define the polarization vectors 0e  and *
0e  which are right-hand and 

left-hand eigen-vectors to the operator 0L  to eigenvalue 0 according to  
* *

0 0 0 0 0 0 0 00 , 0 , 0, 0.= = = =e e k e e kL L                (8.12) 

By comparison of (8.9) with (8.10) we find for the group velocity 0v   

*
0 0 0

00 0
0,

*0
0 00

000

,ii i
i

i

kk k
v

k
ω

ωωω

  ∂  ∂  ∂
    ∂∂ ∂ ∂     ≡ = − = − = −  ∂∂  ∂   ∂        ∂ ∂∂   

e e

e e

L L LL

LL LL
      (8.13) 

where we applied *
0 0 0∝ ⋅e eL  meaning that 0L  is proportional to the dyadic 

product of the polarization vectors 0e  and *
0e  (see also formulae (2.18) and 

(2.19)). 
The beam solutions in their Fourier decomposition contain components to 

wave vectors and frequencies around the average wave vectors and frequency 
( )0 0,ωk  and therefore the solution cannot possess solution which are exactly 
proportional to polarization vector 0e . Therefore we make now the following 
proposition for solutions of the beam Equation (8.5) 
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( ) ( ) ( )0 0 0 0, , , , ,t A t t′= +   E r e r e A r               (8.14) 

where ( )0 0 ,A te r  is the main part with polarization 0e  and ( )0 , , t′  e A r  a 
small additional part with polarization perpendicular to 0e . Both parts have to 
satisfy Equation (8.5) that means for the main part the following approximate 
scalar equation up to second-order derivatives of the slowly varying amplitude 

( )0 ,A tr   

( ) ( )0 0 0 0 0,
10 i , , .
2 i ij jA t W

t
 ∂  = + + ≡ ∇ ∇  ∂  

v rW W∇ ∇ ∇ ∇ ∇     (8.15) 

The additional part ( )0 , , t′  e A r  of the beam solution is not independent of 
the main part ( )0 0 ,A te r . Inserting both parts into Equation (8.5) we get ap-
proximately using 0 0 = 0eL   

( ) ( )( )

( ) ( )

0 0 0 0 0
0 0

0 0 0 0 0
0 0

i , , ,

, , i , ,

A t t
t

t A t
t

ω

ω

  ∂ ∂ ∂     ′= − − + +         ∂ ∂ ∂      
  ∂ ∂ ∂    ′= − − +        ∂ ∂ ∂      

0 



e r e A r
k

e A r e r
k

L LL

L LL

∇

∇

  (8.16) 

that has to be resolved to ( )0 0, , t′  e A r . As approximation we use only the two 
explicitly written sum terms in the second line. First we find using the dispersion  

equation 
2

2
0 02
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c ε
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=k   

( ) ( ) ( )

( )
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2
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 
′ ′= ⋅ − +       
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′ ⋅  ′= ⋅ =  

e A r k k k e A r

k e A r k
k e A r k

k

L I I
  (8.17) 

that is proportional to the average wave vector 0k . Furthermore follows for the 
operator part of the second sum term in (8.16) which acts onto ( )0 ,A tr  and 
here written with indices  

( ) ( )

0,
0 0

2 3
2

0, 0, 0, 0, 0, 0 0,2 3
0 0

2

0, 0 0, 02
00

2 2

2 .

ij ij
k j

k

ik j i jk k ij k i j ij j

i i

L L
e

k t

c ck k k k k e
t

c ck e
t

ω

δ δ δ δ
ω ω

ωω

 ∂ ∂    ∂ ∇ −    ∂ ∂ ∂     
 ∂ = + − ∇ + − 

∂  
  ∂ = − +  ∂   

k

e k∇ ∇

    (8.18) 

This possesses two sum terms proportional to the vector 0k  and to the main 
polarization 0e  and shows a typical difficulty consisting in the correct neglect 
of terms deriving equation for additional components with no contradictions. 
The second sum term is proportional to the polarization 0e  of the main com-
ponent and has to be neglected. If we do so we find from (8.17) and (8.18) the 
following formula for the additional component in direction of 0k   

( ) ( ) ( )0 0 0 0 0, , , i , .t A t′ =  k e A r e r∇                 (8.19) 
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In special case of vacuum we have 0
0

0

c=
k

v
k

 and 0 0
0 2

0 0

c  ⋅ = −
 
 

k k
k k

W I  

and Equation (8.15) for the main component becomes  

( )0 0 0
0 02

0 0 0

0 i , .
2

cc A t
t

    ⋅∂  = + + −     ∂     

k k k
e r

k k k
I∇ ∇ ∇        (8.20) 

In Section 9 we derive a more complicated case for media with the polariton 
permittivity. 

Thus the approximate equations for beam solutions taking into account dif-
fraction in first order consists of the Equation (8.15) for the main part of the 
slowly varying amplitude plus the Equation (8.19) for a “small” additional part 
in direction of 0k  which can be determined alone from the main part by diffe-
rentiations. We wanted to show how the group velocity and the diffraction coef-
ficients are involved in approximate beam equations but a detailed consideration 
of these equations and of the solution of (8.15) requires much place and is here 
not intended. 

9. Permittivity to Polariton Dispersion in Isotropic Media 

We consider in this Section the following special permittivity ( )ε ω  and per-
meability ( )µ ω  of an isotropic medium with two real parameters lω  and tω  
(or λ  and tω ) called polariton permittivity, e.g., [6] (§17, 18)  

( )

( )( )

2 2

2 2 2 2

2 2
2 2

2 2

1 11 1 1
2

, 1 , ,

l t

t t tt t

l
l t

t

ω ωλ λε ω
ω ω ω ω ωω ω ω ω

ω ω
µ ω λ ω ω

ω ω

  −
= − = − − = − − +− − 

−
= = ≡ −

−

       (9.1) 

where for ( ) tω ω≈ ≥  the second sum term in round brackets can be neglected. 
In Figure 1 this permittivity is illustrated for the two principal cases with differ-
ent properties which we call the passive case l tω ω≥  and the active case t lω ω>  
(occupation inversion) and which are also characterized by (for 0ω > ) 

( ) ( )

( ) ( )

0, : 0, passive case ,

0, : 0, active case .

l t

l t

ελ ω ω ω
ω
ελ ω ω ω
ω

∂
> > >

∂
∂

< < <
∂

            (9.2) 

The indices “ l ” and “t” in (9.1) mean “longitudinal” and “transversal”. Pola-
ritons (or real excitons) are a mixing of excitons in a medium and of photons in 
the vacuum (e.g., [1] [2] [17]) and correspond to the possible real light excita-
tions in a medium. In this simple model tω  is the frequency to a transition be-
tween two energy levels in the medium or a lattice oscillation and 2 2

l tλ ω ω= −  
is beside other parameters proportional to the difference of the occupation of the 
two involved levels. For models of the medium in thermal equilibrium with 
temperature 0T ≠  the permittivity ( )ε ω  has to be generalized (see general 
form of the permittivity of an isotropic medium, e.g., in [4] chap XII, [3]). With  
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Figure 1. Polariton permittivity ( )ε ω  for l tω ω>  (passive case) and for l tω ω<  (active case). Apart from the jump from plus 

infinity to minus infinity (or vice versa) all derivatives of ( )ε ω  with respect to frequency are positive ( ) 0ε ω
ω
∂

≥
∂

 in the passive 

case and negative in the active case ( ) 0ε ω
ω
∂

≤
∂

 (for 0ω >  right half-plane. 

 
respect to the propagation of light beams in such a medium it is equivalent to a 
medium which possesses the right-hand form for the product ( ) ( )ε ω µ ω  in-
stead for ( )ε ω  alone and can be included into the last case. 

One may think that the distinction in passive and active case in (9.2) corres-
ponds in certain way to the usual distinction in normal and anomalous disper-
sion but beside analogies there are also essential differences. Normal dispersion 
is usually discussed for the passive case alone and appears for real frequencies if 
one adds in the denominators for ( )ε ω  in (9.1) an imaginary part to take into 
account losses in the medium and if we consider then the real part of arising 
permittivity and is present in (small) parts between the (main) regions of normal 
dispersion. In the model (9.1) these regions are reduced to the points 2 2

tω ω=  
and normal dispersion is present in the whole region with exclusion of these 
points. In contrast, in the active case we have in the whole region “anomalous” 
dispersion also with exclusion of the points 2 2

tω ω=  only and imaginary parts 
in the denominator do not play a role. This picture can change in some way for 
thermal equilibrium but the distinction in (9.2) is meant without losses. The oc-
cupation inversion in active case corresponds in some sense to a negative abso-
lute temperature (notion occasionally used in second half of last century) but a 
thermal equilibrium in this case is only possible for a finite number of energy 
levels. 

For l pω ω≡  and 0tω =  we have the permittivity of a cold isotropic plasma  

( )
2 2

2

4
, 0 : 1 , ,p e

l p t p
e

n e
m

ω
ω ω ω ε ω ω

ω
π

≡ = ⇒ = − ≡        (9.3) 
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with pω  the plasma frequency given here for an electron plasma (indices “e”; 
, ,e ee n m  mean electron charge, electron density, electron mass and electron 

charge). This is again idealized for temperature 0T = . 
Longitudinal waves are in the idealized form (9.1) of the permittivity only 

possible for the frequency lω   

,lω ω=                           (9.4) 

and are pure oscillations with no dispersion. Our main interest concern trans-
versal waves which we now consider. The dispersion relation for transversal 
waves (7.4) specialized for the polariton case (9.1) becomes  

( ) ( )
2 22 2

2
2 2 2 2 ,l

tc c
ω ωω ωε ω µ ω
ω ω

−
= =

−
k                (9.5) 

and depends only on the product ( ) ( )ε ω µ ω . For such waves the relation be-
tween the energy flow density S  and the energy density w in the lossless case 
for quasi-plane and quasi-monochromatic waves and in the transition to the li-
miting case of plane monochromatic waves with real wave vector k  and real 
frequency ω  (homogeneous waves)  

,w=S v                             (9.6) 

remains in every case the same and depends only from the dispersion relation 
( v  is group velocity; see next Section). However, the splitting of the energy 
density w in (9.6) into a part from the electric field and into a part from the 
magnetic field depends on ( )ε ω  and ( )µ ω  separately and therefore also the 
calculation of the corresponding energy flow density S  which can be made 
from the energy density w by (9.6). As illustrated in Figure 1 it is interesting to 
extend the permittivity (9.1) to 2 2 0l tλ ω ω= − <  which corresponds to a model 
medium with inverse occupation density of the two involved levels. The condi-
tion l tω ω>  in the form of the permittivity (9.1) which belongs to the passive 
case is satisfied for taking into account only one transition with frequency tω  
between two energy levels and for sufficiently low temperatures. It may be con-
verted into l tω ω<  for pumping to a higher energy level of a laser medium to 
get inversion of occupation but to keep their difference 2 2

t lω ω−  constant can 
be only a very rough approximation for the laser action near the threshold. Such 
a permittivity falls under the active case (not to be confused with notion (natural) 
optical activity!). By far, not all consequences for the active case are clear and are 
well understood. 

Let us begin with a general consideration to dispersion equations in a homo-
geneous isotropic and infinitely extended medium. The general case is that both 
wave vector k  and frequency ω  are complex quantities. For the vacuum 
with the dispersion equation 2 2 2c ω=k  with the splitting of wave vector and 
frequency in real and imaginary parts  

i , i ,ω ω ω′ ′′ ′ ′′= + = +k k k                     (9.7) 

this leads to a complex equation with the following separation into a real and 
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imaginary part 

( ) ( )
( ) ( )

2 22

2 2 2 2 2 2

i i ,

, .

c

c c

ω ω

ω ω ω ω

′ ′′ ′ ′′+ = + ⇒

′ ′′ ′ ′′ ′ ′′ ′ ′′− = − =

k k

k k k k
            (9.8) 

These are 2  scalar equations for 5 real variables (for example,  

( ), , cos , ,ϕ ω ω
′ ′′

′ ′′ ′ ′′≡
′ ′′

k kk k
k k

) that restricts the number of free variables to 3  

real variables. It is impossible to represent this in a single graphical representa-
tion and one has to make compromises. For example, for real frequency  
( , 0ω ω ω′ ′′= = ) we find from (9.8) the orthogonality 0′ ′′ =k k  of real to im-
aginary part of the wave vector k . It is known that such waves are generated in 
the vacuum under total reflection within an isotropic medium with ′k  parallel 
to the boundary plane and with ′′k  in direction of the normal vector to the 
boundary plane corresponding to exponential decrease. Such waves are called 
inhomogeneous waves (not to confuse with inhomogeneous media!). All this is 
well known and understood. Which of the components ( ), , ,ω ω′ ′′ ′ ′′k k  are in-
volved into a process can be only determined if one knows the boundary togeth-
er with the boundary conditions. If we apply this to the polariton permittivity 
(9.1) with the complex dispersion Equation (9.5) we find the following equation  

( ) ( )
2 2 2

2 2 2 2 2
2 2 2

i2
i2 i2 .

i2
l

t

c
ω ω ω ω ω

ω ω ω ω
ω ω ω ω ω
′ ′′ ′ ′′− − +′ ′′ ′ ′′ ′ ′′ ′ ′′− + = − +
′ ′′ ′ ′′− − +

k k k k   (9.9) 

Separated into real and imaginary part this leads to the two equations  

( ) ( )( )
( )( ) ( )( )

( ) ( )( )
( )( ) ( )

2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2

0

4 ,

0

,

t

l t

t

l t

c

c

c

c

ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω ω ω

′ ′′ ′ ′′ ′ ′′= − − − − −

′ ′′ ′ ′′ ′ ′′ ′ ′′− − − − −

′ ′′ ′ ′′ ′ ′′= − − −

′ ′′ ′ ′′ ′ ′′ ′ ′′+ − − − − −

k k

k k

k k

k k

      (9.10) 

which are of forth degree with respect to the real components of wave vector and 
frequency. Both equations have to be satisfied at the same time. This means that 
we have different possibilities of two-dimensional graphical representations for 
inhomogeneous waves and this is relatively complicated in such generality. 

If we choose real wave vectors as free variable then the dispersion Equation 
(9.5) leads to a bi-quadratic equation for the frequency ( )ω ω= k  in depen-
dence on the modulus k  of the wave vector as follows ( 22 ≡k k )  

( )4 2 2 2 2 2 2 20 ,l tc cω ω ω ω= − + +k k                (9.11) 

which resolved provides two branches of squared solutions  

( ) ( )

( ) ( )

22 2 2 2 2 2 2 2 2 2

22 2 2 4 2 2 2 2 2 2

1 4
2
1 2 2 ,
2

l l t

l l l t

c c c

c c c

ω ω ω ω

ω ω ω ω

±
 = + ± + − 
 
 = + ± + − + 
 

k k k k

k k k
   (9.12) 
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or of frequency solutions7 

( ) ( ) ( ) { }
( ) ( ) ( ){ }

2 22 2 2 2

2 22 2 2 2

1 2 2
2
1 .
2

l t l t

t l t t l t

c c c c

c c

ω ω ω ω ω

ω ω ω ω ω ω

±
± = ± + + ± − +

= ± + + − ± − + −

k k k k k

k k
   (9.13) 

This means that we have to given k  two different solutions for ( )
2ω ±  signi-

fied by the upper indices “(±)” where one has to pay attention mainly to the two 
different lower signs “±” to the two sum terms with square roots. In the hatched 
region the solution (9.13) for the frequency in dependence on the modulus of 
the wave vector becomes complex and can be better represented in the form  

( ) ( ) ( ) ( ) ( ) ( ){ }2 22 2 2 21 .
2 t t l t l tc i cω ω ω ω ω ω ω±

± = ± + − − ± − − −k k k   (9.14) 

Figure 2 represents the different branches of solutions ( )ω ω= k  in depen-
dence on the modulus k  of the wave vector for the both principal cases 

l tω ω>  and l tω ω< . The left-hand picture is well known mostly in form of the 
right upper quadrant (see, e.g., [17], chap. III, Figure 8 or [2], chap. 11, Figure 11.4).  
 

 

Figure 2. Frequencies in dependence on real wave vector for ( )
2 2

2 2
l

t

ω ωε ω
ω ω

−
=

−
, ( ) 1µ ω =  for l tω ω>  and l tω ω< . The con-

tours of the hatched parts in the right-hand picture are imaginary and describe amplification. For the figures we have chosen the 
values 1.05, 0.95l tω ω= =  in passive case (to the left) and 0.95, 1.05l tω ω= =  in active case (to the right). 

 

 

7A bi-quadratic equation of the form ( )4 2 2 * * 22 0, , , 0 ,z pz q p p q q q− + = = = ⇒ ≥  with real p 

and q and therefore non-negative q2 possesses 4 solutions which may be written in the following 

form ( ) ( ) ( ) ( )1 2 ,
2

qz p q p q
p q p q

±
± = ± + ± − = ±

+ −

 with only real or imaginary sum 

terms p q± . Clearly, these solutions are also true in general case but usually then do not provide 

separation into real and imaginary parts.  
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Asymptotically, for large k  we have in both cases a branch cω = ± k  the 
same as for light beams in vacuum and a branch with constant tω ω= ±  where 

tω  is the resonance frequency to the energy difference of the considered two 
levels. The case 0l tω ω− >  corresponds to lower occupation of higher level in 
comparison the lower level and the case 0t lω ω− >  to inverse occupation. The 
last case can be achieved by pumping this level and as was to expect it possesses 
properties of amplification in a certain region of wave vectors. This is exactly 
separated by the two sum terms with square roots in the solutions in the form 
(9.13) or (9.14). We have hatched the imaginary parts inside their contours. 
Their real parts are in the figure to find over, respectively, under the hatched 
contours and look like straight lines but are such only in the limiting case 

0t lω ω− →  as follows from the first sum term in (9.14). 
In Figure 3 the case t lω ω>  is presented enlarged for the right upper qua-

drant of Figure 2 in two numerical cases which show the dependence on the pa-
rameters tω  and lω  and, in particular, on the difference 2 2

t lω ω− . Micro-
scopic models for the permittivity (9.1) show that the difference 2 2

t lω ω−  is 
among other parameters as factors of the active transition levels proportional to 
the density occupation inversion 2 2

t lσ ω ω λ∝ − ≡ −  of these levels. This means 
that in our idealized model the product of height h with width w of the amplifier 
contour (see Figure 2) is proportional to the square root of the density of inverse 
occupation of the considered active levels whereas h and w themselves are pro-
portional to its square root. In laser theory to our knowledge the height h is  
 

 

Figure 3. Function ( )ω ω= k  for ( )
2 2

2 2
l

t

ω ωε ω
ω ω

−
=

−
, ( ) 1µ ω =  with l tω ω<  (amplification) in two numerical cases. The 

left-hand figure is practically the right upper quadrant of Figure 2 but amplified for better visibility and for making a comparison 
with a similar figure with other parameters. For the figures we have chosen the values 1.05, 0.95t lω ω= =  and  

1.25, 0.75t lω ω= = . 
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usually assumed or calculated as direct proportional to the density of inverse 
occupation whereas for its width are made complicated considerations about 
natural line width and its enlargement. 

For application to laser theory it is necessary to add feedback by a resonator. 
The unspecific losses of the involved resonator modes in the concerning region 
cut off an upper part of the amplification contour and thus lower it whereas their 
frequencies are determined mainly from the real part (first sum term in (9.14))  

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2
Re

2 2 2 2

2 22 2

2 2 2 2

1
2

3
1 ,

2 4 33

.

t t l

t l t t l
t t

t lt l

t t l t t l

k c

c c

c

ω ω ω ω

ω ω ω ω ω
ω ω

ω ωω ω

ω ω ω ω ω ω

= + − −

 + − = + − − − +
 ++  

− − ≤ ≤ + −



k

k k

k

 (9.15) 

For a long resonator in comparison to the transverse dimensions only the 
longitudinal modes without reflection at the side wands play a role. For such a 
resonator with ideal mirrors at the end the field at the mirrors has to be vanish-
ing and the possible resonator modes have to possess a multiple m of the half the  

wavelengths λ , ( 2
λ
π

≡k ), which fit into the resonator length L. Thus for the  

possible wave vectors and frequencies we find in this idealized case ( 0 minm m≡ )  

( ) ( )

( )

2
2 2

Re

2 2 2 2
0 0 max

1, ,
2

, , 1, , .

t t l

t t l t t l

cm k m
L L

cm m m m m
L

ω ω ω ω

ω ω ω ω ω ω

π  = = + π − − 
 

− − ≤ π ≤ + − = + 

k
  (9.16) 

The resonator losses as said lower the amplification contour and therefore 
narrow the possible values for m and change also a little the relation (9.15) for 
the possible wave vectors and frequencies. With losses both the wave vectors and 
frequencies may become slightly complex. The imaginary part of the frequency  

determines also a line width by only classical considerations. For 
2 2

2 1t l

t

ω ω
ω
−

≤   

one finds in approximation from (9.15)  

( ) ( )
2 2

Re2

11: ,
2

t l
t t

t

c
ω ω

ω ω ω
ω
−

≤ ≈ + −k k             (9.17) 

and the density of possible frequencies in the corresponding frequency interval 
is doubled in comparison to the density within a resonator with vacuum. If we 
assume that there is a process (pumping) which keeps constant the density of the 
inverse occupation then it may be considered as a very simple and idealized clas-
sical model of laser action, at least, near the threshold. However, this model 
cannot provide information at which level of occupation inversion the equili-
brium between pumping and radiation is reached. In this sense it is similar to 
thermal equilibrium where without additional information it cannot be said how 
it was reached. Clearly, quantum-mechanical generalization makes further mod-
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ifications also to the line widths.8 
Generalizations of the permittivity (9.1) in different directions are possible 

and interesting, for example, by an additional constant sum term on the 
right-hand side taking into account summarily the contribution of all other re-
sonances of two levels or taking into account losses by imaginary terms in the 
denominator. We consider now shortly the case of taking into account two re-
sonance frequencies ,1tω  and ,2tω  leading to a permittivity of the form [6] (§18, 
Equation (6))  

( ) 1 2
2 2 2 2

,1 ,2

1 ,
t t

λ λ
ε ω

ω ω ω ω
= − −

− −
                 (9.18) 

with two further parameters 2λ  and ,2tω  which determine the strength of a 
second resonance. This can be also written in the following form  

( )
( )( )
( )( )

2 2 2 2
, ,

2 2 2 2
,1 ,2

,l l

t t

ω ω ω ω
ε ω

ω ω ω ω
− +− −

=
− −

                 (9.19) 

with the definitions  

( )22 2 2 2 2
, ,1 1 ,2 2 ,1 1 ,2 2 1 2

1 4 ,
2l t t t tω ω λ ω λ ω λ ω λ λ λ±
 ≡ + + + ± + − − + 
 

    (9.20) 

where 2
,lω 

 is real-valued or may become even complex-to complex-conjugate- 
valued and where ,lω −  and ,lω +  cannot be properly assigned to ,1tω  and ,2tω . 
The dispersion Equation (7.4) resolved to an equation for 2ω  in dependence on 
the squared wave vector 2k  becomes a bi-cubic equation in k  which is al-
ready difficult to solve for ω  and to discuss. In dependence on the 4 parame-
ters ,1 ,2,t tω ω  and 1λ  and 2λ  one would have to distinguish many principal 
cases. 

10. Group Velocity to the Polariton Permittivity in Passive  
Case and Group Velocities Faster Than Light Velocity in  
Active Case 

We now consider the group velocity of transversal waves for the polariton per-
mittivity (9.1). By differentiation of the dispersion Equation (9.5) with respect to  

k  we calculate for the group velocity in direction k
k

 of the wave vector and  

in dependence of its modulus on the frequency ω  only  

 

 

8Sometime in the eighties I asked H. Paul from our Institute to discuss with me the polariton model 
and he agreed. My first aim was to see did he know whether or not this model or something similar 
was already discussed in literature since I did not find neither theoretical considerations nor experi-
mental hints for some results. He also did not know something and likely nothing existed. Thank! 
My second aim was to show him that the height as well as the width of the amplification contours in 
form of ellipses are proportional to the square root of the inverse occupation density and I made a 
drawing of this contour but nothing of the kind of the more general and complicated figures made 
by computer and presented here. I could not expect that we may discuss the formulae in detail 
(more than the permittivity he did not want to see) and soon H. Paul finished the discussion saying 
approximately: I believe you only if you have also the nonlinear terms in the equations. This, how-
ever, was not my intention, my possibility and my official task at that time. 
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       (10.1) 

It possesses in this model in every case the direction of the wave vector also if 
it is complex-valued with different directions of real and imaginary part but the 
frequency-dependent coefficients ( )ϕ ω  can also become complex-valued (for 
real values of ω ) due to presence of the square root. Without taking into ac-
count the dispersion of ( )ε ω  at the considered frequency ω  (setting  

( )
0

ε ω
ω

∂
→

∂
) it is  

( ) ( ) ( ) ( ) ( )

2 22

2 2
2

2 ,t

l

cc c cc c c
ω ω

ωε ω ωε ω ω ωε ωε ω ω
ω

−′ = = = = =
∂ −
∂

kk k k k kv
k k k

(10.2) 

but the dispersion cannot be switched off. For such points where ( )ε ω  pos-

sesses a minimum (or maximum) the derivative vanishes (i.e., ( ) ( ) 0
ε ω

ω
ω

∂
=

∂
)  

and the group velocity with and without taking into account the dispersion are 
equal. The dispersion factor ( ) ( )dispα ω α ω≡  is  

( )
( ) ( )

( )( )
( )( )

( ) ( )
( )( )
( )( )

( ) ( ) ( )

2 2 2 2 2 2 2 2 2

2 2 2 2 22 2 2 2 22
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∂
− − − −∂= = ≡

∂ − −− + −
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+ −
≡ − ≡

 





(10.3) 

Due to an extremum of ( )ε ω  for 0ω =  its derivative with respect to fre-
quency vanishes there and the dispersion factor becomes ( )0 1α ω = = . 

One may distinguish 2 different cases and a limiting case between them 
represented by  

( )
( )
( )
( )

2 2

2 2

2 2 2

2 2 2 2

1 ,
, ,

1 ,

l t
l t

t
l t

l t t
l t

t t

c
c c

c

ω ω
ω ω

ω ω
ϕ ω ω ω

ω ω ω
ω ω

ω ω ω ω

−
− < >

− = = → = =
− + > <− −

v         (10.4) 

which in relation to the light velocity obviously are determined by different 
properties. In last case of l tω ω<  the group velocity can even be opposite to the 
direction of the wave vector in certain regions of the frequency. 

If one wants to have the full dependence ( )≡v v k  of the group velocity on 
the wave vector one has to distinguish the 4 branches in (9.13) or in (9.14) and 
finds by differentiation with respect to k  

https://doi.org/10.4236/jmp.2022.134035


A. Wünsche 
 

 

DOI: 10.4236/jmp.2022.134035 606 Journal of Modern Physics 
 

( ) ( ) ( )
( ) ( )
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which we have written in two favorable representations for the passive case 

l tω ω>  and the active case t lω ω> . 
The calculation of the second-order coefficients ijW  in the Equation (8.15) 

for beam propagation in isotropic media can be calculated, for example, from 
the principal structure of the group velocity  

( ) ( )
( ) ( )

( ) ( )

1 3
2 2 2 22 2

22 2 2 2 2
, ,l ti

i
i t l t t

k
v c

k

ω ω ω ωω ϕ ω ϕ ω
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≡ = ≡
∂ − + −k

       (10.6) 

by further differentiation with respect to variables jk . Using  

2

2

1, ,i ji i
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i i j j
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δ
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k k
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         (10.7) 

and due to ( )ω ω≡ k  and (10.7)  
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2

j j

j j

k k
k k
ϕ ϕ ω ϕω ω ω ϕ ω ϕ ω
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we find the general structure  
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2
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and, finally, with the special function ( )ϕ ω  in (10.6)  
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(10.10) 

This result was checked by a slightly modified calculation which I do not 

present here. It possesses two sum terms proportional to the tensors 2
i j

ij

k k
δ −

k
 

and 2
i jk k

k
 describing transversal and longitudinal diffraction (or diffusion) of 

the light beam during propagation. 
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In the special case of an isotropic cold plasma with the permittivity  

( )
2

21 pω
ε ω

ω
= −  setting , 0l p tω ω ω= =  the formulae (10.1) for the group veloc-

ity and (10.10) for the diffraction coefficients simplify to  

2 2

2 21 , 1 ,p pi i
i

c k k
v c c

ω ω
ω

ω ω ω

 
= = − ⇒ = −  

 

k
kv

k k
        (10.11) 

that due to taking into account the frequency dispersion does not agree with 
(6.9). For the diffraction coefficients one finds  

22

2 2 2 ,i j p i j
ij ij

k k k kcW
ω

δ
ω ω

  = − + 
  k k

                   (10.12) 

and it contains also a term proportional to 2
i jk k

k
 leading to a diffusion in lon-

gitudinal direction of the beam. 
Without taking into account the dispersion we would obtain from (10.2)  

( )

2

2 ,i j
ij ij

k kcW δ
ε ω

 
′  = −

 
 k

                    (10.13) 

that is without a “longitudinal” contribution proportional to 2
i jk k

k
. 

In Figure 4 we represent the permittivity ( )ε ω  (blue curves) together with 
the group velocity in relation to the light velocity without taking into account 
dispersion of the permittivity ( ) ( )( )dispα ω α ω≡  (yellow curves) and  

with taking it into account as ( )
c

β ω ≡
v

 (red curves) for the passive ( l tω ω> ,  

to the left) and the active case ( t lω ω>  to the right). In the passive case we see 
that the group velocity remains smaller than the light velocity in every case and 
that it is real-valued in regions where ( )ε ω  is positive and that taking into ac-
count the dispersion the deviations in comparison to neglect of dispersion are 
important, in particular, in the neighborhood of the resonance frequency tω  
and in the neighborhood of the “(longitudinal)” frequency lω . In addition, the 
group velocity possesses in every case the same direction as the wave vector. In 
the region t lω ω ω≤ ≤  no relation of group velocity to light velocity (red) is 
drawn because the group velocity is there imaginary. All is so as expected. How-
ever, the same picture for the active case (to the right) contains an unexpected 
surprise. 

In the active case l tω ω≤  (right-hand picture in Figure 4) the group velocity 
is here in certain regions of frequency larger than the light velocity or it is in 
opposite direction to the wave vector. The regions of ω  where it is larger than 
the light velocity but in direction of the wave vector k  are  

0 , .ω ω ω ω− +< < < < ∞                 (10.14) 
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Figure 4. Polariton permittivity ( ) ( )( )
2 2

2 2 , 1l

t

ω ωε ω µ ω
ω ω

−
= =

−
, ( )α ω  and ( )

c
β ω =

v
 for l tω ω>  and for l tω ω< . In regions 

t lω ω ω< <  for l tω ω>  and l tω ω ω< <  for l tω ω<  the relation of the group velocity to the light velocity (red curves 

with and purple without dispersion) becomes imaginary that is not drawn. In passive case l tω ω>  wave vector and group veloci-
ty possess in every case the same direction and the last is smaller than the light velocity. In active case l tω ω<  the group velocity 
is greater than the light velocity in the regions 0 ω ω−< <  and ω ω+ <  but is in the same direction as the wave vector. In the 
region tω ω ω+< <  it is even in the opposite direction to the corresponding light velocity but only with taking into account the 
dispersion. The difference between ( )β ω  (red) and ( )β ω′  (purple is that last is calculated under neglect of the frequency dis-

persion of the permittivity. We have chosen for the pictures 1.25, 0.75l tω ω= =  in passive case and 0.75, 1.25l tω ω= =  in ac-
tive case, the same as in Figure 1. 

 
We will not come here with a quick physical explanation of this phenomenon 

although we considered the polariton permittivity with frequency l tω ω ω< <  
already much earlier mainly with respect to its description of amplification in a 
certain region of wave vectors and frequencies. This phenomenon of group ve-
locity greater than light velocity may likely come from a correlation within all 
parts of the medium by preparation of the occupation inversion of a level which 
is made already before it gets this property. The diffraction coefficients ijW  ac-
cording to (10.10) possess the same zeros (ω±  in (10.3) and in Figure 4)) in the 
denominators as the group velocity iv  in (10.1) and can become very large. It is 
possible that the expansion (8.15) in the equation for the slowly varying ampli-
tude (8.15) does not converge and that this equation is not applicable but a more 
general treatment should not change this basically. A practical use is likely very 
difficult to make and far from now. The most chances has its use for guided 
waves in long resonators and, in principle, such use due to the amplification 
properties of these similar media is already realized by lasers but not due to 
group velocity larger than light velocity as subsidiary effect. On the other side we 
cannot fully exclude that this phenomenon is already known and somewhere 
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discussed in literature. Hypothetical particles in free space which move with a 
velocity greater than that of light are called tachyons and were occasionally con-
sidered from the sixtieths on, in detail, e.g., by Terletski [28] (Chapters V. and 
VI.) and by others but in our case they may be only quasi-particles within an ac-
tive medium with occupation inversion if we associate them with the group ve-
locity greater than that of light. It is known that the existence of tachyons with 
imaginary mass is not excluded by the Relativity theory but experimentally such 
are not found. However, in our case they cannot exist as such which usually 
form beams due to very large diffraction and in this sense they are not the same 
as were discussed as tachyons. 

There is a second fully unexpected phenomenon. In the regions lω ω ω− < <  
and tω ω+<  the group velocity v  is in opposite direction to the direction of 
the wave vector k  but only if we take into account the dispersion of the per-
mittivity that let us believe at first in an error of signs but all was calculated with 
the same reliable formulae as in the passive case and the formula (10.3) for the 
dispersion factor does not involve square roots where the sign is unclear. It 
seems that this opposite group velocity to refraction vector violets the causality 
but we cannot exclude an explanation by the established correlation between 
different parts of the medium. So the described phenomenon requires further 
attention. 

In search for references to the unexpected phenomena I came via the inter-
esting book of Vaas [29] (part II, Section 7, e.g., p. 145, 146) to the reference of 
authors Nimtz and Haibel [30]. In [30] it is claimed that G. Nimtz (together with 
H. Aichmann, p. 111) transmitted in 1994 a symphony using the tunneling effect 
through a sub-dimensioned wave guide (full length about 12 cm) with approx-
imately the five-fold velocity of the light velocity in vacuum9. In the transmission 
of information (e.g. music) the frequency modulation of a signal is used and has 
to be detected from it. Despite the large spatial distortion of a beam via the 
propagation the frequency is more stable and not very distorted over longer 
length of a beam that may explain some results. All this is a challenging theme 
and one has to wait for further clarification. 

11. Remark to Reflection and Refraction of Beams at  
Isotropic and Bi-Isotropic Media 

The following considerations concern only passive cases which are not very 
problematic with respect to basic discussions. In reflection and refraction prob-
lems of beams at a boundary between isotropic and (or) bi-isotropic media 
maximum 4 different beams with the same average frequency ω  can be related 
to each other since they must possess the same tangential component of the  

 

 

9Long ago I heard or saw in popular sources something about experiments of G. Nimtz but did not 
take the super-luminal velocities seriously and did not try to find the original papers. Now, when I 
find as it seems to me by reliable mathematics such possibilities of group velocities greater than light 
velocity in vacuum I changed my opinion and look for physical explanations. However, I have to 
emphasize that I cannot support by own calculation the effects concerning tunneling and the condi-
tions for them since I did not make such. 
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average wave vectors ,i r
νk  or refraction vector , ,i r i rc

ν νω
≡n k  (lower indices “1”  

and “2” stand for the both media and upper indices “i” for incident and “r” for 
reflected or refracted wave. The group velocities of the corresponding beams are 
calculated in (7.6). This is represented in Figure 5 on the left-hand picture and 
the corresponding beam propagation on the right-hand picture. If N  is a 
normal unit vector to the boundary at the considered point of beam reflection 
and refraction then the tangential component of all refraction vectors is  

[ ] ( )2, , , 1 , ≡ = − ⋅ = n N n N n nN N N              (11.1) 

where for n  an arbitrary of the involved refraction vectors can be inserted. 
Nothing changes in this picture if the refraction vectors in one or both media sa-
tisfy a dispersion equation ( ) ( )2 ε ω µ ω=n  in comparison to ( ) 1µ ω = . Also 
in the active case of isotropic media the group velocities v  are in every case 
parallel to the corresponding refraction vectors n  although we found that in 
this case the possibility exists that they are in opposite direction to the refraction 
vectors and may possess super-luminal velocities that is not yet fully understood 
and affirmed. Mostly one has only an incident beam from one side of the two 
media and only three waves (incident, reflected and refracted) are coupled at the 
boundary. All this is necessary to take into account if one discusses the work of 
Pendry [22] (see Appendix D). 
 

 

Figure 5. Refraction vectors n  with equal tangential components and group velocities v  at a boundary. The two media possess 
the lower indices 1 and 2 where medium 2 may possess an electric permittivity and a magnetic permeability. The upper indices “i” 
and “r” mean “incident” and “reflected or refracted” waves seen from the different sides of the boundary. It does not play a role 
whether a positive product 2 2ε µ  is obtained from both positive or both negative values of 2ε  and 2µ . All refraction vectors 
n  possess the same tangential component n  to the boundary 0=Nr  and only their normal components are different in gen-
eral case. For isotropic media the directions of the refraction vectors n  and the corresponding group velocities v  are the same. 
With respect to polarization of the 4 waves one may distinguish the two cases of polarization perpendicular and within the inci-
dence plane spanned by the normal unit vector N  to the boundary plane and an arbitrary of the refraction vectors n . 
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The normal components ( ) ⋅nN N  of all involved refraction vectors n  can 
be obtained from the dispersion equations ( )2

1 1ε ω=n  and ( ) ( )2
2 2 2ε ω µ ω=n , 

respectively  

( ) ( ) ( ), 2 , 2
1 1 2 2 2, .i r i rε ω ε ω µ ω= ± − = ± −n N n n N n      (11.2) 

Furthermore, in Figure 5 two case of polarizations are possible, with the elec-
tric field polarized in the incidence plane spanned by vectors N  and n  and 
perpendicular to it. The discussion of the amplitude relations for the involved 
wave is not necessary here for the intended purpose. 

12. Conclusion 

We compared two concepts of representing the constitutive equations in classic-
al macroscopic optics of homogeneous anisotropic media, first the more general 
concept of spatial dispersion and then the more special concept of bi-anisotropic 
media with two constitutive equations for the electric and the magnetic induc-
tion and made this in coordinate-invariant way. Then this was specialized to 
uniaxial and, finally, to isotropic media where a possible equation for quasi- 
plane and quasi-monochromatic beam propagation in approximation with the 
first two terms of an expansion of the slowly varying beam amplitudes with re-
spect to derivatives in space and time was derived taking into account diffrac-
tion. This was then applied for the isotropic case to the polariton permittivity 
(9.1) with a detailed discussion of the passive and the active case. The active case 
is obtained from the passive case by changing a sign in the susceptibility and de-
scribes amplification in certain regions of the frequency that somehow goes 
connected with feedback in resonators in direction of (a prestep of) laser action 
in the stationary regime. Losses in form of imaginary parts in the permittivity, 
we did not include for more simplicity and calculability of the formulae. 

When we calculated the group velocity for beams in the active case we found 
as a surprise for some regions of frequency the possibility of velocities faster than 
the light velocity in vacuum and as a yet greater surprise the possibility of an 
opposite direction to the direction of the wave vectors (but different signs with 
and without taking into account dispersion). A certain physical explanation is 
possibly by the preparation of occupation inversion in establishing the active 
case and therefore a correlation between all parts of the medium which is not 
contained in the equations. We found after this that it is not fully unknown from 
literature. We have to think furthermore about these phenomena and have to 
find access to more literature about this. 

In the process of working with the topics into our viewpoint came also the no-
tion of “negative refraction” but we could not find some positive aspects and the 
possibility of its realization in isotropic media and make a few remarks to this in 
the text and in Appendix D. 

Primarily, I intended to include also such peculiar cases as inhomogeneous 
waves (for example, total reflection) and, in particular, the cases of optic axes 
with calculation of the two-dimensional projection operators for the electric 
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field and the conical approximation of the dispersion surface in the neighbor-
hood of optic axes in coordinate-invariant treatment. However, for extent and 
necessary time hoping to realize it we move this to a possible later time. 
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Appendix A. Some Important Relations for  
Three-Dimensional Operators 

The most important relation for general three-dimensional operators A  is the 
Cayley-Hamilton identity  

[ ]3 2 0,− + − =A A A A A A I                    (A.1) 

with the invariants with respect to similarity transformations which are the trace 
j
jA≡A , the second invariant [ ]A  and the determinant A  according to (for 

spaces with metric tensor ij jig g=  we may set j
ik ij kA g A≡ )  

[ ] ( ) ( )2 32 2 31 1, , 3 2 .
2 6iiA≡ ≡ − ≡ − +A A A A A A A A A  (A.2) 

As consequence of the Cayley-Hamilton identity the inverse operator to an 
arbitrary operator A  can be represented by  

[ ]1 2, , ,− ≡ ≡ − + ⇒ = =
AA A A A A A I AA AA A I
A

       (A.3) 

where A  is the so-called complementary (or associated) operator to A . The 
invariants of this operator are  

[ ] 2, , , = = = A A A A A A A                (A.4) 

and it possesses the properties  

[ ] ( ) ( )2 , .= + − ≡ =
AA A A A A A I A A
A

             (A.5) 

All relations in (A.3), (A.4) and (A.5) are general relations for arbitrary 
three-dimensional operators A . 

For the invariants of the sum of two operators A  and B  one derives the 
following identities (the complementary operators A  to operator A  we de-
fine later)  

[ ] [ ] [ ]
,

,

.

+ = +

+ = + − +

+ = + + +

A B A B
A B A A B AB B

A B A AB AB B

                (A.6) 

Special cases are β=B I   

[ ] [ ]
[ ]

2

2 3

3 ,

2 3 ,

.

β β

β β β

β β β β

+ = +

+ = + +

+ = + + +

A I A
A I A A
A I A A A

                (A.7) 

The complementary operator of the sum of two operators is  

( ) ( ) .+ ≡ + + + − + + −A B A AB BA B B A A B A B AB I      (A.8) 

The projection operator Π  for determination of eigenvectors of an operator 
A  to non-degenerate eigenvalue α  is  

( ) [ ]( )
[ ]

2 2
2

2 , .
2 3

α α αα
α αα

− − + − +−
Π = = Π = Π

− +−

A A A A A IA I
A AA I

   (A.9) 
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For the differentiation of a determinant A  of an operator A  with respect 
to a parameter λ  we find from (A.2) and (A.3) the identity  

1 ,
2λ λ λ

∂ ∂ ∂
= =

∂ ∂ ∂
A A AA A                   (A.10) 

where the complementary operator A  to operator A  is defined in (A.3). 

Appendix B. Identities for Vector and Volume Products in  
Connection with Operators 

We derive here mathematical identities for volume and vector products in con-
nection with operators which are almost unknown or less known in case that 
they are already somewhere published. A part of them is used in the main text of 
our considerations. 

We consider the volume product [ ], ,x y z  of three vectors , ,x y z  and apply 
now to each vector the same operator A  that means we consider the volume 
product [ ], ,x y zA A A . Due to complete antisymmetry of the volume product 
with respect to permutations of neighbored vectors the volume product  
[ ], ,x y zA A A  is proportional to the volume product [ ], ,x y z  with a proportio-
nality factor which we denote by A  and call the determinant of A  that 
means  

[ ] [ ], , , , .=x y z x y zA A A A                     (B.1) 

One may convince oneself that this is really a good possibility to define the 
determinant of a three-dimensional operator. Now we write the chain of identi-
ties for a general volume product  

[ ] [ ] [ ] [ ] [ ], , , , , , , ,= = = =x y z x y z x y z x y z x y zA A A A A A A A AA     (B.2) 

where we substituted the determinant A  according to → =A A I AA  with 
A  the complementary operator to A  (see also (A.3)). Since z  is an arbi-
trary vector we may omit zA  in the identity (B.2) and obtain the identity for 
vector products  

[ ] [ ] [ ] [ ], , , , , .= ⇔ =x y x y x y x yA A A A A A A            (B.3) 

From this also follows almost immediately  

[ ]( ) [ ] ( )( ), , , , .  = = ≡ = x y x y x yA A A A A A A A A         (B.4) 

If we let act the operator A  onto vectors , ,  x y z  to the left then from  

[ ] [ ], , , , ,=    x y z x y zA A A A                    (B.5) 

follows in analogous way  

[ ] [ ] [ ] [ ], , , , , .= ⇔ =       x y x y x y x yA A A A A A A           (B.6) 

If we substitute in (B.1) according to α→ −A A I  with arbitrary scalar α  
and use for determinants  

[ ] 2 3 ,α α α α− = − + −A I A A A                 (B.7) 

then by collecting on both sides of the obtained identity the terms to equal pow-
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ers of α  we find in addition to (B.1) two further identities of the form  

[ ] [ ] [ ] [ ][ ]
[ ] [ ] [ ] [ ]

, , , , , , , , ,

, , , , , , , , .

+ + =

+ + =

x y z x y z x y z x y z

x y z x y z x y z x y z

A A A A A A A
A A A A A

         (B.8) 

If we remove from (B.8) the vector z  or make the substitution α→ −A A I  
in the identity (B.3) using  

( ) 2 ,α α α− = − − +A I A A I A I                  (B.9) 

and collect all terms on both sides to equal powers of α  we find in addition to 
(B.3) the identities  

[ ] [ ] [ ]( ) [ ][ ]
[ ] [ ] [ ] [ ]

, , , , ,

, , , , ,

+ + =

+ + =

x y x y x y x y

x y x y x y x y

A A A A A A
A A A A

           (B.10) 

or equivalently to the last  

[ ] [ ] [ ]( ), , , .+ = −x y x y x yA A A I A              (B.11) 

All these mathematical identities may be also derived by means of the Le-
vi-Civita pseudo-tensors. It is also clear that analogous identities can be derived 
for the action of operators onto the vectors to the left similar to (B.4) and (B.5) 
which we do not write down here. 

We make a short remark to vector and volume products. It is very convenient 
to define [ ]y  as an antisymmetric covariant second-rank pseudo-tensor to the 
contravariant vector y . Then one can use identities for vector and volume 
products by displacement of the squared brackets such as10 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

, , , ,

, , , , .

= =

= = =

y z y z x y x y

x y z x y z x y z x y z
             (B.12) 

The second line written with contra- and covariant indices and with the Le-
vi-Civity pseudo-tensor jklε  written is for example  

[ ] ( ) [ ] [ ] [ ], , , , ,j k l j k l j l j l
jkl jkl jl j lx y z x y z x z x zε ε= = = = =x y z y y z x y   (B.13) 

and [ ] k
jkljl yε≡y  is the antisymmetric pseudo-tensor to vector ky . An “anti-

symmetric” operator [ ]ily  which transforms vectors (or pseudo-vectors, de-
pending on the kind of y ) can be made from [ ] jky  only for Euclidean or 
pseudo-Euclidean spaces which possess a symmetrical metric tensor  

( ), ij i
jk kj jk kg g g g δ= =  by [ ] [ ]i ij

l jlg≡y y . With all this which may be pre-
sented in more precise form I made good experience for a long period of scien-
tific work. 

Appendix C. Algebra to a Special Operator for Bi-Anisotropic  
Media 

We consider the algebra to the following three-dimensional operator L  which 

 

 

10This is likely also the intention when Fyodorov writes instead of my [ ]y  the form ×y  with the 

consequence for the vector product “ [ ] ×=yz y z ” (similar to “ ×y z ” (Gibbs); besides, F. writes vec-

tor products also with squared brackets but without a comma between the vectors) however, with 
the disadvantage that it works only to the right onto vectors.  
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we need to obtain, in particular, to the calculation of the determinant of the op-
erator for a general bi-anisotropic medium  

( )
,

⋅ −
≡ + ≡ +

 x x x xA A A A
L B M B

A
               (C.1) 

where A  and B  are general three-dimensional operators. It is a little more 
general than we need it since, in principal, we use in the main text only the spe-
cial case of equality =x x  of the vectors x  and x . With M  we abbreviate 
the operator  

( )
.

⋅ −
≡

 x x x xA A A A
M

A
                   (C.2) 

The determinant L  of the operator L  can be calculated by  

,= + + +L M MB MB B                   (C.3) 

where overlining an operator means the transition to the complementary opera-
tor (see Section 2). This formula is known [9] [10] and surely some others and is 
easily to obtain by coordinate-invariant calculation. Thus we have first to con-
sider some algebra of the more complicate part M  in (C.1). 

First we have to calculate the powers 2M  and 3M  and their traces that is 
straightforward to make and that we do not write down. In particular, we find 
for the invariants of M   

[ ] ( )

2

,

,

0,

−
=

=

=

 

 

x x x x

x x xx

A A A
M

A
A

M
A

M

                   (C.4) 

that means the determinant of M  is vanishing which simplifies the application 
of the formula (C.3). That the determinant M  is vanishing follows also be-
cause the operator M  possesses the eigenvalue 0µ =  to right-hand eigen-
vector x  and to left-hand eigenvector x . For the complementary operator 
M  to M  using (A.3) we find then  

( ) [ ] ( )
, ,

⋅
= = =
   x x x x x x xxA A

M M M
A A

            (C.5) 

and, furthermore, it is easy to check  

0.= = =MM MM M I                     (C.6) 

Now, according to the formula (C.3) with the explicit form (C.5) of M  and 
0=M  we find  

( )( ) ( )

( )( ) ( )
.

− + +
=

− − +
=

   

  

x x x x x x x x

x x x x x x

A B AB A ABA A B
L

A

A B AB A ABA AB
A

        (C.7) 
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This agrees with the unessentially more special results of Fyodorov [9] (Equa-
tions (36.9), (36.10)) which, however, were calculated for the operator 1−B L  (in 
our notation) from multiple vector products which brings an additional factor 
B  into the denominator of (C.7) but since he applies this immediately to the 

wave equation for which the determinant has to vanish he can omit this factor 
AB  in the denominator in Equation (36.10). The numerator in (C.7) is sym-

metric with respect to permutation of the operators A B . This can be achieved 
using a general operator identity from which results the following equivalent re-
presentation  

( )( ) [ ] [ ] [ ] [ ][ ]( )( )
,

− + − − + − +
=
  x x x x x xA B AB BA AB I A B B A A B I AB

L
A

(C.8) 

which though a little longer in the numerator but shows this property. The men-
tioned operator identity is  

[ ] ( )

( ) [ ]

2

2 ,

= + + − − +

+ − +

A B ABAB AB A BABA B ABA AB AB BA

AB B AB A AB I
      (C.9) 

and can be derived from a more general operator identity with 3 operators A , 1 
operator B  and 1 operator C  in each sum term and in symmetric way which 
generalizes the Cayley-Hamilton identity by substitutions and specialization 
=C B . A derivation by means of the Levi-Civita pseudo-tensors is also possible. 

Since it is long we do not derive it here but hope to find opportunity to do this in 
future. Finally, we give here the other two invariants of L  which are  

( )

[ ]
( )( ) ( )( ) [ ]

2

2

,

,

− +
=

− − + − +
=

 

    

x x x x

x x xx x x x x x x

A A A A B
L

A

A ABA B A A B AB A A B
L

A

 (C.10) 

which are not symmetric in A  and B  and the complementary operator to L  
is  

( ) ( ){

( ) ( )
( )( ) } [ ]

2

2

1

, .

= ⋅ + ⋅ + ⋅ − +

− ⋅ + + −

− − + − + =

    

  

  

x x x x x x x x x x

x x x x x x

x x x x x x

L A A AB BA A A AB BA
A

B A A A B A A B A B

ABA B A A B AB A I B L L

  (C.11) 

Appendix D. Is the Notion “Negative Refraction” Useful in  
Geometric and Wave Optics? 

In connection with the paper of Pendry [22] and the mass of reactions to it I will 
express here also my thoughts though I did not follow this development from 
the beginning and cannot exclude that similar thoughts are already discussed in 
literature. 

In wave optics in the treatment of beams we have a mean value 0k  of the 
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wave vector and a mean value 0ω  of the frequency and both together with the 
complex conjugate part but well separated are involved in the main factors 

( )0 0ie tω± −k r . From the wave vector one may form the refraction vector n  by the 
definition  

2 2, , ,
c c
ω ω

≡ = ⇒ = =
n nk n n n k n k
n n

           (D.1) 

where both signs of n  (refraction index; in general it is complex) can be cho-
sen without something changing at the wave. Only the direction described by the  

unit vector n
n

 in connection with the product =
nk k
n

 is invariant but not  

one of the two factors alone. If one change the sign of only one factor then one 
describes a wave propagating in the opposite direction and for isotropic media 
in no other than of these directions. 

The second important fact is that under reflection and refraction of a beam at 
a surface a=Nr  with the normal unit vector N  the tangential components 

[ ], ≡  k N k N  of all coupled wave vectors k   

[ ] ( )2, , , 1 , = + ⋅ ≡ + ⋅ = k N k N kN N k kN N N         (D.2) 

in both media have to be the same and only the normal components ( )kN N  
can be different with both possible signs and the same is true for the refraction 
vectors n . Even both signs of the normal component of the wave vector in the 
second medium are possible one as the refracted beam from the incident beam 
in the first medium and the second as an incident beam in the second medium 
which generates the refracted beam in the first medium which is identical in its 
direction with the reflected beam from the incident beam in the first medium. 
Both these beams possess a group velocity for isotropic media in the same direc-
tion as the wave vector independent on positive or negative signs of the electric 
permittivity and the magnetic permeability and whether or not the wave vectors 
are real or complex quantities. This excludes the possibility of refraction as 
drawn in Figure 1 in [22]. Only in case that the group velocity is in opposite di-
rection to the wave or refraction vector in second medium we have in our Fig-
ure 5 a right-hand picture which is somehow similar to mentioned of Pendry. 
This, however, is not connected with negative ( )ε ω  and ( )µ ω  but merely 
with an active medium with all its problems as discussed (e.g., super-luminal 
velocities, super-diffraction of beams) and is hardly realizable. The situation 
changes but not basically if the medium is anisotropic and, obviously, this is not 
meant. 

Wave vectors and equally refraction vectors possess only a modulus and a 
certain direction in space but not a certain sign of each separately and the notion 
in the heading seems to me not being really useful. 
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