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Abstract 
The quantum mechanics of bound states with discrete energy levels is well un-
derstood. The quantum mechanics of scattering processes is also well unders-
tood. However, the quantum mechanics of moving bound states is still debata-
ble. When it is at rest, the space-like separation between the constituent par-
ticles is the primary variable. When the bound state moves, this space-like se-
paration picks up the time-like separation. The time-separation is not a mea-
surable variable in the present form of quantum mechanics. The only way to 
deal with this un-observable variable is to treat it statistically. This leads to rise 
of the statistical variables such entropy and temperature. Paul A. M. Dirac 
made efforts to construct bound-state wave functions in Einstein’s Lorentz- 
covariant world. In 1927, he noted that the c-number time-energy relation 
should be incorporated in the relativistic world. In 1945, he constructed four- 
dimensional oscillator wave functions with one time coordinate in addition to 
the three-dimensional space. In 1949, Dirac introduced the light-cone coordi-
nate system for Lorentz transformations. It is then possible to integrate these 
contributions made by Dirac to construct the Lorentz-covariant harmonic os-
cillator wave functions. This oscillator system can explain the proton as a 
bound state of the quarks when it is at rest, and explain the Feynman’s parton 
picture when it moves with a speed close to that of light. While the un-mea- 
surable time-like separation becomes equal to the space-like separation at this 
speed, the statistical variables become prominent. The entropy and the temper-
ature of this covariant harmonic oscillator are calculated. It is shown that they 
rise rapidly as the proton speed approaches that of light.  
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1. Introduction 

Let us start with Figure 1. During the early years of the 20-th Century, Niels 
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Bohr was worrying about the electron orbit of the hydrogen atom, while Albert 
Einstein was interested in how things appear to moving observers. Bohr’s con-
cern led to the present form of quantum mechanics where the hydrogen atom is 
a standing wave localized within a finite region. Einstein formulated his special 
theory of relativity based on the Lorentzian geometry of space and time applica-
ble to Maxwell’s theory of electromagnetism. 

It is known that Bohr and Einstein met occasionally to discuss physics. How-
ever, there are no written records to indicate that they ever discussed how mov-
ing hydrogen atoms appear to a stationary observer. If they did not discuss this 
problem, it is understandable because there are no observable hydrogen atoms 
moving with relativistic speeds. Yet, this Bohr-Einstein issue defines an impor-
tant problem in quantum mechanics. The bound state in quantum mechanics 
with discrete energy levels is well understood. However, how would those energy 
levels appear to moving observers? What will happen to the size of the bound 
state? Indeed, the Bohr-Einstein issue of the hydrogen atom leads to the problem 
of moving quantum bound states in Einstein’s Lorentz-covariant world. 

There are a number of key questions on the moving bound state. In the Lo-
rentz-covariant world, the time variable is linearly mixed with the longitudinal 
coordinate. There is also the time-energy uncertainty relation. How is this rela-
tion mixed with Heisenberg’s uncertainty for momentum and space? Paul A. M. 
Dirac raised these questions in 1927, and attempted to find a solution using 
harmonic oscillator wave functions in 1945. In addition, in 1949, he introduced 
the light-cone coordinate system for squeeze transformations in the two-dimensional 
space of the time and longitudinal coordinate. 

The Bohr radius is a spatial separation between the proton and electron in the 
hydrogen atom. If this atom is boosted, this spatial separation picks up its time- 
like component. However, this time-like separation is not included in the present 
form of quantum mechanics. On the other hand, it is still possible to regard this 
time separation as an un-observable variable and treat it statistically, using the 
density matrix [1]-[11]. Then, there comes the question of entropy and temper-
ature from this statistical treatment. 
 

 

Figure 1. Niels Bohr and Albert Einstein with the hydrogen atom. One hundred years 
ago, Bohr was worrying about why the radius of the electron in the hydrogen atom orbit 
cannot be smaller than the finite value known today as the Bohr radius. Einstein was in-
terested in how things appear to moving observers. Then, how would the hydrogen atom 
appear to moving observers? This question defines the subject of quantum mechanics of 
bound states in the Lorentz-covariant world. 
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While there are no observable hydrogen atoms, these days, high-energy acce-
lerator produce protons moving with speeds close to that of light. Furthermore, 
thanks to Gell-Mann’s quark model [12], the proton was found to be a quantum 
bound state just like the hydrogen atom. Its constituents are the quarks. Since 
the proton and hydrogen atom share the same bound-state quantum mechanics, 
it is possible to study moving hydrogen atoms by looking at moving protons. 

In 1969, Feynman observed that the ultra-fast proton appears like a collection 
of an infinite-number of free particles with a wide-spread momentum distribu-
tion [13] [14] [15]. Feynman called them partons. The question then is whether 
Gell-Mann’s quarks and Feynman’s partons are two different ways of observing 
the same entity. Indeed, the problem of moving hydrogen atom becomes the 
quark-parton puzzle. The Bohr-Einstein issue of moving hydrogen atom can be 
addressed in terms of the quark-parton puzzle of Gell-Mann and Feynman, as 
illustrated in Figure 2. 

In this paper, we review first efforts made in the past to resolve this quark-parton 
issue [16] [17], using the Lorentz-covariant oscillator wave function. We then 
use the same wave function to study the problem arising from the un-observable 
time-separation variable. 

Paul A. M. Dirac made his lifelong efforts to construct a localized wave func-
tion in Einstein’s Lorentz-covariant world. For this purpose, Dirac published  
 

 

Figure 2. Bohr and Einstein, and then Gell-Mann and Feynman. Did Bohr and Einstein 
discuss how the hydrogen appears to moving observers? We do not know. After 1950, 
with particle accelerators, the physics world started producing protons with relativistic 
speeds. Furthermore, the proton became a quantum bound state of the quarks like the 
hydrogen atom. The problem of fast-moving hydrogen atoms became the problem of 
protons moving with relativistic speeds. How would the proton appear when it moves 
with a speed close to that of light? This quark-parton puzzle addresses the Bohr-Einstein 
issue of moving hydrogen atom. 
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four important papers [18] [19] [20] [21]. By integrating the first three of these 
four papers, it is possible to construct the harmonic oscillator wave functions 
which can be Lorentz-transformed [22] [23] [24]. 

In order to carry out this integration, we need the mathematical instrument 
constructed by Eugene P. Wigner in his 1939 paper on the inhomogeneous Lo-
rentz group [25]. In his paper, Wigner pointed out a particle in the Lorentz- 
covariant world has its four-momentum. In addition, this particle has internal 
space-time symmetries. 

Thus in Section 2, we review the aspects of Wigner’s paper applicable to the 
internal space-time symmetries in Einstein’s Lorentz-covariant world. 

In Section 3, we list the first three papers Dirac published from 1927 to 1945 
[18] [19] [20], and integrate them. The result is a harmonic oscillator wave func-
tion which can be Lorentz-boosted. The time-separation variable plays a promi-
nent role in this Lorentz-covariant wave function. 

In Section 4, we examine Feynman’s attempts to construct Lorentz-covariant 
oscillator wave function starting from a Lorentz-invariant wave equation [26]. 
Let us consider a hadron (bound state of the quarks) consisting of two quarks. 
This hadron has two space-time coordinate systems. One is for the hadron 
moving freely, and the other is for the motion of quarks inside the hadron. For 
the hadronic coordinate, the Klein-Gordon equation and it solutions are appli-
cable. For the internal coordinate, we can use the harmonic oscillator wave func-
tions constructed from the integration of Dirac’s three papers discussed in Sec-
tion 3. 

In Section 5, this covariant harmonic oscillator is applied to the physics of ha-
drons. This wave function allows us to Lorentz-boost the hadron at rest to its 
speed very close to that of light. The hadron at rest is like a quantum bound state 
like the hydrogen atom according to Gell-Mann’s quark model [12]. However, 
the same hadron appears like a collection of free massless particles called partons. 
This aspect is called Feynman’s parton picture of the hadron [13] [14] [15]. The 
question then is whether the quarks and partons are two different ways of look-
ing at the same entity. We resolve this issue using the Lorentz-covariant oscilla-
tor wave functions constructed in Sections 3 and 4. This Lorentz-covariant wave 
function depends on the time-separation variable which becomes more promi-
nent as the hadron gains its speed. 

In Section 6, it is noted that there is a time-separation variable between the 
quarks. This variable becomes more prominent when the hadron becomes faster. 
This time-separation is not a measurable dynamical variable in the present form 
of quantum mechanics. However, the density matrix tells us how to deal with 
this unobservable variable. It allows us to translate our inability to measure this 
variable into entropy and temperature. This problem was discussed in the lite-
rature [27] [28]. It is shown there that the hadron, when Lorentz boosted, expe-
riences the rise in entropy and also the rise in temperature. It is possible to cal-
culate them as functions of the hadronic speed using the density matrix. 
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2. Wigner’s Little Groups for Internal Space-Time  
Symmetries 

In 1939, Eugene Paul Wigner published his paper entitled On unitary represen-
tations of the inhomogeneous Lorentz group [25]. In this paper, Wigner spells 
out the internal space-time symmetries of particles in the Lorentz-covariant 
world [22]. Let us consider a particle in this world. It has its four-momentum. If 
this particle is at rest, it has its rotational degree of freedom. If its spin is 1/2, the 
symmetry group is SU(2) like (locally isomorphic to) O(3) (three-dimensional 
rotation group). If its spin is one, its symmetry group is O(3). This aspect is well 
known. 

Massless particles cannot be brought to their rest frames. According to Wign-
er [25], the little group for the massless particle is like E(2) or the two-dimensional 
Euclidean group, with one rotational degree of freedom plus two translational 
degrees of freedom. The rotational degree of freedom can easily be identified 
with the helicity of the massless particle. However, the two translational degrees 
have a stormy history until 1987, when Kim and Wigner noted that the E(2) 
group is like the cylindrical group where both the translations perform up-down 
translations on the cylindrical surface. This allows us to identify this up-down 
translation as with the gauge transformation [29]. 

In the Lorentz-covariant world, Einstein’s momentum-energy relation is ap-
plicable to both massive and massless particles, as shown in Table 1. When the 
massive particle is Lorentz-boosted, its energy-momentum becomes that of the 
massless particle when its speed becomes very close to that of light. 

We are thus led to the question of whether there exists one little group which 
can be the O(3)-like group when the particle is at rest and the E(2)-like cylin-
drical group when the particle moves with the speed very close to that of light. 

Let us outline the procedure in which the O(3) symmetry becomes that of the 
cylindrical group. The three-dimensional rotation group is generated by  

, , ,x y zL i y z L i z x L i x y
z y x z y x

   ∂ ∂ ∂ ∂ ∂ ∂ = − − = − − = − −    ∂ ∂ ∂ ∂ ∂ ∂    
  (1) 

 
Table 1. Lorentz covariance of particles with internal space-time symmetries. The first row 
tells that Einstein’s energy relation is applicable to both massive and massless particles. 
Likewise, the second row is Wigner’s little groups. They are like O(3) for massive particles, 
and are like E(2) for massless particles, where E(2) means the two-decisional Euclidean 
group which is isomorphic to the cylindrical group. 

 Massive, Slow COVARIANCE Massless, Fast 

Energy-Momentum 2 2E p m=  
Einstein’s 

( ) ( )22 2E cp mc= +  
E cp=  

Internal 
Space-time 
Symmetry 

3S  

1 2,S S  
Wigner’s 

Little Groups 

3S  
Gauge 

Transformation 
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satisfying the commutation relations 

[ ], , , , , .x y z y z x z x yL L iL L L iL L L iL   = = =               (2) 

Let us go to Figure 3. The circle in this figure illustrates the O(3)-like little 
group for the massive particle at rest. 

If it is boosted along the z-direction, the z coordinate picks up the time-like 
component, and the geometry is four-dimensional. While this geometry is de-
scribed in detail in the 1987 paper of Kim and Wigner [29], we give here a sim-
plified version. 

When the particle is boosted along the z direction, the z component of this 
circle becomes expanded. If the speed becomes close to that of light, the sphere 
becomes a cylinder, as indicated in Figure 3. 

On the surface of this cylinder, there are no variations of the x and y compo-
nents, and thus  

, ,x y y xL P i y L P i x
z z
∂ ∂   → = − → − =   ∂ ∂   

             (3) 

and zL  remains unchanged. Both xP  and yP  generate translations along the z 
direction. These new operators satisfy the commutation relations  

[ ], 0, , , , .x y z x y z y xP P L P iP L L iP   = = = −                 (4) 

It is appropriate to call the group generated by these three operators the cy-
lindrical group. 

This set of commutation relation identical with that for E(2) or the two- 
dimensional Euclidean group with zL  as the generator of rotations and xP  and 

yP  as the generators of translations along the x and y directions respectively. 
The translation generators take the form  
 

 

Figure 3. Lorentz covariance of the internal space-time symmetry. The symmetry is like 
O(3) or a sphere when the particle is at rest. This sphere becomes elongated when the 
particle gains speed along the z direction. It becomes a cylinder when the speed ap-
proaches the speed of light. The rotational degree of freedom of this cylinder corresponds 
to the helicity of the massless particle, and up-down translation leads to the gauge degree 
of freedom. 

https://doi.org/10.4236/jmp.2022.132012


Y. S. Kim 
 

 

DOI: 10.4236/jmp.2022.132012 144 Journal of Modern Physics 
 

, .x yP i P i
x y
∂ ∂

= − = −
∂ ∂

                     (5) 

Thus, the cylindrical group is like (locally isomorphic to) the E(2) group. In 
Wigner’s original paper, the little group for massless particles is like the E(2) 
group. The E(2) group can now replaced with the cylindrical group [29] [30]. 

Let us go back to Figure 3. We would expect the sphere, when Lorentz-boosted, 
becomes contracted like a pancake according to Einstein’s space contraction. 
However, this figure shows the opposite effect. The Lorentzian geometry is four- 
dimensional and the time-like direction should also be included. In this geome-
try, the Lorentz boost leads to both pancake-like contraction and football-like 
elongation. The contraction produces the E(2) geometry and the elongation pro-
duces the cylindrical geometry as shown in Figure 3. The cylindrical geometry 
leads to the correct interpretation of the internal space-time symmetry of mass-
less particles. 

3. Dirac’s Efforts to Construct Relativistic Quantum  
Mechanics 

Paul A. M. Dirac made his lifelong effort to formulate quantum mechanics con-
sistent with Einstein’s special relativity. The Dirac equation of electrons and po-
sitrons is a case in point. This equation is well known. 

In addition, he made efforts to formulate a mathematical device to deal loca-
lized quantum distributions, such as the hydrogen atom, in Einstein’s Lorentz- 
covariant world. For this purpose, he published the following four papers. 

1) In 1927, Dirac pointed out that the time-energy uncertainty should be con-
sidered if the system is to be Lorentz-covariant [18]. 

2) In 1945, Dirac said the Gaussian form could serve as a representation of the 
Lorentz group [19]. 

3) In 1949, when Dirac introduced both his instant form of quantum me-
chanics and his light-cone coordinate system [20], he clearly stated that finding a 
representation of the inhomogeneous Lorentz group was the task of Lorentz- 
covariant quantum mechanics. 

4) In 1963, Dirac used the symmetry of two coupled oscillators to construct 
the ( )3,2O  de Sitter group, namely the Lorentz group applicable to the three- 
dimensional ( ), ,x y z  space plus two time variables [21]. This paper serves as a 
prelude to the synthesis of quantum mechanics and special relativity [24] [31] 
[32]. 

Dirac’s papers are poetic, mathematically transparent, and easy to understand. 
This does not necessarily mean that there is nothing to add to his papers. His 
papers do not have figures. Thus it is profitable to translate his poems into fig-
ures and illustrations. Each of the above four papers is independent. Thus it is 
profitable to connect his 1945 paper to his early paper of 1927, and his 1949 pa-
per to his earlier papers of 1927 and 1945. Furthermore, Eugene Wigner was his 
brother-in-law. Wigner published an important paper is 1939 providing the 

https://doi.org/10.4236/jmp.2022.132012


Y. S. Kim 
 

 

DOI: 10.4236/jmp.2022.132012 145 Journal of Modern Physics 
 

mathematical tool for Dirac’s problems, but he never used Wigner’s mathemat-
ics in any meaningful ways. 

Let us consider what we can add to his papers in order to construct quantum 
mechanics valid in Einstein’s Lorentz-covariant world. We are particularly in-
terested in how to Lorentz-boost localized wave functions. 

3.1. Dirac’s C-Number Time-Energy Uncertainty Relation 

In 1972 [33], Eugene Paul Wigner drew attention to the fact that time-energy 
uncertainty relation, known from the transition time and line broadening in 
atomic spectroscopy, existed before 1927 when Heisenberg formulated his un-
certainty principle. 

In 1927 [18], Dirac studied the uncertainty relation which was applicable to 
the time and energy variables. When the uncertainty relation was formulated by 
Heisenberg for the position and momentum variables, Dirac considered the pos-
sibility of whether a Lorentz-covariant uncertainty relation could be formulated 
with these two uncertainty relations [18]. 

Dirac then noted that the time variable is a c-number and thus there are no 
excitations along the time-like direction. However, there are excitations along 
the space-like longitudinal direction starting from the position-momentum un-
certainty. Since the space and time coordinates are mixed up for moving observ-
ers, Dirac wondered how this space-time asymmetry could be made consistent 
with Lorentz covariance. This was indeed a major difficulty for him. 

However this difficulty does not exist. Wigner’s little group for massive par-
ticles at rest is the three-dimensional rotation group, without time-dependence. 
The concept of the little group did not exist in 1927. 

3.2. Dirac’s Four-Dimensional Oscillators 

Since the language of special relativity is the Lorentz group, and harmonic oscil-
lators provide a starting point for the present form of quantum mechanics, Dirac 
considered the possibility of using harmonic oscillator wave functions to con-
struct representations of the Lorentz group [19]. 

Thus in his 1945 paper [19], Dirac considers the Gaussian form  

2 2 2 21exp .
2

x y z t  − + + +   
                    (6) 

The x and y variables can be dropped from this expression, as we are consi-
dering a Lorentz boost only along the z direction. We can thus write the above 
equation as:  

2 21exp .
2

z t  − +   
                        (7) 

Since ( )2 2z t−  is a Lorentz-invariant quantity, this expression may seem 
strange for those who believe in Lorentz invariance [26], but it is normalizable in 
the t variable, and accommodates the time-energy uncertainty relation. This non- 
invariant form will change when it is boosted along the z direction. 
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However, there are no excitations along the time-like direction. This space-time 
asymmetry was noted in Dirac’s own paper of 1927 [18]. This asymmetry prob-
lem was resolved by Wigner’s O(3)-like little group for massive particles dis-
cussed in Section 2. Without time-like excitations, the oscillator wave function 
should take the form  

( ) ( )
1 2 221, exp ,

2!2
n

nn

z tz t H z
n

ψ
  + = −         π 

            (8) 

for the n-th excited state, where ( )nH z  is the Hermite polynomial for excita-
tions along the z direction. This expression does not contain the Hermite poly-
nomial in the t variable. 

Since the localization of this wave function is dominated by the Gaussian form, 
let us concentrate our efforts on the ground state. For this ground state, this 
wave function become  

( )
2 21 21, exp .

2
z tz tψ

  + = −       π 
                  (9) 

This corresponds to the circular distribution in Figure 4. Since the form is not 
Lorentz-invariant, the circle in Figure 4 will appear differently to moving ob-
servers. This question was addressed in Dirac’s 1949 paper [20]. 
 

 

Figure 4. Integration of Dirac’s three papers [18] [19] [20]. In 1927, Dirac noted there 
exists the time-energy uncertainty, in addition to Heisenberg’s position-momentum rela-
tion [18]. He attempted to combine them with a Gaussian form in 1945 [19]. In 1949, Di-
rac noted that the Lorentz boost squeezes space-time along the light cones. This allows us 
to synthesize the circle and rectangle to an ellipse for the moving oscillator. This figure 
provides the resolution to the Bohr-Einstein issue of the moving hydrogen atom. The re-
maining question is whether we can observe this effect in laboratories. 
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3.3. Forms of Relativistic Dynamics 

In 1949, the Reviews of Modern Physics celebrated Einstein’s 70th birthday by 
publishing a special issue. This issue included Dirac’s paper entitled Forms of 
Relativistic Dynamics [20]. There, Dirac introduced his light-cone coordinate 
system. In this system a Lorentz boost is seen to be a squeeze transformation, 
where one light-cone axis expands while the other contracts in such a way that 
their product remains invariant as shown in Figure 4. 

Also in this 1949 paper [20], Dirac introduced his instant form of relativistic 
quantum mechanics. This has the condition  

0 0.x ≈                            (10) 

What did his approximate equality mean? We can interpret this as his c-number 
nature of the time-energy uncertainty relation which he discussed in his 1927 
paper [18]. In the language of harmonic oscillators [19], there are no excited 
states along the time axis, as is shown in Equation (8). 

In the same 1949 paper, Dirac introduced the light-cone coordinate system. 
Starting from the formula’s for the Lorentz boost along the z direction:  

( ) ( )
( ) ( )

cosh sinh
.

sinh cosh
z z
t t

η η
η η

′     
=     ′    

                (11) 

Dirac defined his light-cone variables as [20]  

, .
2 2

z t z tu v+ −
= =                      (12) 

Then the Lorentz boost of Equation (11) becomes diagonal:  

e 0
.

0 e
u u
v v

η

η−

′     
=     ′    

                    (13) 

It is then apparent that u variable becomes expanded, but the v variable be-
comes contracted. This aspect was illustrated also in Figure 4. The product then 
becomes  

( )( ) ( )2 21 1
2 2

uv u v z t z t z t′ ′= = + − = −                (14) 

which remains invariant. The Lorentz boost is therefore a squeeze transforma-
tion, and the Gaussian form of Equation (9) is transformed to.  

( ) ( ) ( )2 22 2
1 21 1, exp e e .

4
z t z t z tη η

ηψ
−    = − + + −       π

       (15) 

This is of course the elliptic distribution as noted in Figure 4. 
In addition, in his 1949 paper [20], Dirac stated that the task of constructing 

relativistic quantum mechanics is that of constructing a representation of the 
inhomogeneous Lorentz group, which is also known as the Poincaré group [22]. 
This group has ten generators for three rotations, three Lorentz boosts, and four 
space-time translations. 

It is well known that the present form of quantum field theory based on the 
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scattering matrix is a representation of the Poincaré group. The question is 
whether it is possible to formulate the bound state problem as a representation 
of the same group. 

It is now clear that Dirac was interested in using harmonic oscillators to con-
struct a representation of the inhomogeneous Lorentz group [22]. Figure 5 in-
dicates that the integration of Dirac’s first three papers [18] [19] [20] lead to a 
representation of Wigner’s O(3)-like little group for the massive particle. Since it 
is well known that quantum field theory is a representation of the inhomogene-
ous Lorentz group, both the field theory and the oscillator formalism are two 
different representations of the same inhomogeneous Lorentz group satisfying 
Dirac’s requirement [20]. 

3.4. Dirac’s Two Oscillators 

In 1963, Dirac started with two harmonic oscillators, and he ended up with ten 
generators [21]. These generators satisfy the closed set of commentators for the 
( )3,2O  group, namely the Lorentz group applicable to three space-like coordi-

nates and two time-like coordinates. This group has ten generators, like the 
Poincaré group. Like the Poincaré group, it has the subgroup ( )3,1O  Lorentz 
group when we consider only one of the two time coordinates. There are four 
generators involving the second time coordinates, namely three boost generators 
with respect to three space coordinates and one rotation generator with respect 
to the first time variable. 

The harmonic oscillator is the language of quantum mechanics, while the group 
( )3,2O  is the language of Lorentz transformations. Thus, we are led to the ques-

tion of deriving special relativity from quantum mechanics. 
According to Dirac [20], the task of constructing relativistic quantum me-

chanics is that of constructing a representation of the inhomogeneous Lorentz  
 

 

Figure 5. History of physics as a series of synthesis. Newton synthesized scattering and 
bound states with his differential equation. Schrödinger and Heisenberg synthesized the 
Rutherford scattering and the Bohr atom. There then comes Einstein’s world. Quantum 
field theory is for scattering problem while the covariant harmonic oscillator is for bound 
states. They both are representations of the inhomogeneous Lorentz group. Next, are 
quantum mechanics and special relativity are derivable from the same basket of equa-
tions? This question is addressed in the literature [24] [31] [32]. 
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group with ten generators, as specified in Figure 5. Dirac’s ( )3,2O  group also 
has ten generators. It is thus a challenge to see whether this ( )3,2O  group can 
be converted into the inhomogeneous Lorentz group. This question was dis-
cussed in detail in the literature [24] [31] [32]. 

4. Scattering and Bound States 

In Section 3, we studied the quantum bound state in the Lorentz-covariant world 
using harmonic oscillator wave functions. This wave function is a representation 
of Wigner’s little group, which is a subgroup of Dirac’s inhomogeneous Lorentz 
group. 

For free particles in the covariant world, we use the Klein-Gordon equation. If 
the particle has a space-time extension, it is possible to use harmonic oscillators 
as we did in Section 3. The question then is whether it is possible to write an eq-
uation for both. Indeed, this problem was recognized by Feynman, Kislinger, 
and Revndal in 1971 [26]. 

Let us start with two quarks. We are quite familiar with the Klein-Gordon eq-
uation for a free particle in the Lorentz-covariant world. We shall use the four- 
vector notations  

( ) 2 2 2 2 2, , , , and .x x y z t x x y z tµ µ= = + + −            (16) 

Then the Klein-Gordon equation becomes  

( )
2

2 0.m x
xµ

φ
  ∂ − + = 
 ∂   

                   (17) 

The solution of this equation takes the familiar form  

( )1 2 3exp ,i p x p y p z Et ± + + ±                   (18) 

with 2 2 2 2
1 2 3E p p p m= + + + . 

In 1971, Feynman et al. considered two particles a and b bound together by a 
harmonic oscillator potential, and wrote down the equation [26]  

( ) ( )
2 2

2 2 2 , 0.a b a b a b
a b

x x m m x x
x x µ µ µ µ

µ µ

φ
    ∂ ∂ − − + − + + =    

∂ ∂        
     (19) 

The bound state of these two particles is one hadron. The constituent particles 
are called quarks. We can then define the four-coordinate vector of the hadron 
as  

( )1 ,
2 a bX x x= +                       (20) 

and the space-time separation four-vector between the quarks as  

( )1 .
2 2 a bx x x= −                      (21) 

Then Equation (19) becomes  
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( )
2 2

2 2
0 , 0.m x X x

X x µ
µ µ

φ
     ∂ ∂  − + + − + =     ∂ ∂         

          (22) 

This differential equation can then be separated into  

( ) ( )
2 2

2 2
0 , , ,m X x x X x

X x µ
µ µ

φ φ
      ∂ ∂   − + = − − +      ∂ ∂         

       (23) 

with  

( ) ( ) ( ), ,X x f X xφ ψ=                    (24) 

where ( )f X  and ( )xψ  satisfy their own equations:  

( )
2

2 2 0a bm m f X
X µ

λ
  ∂ − + + + =  ∂   

              (25) 

and 

( ) ( )
2

21 .
2

x x x
x µ
µ

ψ λψ
  ∂ − + = 
 ∂   

                (26) 

Here, the wave function takes the form  

( ) ( ) ( ), exp ,x y zX x x i P X P Y P Z ETφ ψ  = ± + + ±            (27) 

where , ,x y zP P P  are for the hadronic momentum, and  
2 2 2 2 2 2 2 2, with .x y z a bE P P P M M m m λ= + + + = + +          (28) 

Here the hadronic mass M is determined by the parameter λ , which is the 
eigenvalue of the differential equation for ( )xψ  given in Equation (26). 

Considering Feynman diagrams based on the S-matrix formalism, quantum 
field theory has been quite successful. It is, however, only useful for physical 
processes where, after interaction, one set of free particles becomes another set 
of free particles. The questions of localized probability distributions and their 
Lorentz covariance is not addressed by the present form of quantum field theory. 
In order to tackle this problem and address these questions, Feynman et al. sug-
gested harmonic oscillators [26]. In Figure 6, we illustrate this idea.  

However, for their wave function ( )xψ , Feynman et al. uses a Lorentz-invariant 
exponential form  

2 2 2 21exp .
2

x y z t  − + + −   
                  (29) 

This wave function increases as t becomes large. This is not an acceptable 
wave function. They overlooked the normalizable exponential form given by 
Dirac in Equation (6). They even overlooked the same normalizable in the paper 
of Fujimura et al. [34] which was quoted in their own paper. 

Thus, we are fully justified in replacing the meaningless Gaussian form of Eq-
uation (29) with the Gaussian form developed in Section 3. 
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Figure 6. Scattering and bound states as a single representation of the inhomogeneous 
Lorentz group. In an effort to combine quantum mechanics with special relativity, Feyn-
man gave us this road-map. In (a), we start with a running wave and standing wave. In 
(b), running waves are for Feynman diagrams, and standing waves are representations of 
Wigner’s little group. In (c), we can use harmonic oscillator wave functions for standing 
waves. If the oscillator wave functions are Lorentz-covariant, Einstein’s Lorentz cova-
riance is valid for the entire system, as specified in (d). 

5. Lorentz-Covariant Quark Model 

Early successes in the quark model include the calculation of the ratio of the 
neutron and proton magnetic moments [35], and the hadronic mass spectra [26] 
[36]. These are based on hadrons at rest. We are interested in this paper how the 
hadrons in the quark model appear to observers in different Lorentz frames. 

These days, modern particle accelerators routinely produce protons moving 
with speeds very close to that of light. Therefore, the question is whether the co-
variant wave function developed in Section 4 can explain the observed pheno-
mena associated with those protons moving with relativistic speed. 

The idea that the proton or neutron has a space-time extension had been de-
veloped long before Gell-Mann’s proposal for the quark model [12]. Yukawa [37] 
developed this idea as early as 1953, and his idea was followed up by Markov 
[38]. 

Hofstadter [39] [40], by using electron-proton scattering to measure the charge 
distribution inside the proton, made the first experimental discovery of the non- 
zero size of the proton. If the proton were a point particle, the scattering ampli-
tude would just be a Rutherford formula. However, Hofstadter found a tangible 
departure from this formula which can only be explained by a spread-out charge 
distribution inside the proton. 

Indeed, the first success of the Lorentz-covariant oscillator was demonstrated 
in the calculation of the Hofstadter effect. Using this wave function, Markov 
made his calculation in 1956 even before Gell-Mann formulated his quark model 
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in 1964 [38]. After the quark model, many authors made their calculations of the 
Hofstadter effect using the same wave function [34] [41] [42] [43] [44] [45]. 
These papers amply demonstrate the elliptic deformation of the Gaussian dis-
tribution shown in Figure 4 and Figure 5. 

Next, we are facing a more fundamental question. Let us go back to Figure 2. 
The quark model and its Lorentz-covariant wave function allow us to address 
the issue of the quark-parton puzzle, and thus the Bohr-Einstein issue of how the 
hydrogen atom appears to moving observers. 

5.1. Feynman’s Parton Picture 

As we did in Sections 3 and 4, we continue using the Gaussian form for the wave 
function of the proton. If the proton is at rest, the z and t variables are separable, 
and the time-separation can be ignored, as we do in non-relativistic quantum 
mechanics. If the proton moves with a relativistic speed, the wave function is 
squeezed as described in Figure 4 and Figure 5. If the speed reaches that of light, 
the wave function becomes concentrated along positive light cone with t z= . 
The question then is whether this property can explain the parton picture of 
Feynman when a proton moves with a speed close to that of light. 

It was Feynman who, in 1969, observed that a fast-moving proton can be re-
garded as a collection of many partons. The properties of these partons appear to 
be quite different from those of the quarks [13] [14] [15]. For example, while the 
number of quarks inside a static proton is three, the number of partons appears 
to be infinite in a rapidly moving proton. The following systematic observations 
were made by Feynman: 

1) When protons move with velocity close to that of light, the parton picture 
is valid. 

2) Partons behave as free independent particles while the interaction time be-
tween the quarks becomes dilated. 

3) Partons have a widespread distribution of momentum as the proton moves 
quickly. 

4) There seems to be an infinite number of partons or a number much larger 
than that of quarks. 

The question is whether the Lorentz-squeezed wave function described in Fig-
ure 4 can explain all of these peculiarities. 

Each of the above phenomena appears as a paradox, when the proton is be-
lieved to be a bound state of the quarks. This is especially true of (b) and (c) to-
gether. How can a free particle have a wide-spread momentum distribution. 

To resolve this paradox, we construct the momentum-energy wave function 
corresponding to Equation (15). We can construct two independent four-momentum 
variables [26] if the quarks have the four-momenta ap  and bp .  

( ), 2 .a b a bP p p q p p= + = −                   (30) 

Since P is the total four-momentum, it is the four-momentum of the proton. 
The four-momentum separation between the quarks is measured by q. We can 
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then write the light-cone variables as  

0 0, .
2 2

z zq q q q
q q+ −

+ −
= =                   (31) 

This results in the ground-state momentum-energy wave function  

( ) 2 2 2 2
0

1 21 1, exp e e .
2zq q q qη η

ηφ
−

+ −
    = − +       π

           (32) 

Since the harmonic oscillator is being used here, the momentum-energy wave 
function has the mathematical form identical to that of the space-time wave 
function of Equation (15). These wave functions have the same Lorentz squeeze 
properties [16] [17]. These Lorentz-squeeze properties are illustrated in Figure 
7. 

From this figure, we can see that both wave functions behave like those for the 
static bound state of quarks when the proton is at rest with 0η = . However, as 
η  increases, the wave functions become concentrated along their respective posi-
tive light-cone axes. This means that the quarks become like massless particles 
with wide space and momentum distributions. This is the property of Feynman’s 
parton picture [13] [14]. 

Another puzzle is that quarks are coherent when the proton is at rest but the 
partons appear as incoherent particles. Does this mean that the Lorentz boost 
destroys coherence? Obviously, the answer to this question is NO. 

When the proton is boosted, its matter becomes squeezed, as shown in Figure 
7. The result is that the wave function for the proton becomes concentrated in 
the elliptic region along the positive light-cone axis, which is expanded in length 
by ( )exp η . As a consequence, the minor axis is contracted by ( )exp η− . 
 

 

Figure 7. Lorentz-squeezed wave functions in space-time and in momentum-energy va-
riables. Both wave functions become concentrated along their respective positive light- 
cone axes as the speed of the proton approaches that of light. All the peculiarities of 
Feynman’s parton picture are presented in these light-cone concentrations. 
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Thus, the interaction time for the quarks among themselves becomes dilated. 
Thus, the quarks appear to be free particles to external signals. As the ellipse be-
comes more squeezed, the quarks become light-like massless particles, as illu-
strated in Figure 8. 

As indicated also in Figure 7, the probing signal is moving in the direction 
opposite to the direction of the proton, it travels along the negative light-cone 
axis with t z= − . As the proton contracts along this negative light-cone axis, the 
interaction time decreases by ( )exp η− . Then the ratio of the interaction time to 
the oscillator period becomes ( )exp 2η− . Each proton, produced by the Fermi-
lab accelerator used to have an energy of 900 GeV. This then means that the ra-
tio is 10−6. Because this is such small number, the external signal cannot sense 
the interaction of the quarks among themselves. The quarks, appearing like par-
tons, are free independent particles as also observed by Feynman [13] [14]. 

The momentum distribution becomes wide spread, also as is indicated in Fig-
ure 7. As it becomes concentrated along the positive light-cone axis, the quarks 
become light-like massless particles. As in the case of the Black-body radiation, 
the number of particles is infinite with a continuos momentum (thus energy) 
distribution, also as noted by Feynman [13] [14]. 

This resolution of the quark-parton puzzle is tabulated in Table 2 along with 
Einstein’s energy-momentum relation, and Wigner’s little group for internal 
space-time symmetries. Indeed, the quarks and partons are two different way of 
looking at the same entity in Einstein’s Lorentz-covariant world. 

5.2. Lorentz-Invariant Uncertainty Products 

In the harmonic oscillator regime, the energy-momentum wave functions take 
the same mathematical form, and the uncertainty relation in terms of the uncer-
tainty products is well understood. However, in the present case, the oscillator 
wave functions are deformed when Lorentz-boosted, as shown in Figure 7.  
 

 

Figure 8. The effect of the Lorentz squeezes appearing in the real world. The Lorentz- 
squeezed wave functions shown in Figure 7 appear in the world as Feynman’s parton 
picture in this figure. There are infinite-number of massless partons, with wide-spread 
momentum distribution, as in the case of photons in the black-body radiation. 
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Table 2. Lorentz covariance of hadrons. The little group of Wigner unifies the internal 
space-time symmetries for massive and massless particles. This issue was addressed earli-
er in Table 1. Wigner’s little groups allow us to give a unified picture for particles with 
internal space-time structures such as Gell-Mann’s quark model and Feynman’s parton 
picture. 

 Massive, Slow COVARIANCE Massless, Fast 

Energy-Momentum 2 2E p m=  
Einstein’s 

( ) ( )22 2E cp mc= +  
E cp=  

Internal 
Space-time 
Symmetry 

3S  

1 2,S S  
Wigner’s 

Little Groups 

3S  
Gauge 

Transformation 

Relativistic 
Extended 
Particles 

Quark Model 
Integration 

of Dirac’s papers 
1927, 1945, 1949 

Parton Model 

 
According to this figure, both the space-time and momentum-energy wave func-
tions become spread along their longitudinal directions. Does this mean that the 
Lorentz boost increases the uncertainty? 

In order to address this question, let us write the momentum-energy wave 
function as a Fourier transformation of the space-time wave function:  

( ) ( ) ( ){ }0 0
1, , exp d d .

2z zq q z t i q z q t t zφ ψ= −
π ∫             (33) 

The transverse x and y components are not included in this expression. The 
exponent of this expression can be written as  

0 ,zq z q t q v q u+ −− = +                       (34) 

with  

( )0
1 .
2 zq q q± = ±                         (35) 

In terms of these variables, the Fourier integral takes the form  

( ) ( ){ }1 , exp d d .
2

z t i q v q u t zψ + −+
π ∫                  (36) 

In this case, the variable q+  is conjugate to v, and q−  is to u. Let us go back 
to Figure 7. The major (minor) axis of the space-time ellipse is conjugate to the 
minor (major) axis of the momentum-energy ellipse. Thus the uncertainty 
products  

2 2 2 2andu q v q− +                     (37) 

remain invariant under the Lorentz boost. 

6. Entropy and Temperature of Moving Hadrons 

The entropy is a measure of our ignorance and is computed from the density 
matrix [1]-[11]. The density matrix is needed when the experimental procedure 
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does not analyze all relevant variables to the maximum extent consistent with 
quantum mechanics. The purpose of the present section to discuss a concrete 
example of the entropy arising from our ignorance in relativistic quantum me-
chanics formulated in Sections 3 and 4. 

Let us consider a bound state of two particles, or the hadron consisting of 
two quarks bound together by a harmonic oscillator potential. Then there is a 
Bohr-like radius measuring the space-like separation between the quarks. There 
is also the time-like separation in the Lorentz-covariant regime. If the hadron is 
at rest, the time dependence is purely Gaussian with no excitations. Thus, this 
un-observable variable can be integrated out without affecting the space-like se-
paration. 

If the hadron moves along the z direction, this time-separation variable be-
comes more prominent, but there are no ways to measure this variable in the 
present form of quantum mechanics. We thus have to regard this variable as 
un-measurable variable, and treat it statistically. 

As in the case of Section 4, let us consider a hadron consisting of two quarks. 
If the space-time position of two quarks are specified by ax  and bx  respec-
tively, the system can be described by the variables  

, and .
2 2 2

a b a bx x x x
X x

+ −
= =                  (38) 

The four-vector X specifies where the hadron is located in space and time, 
while the variable x measures the space-time separation between the quarks. In 
the convention of Feynman et al [26], the internal motion of the quarks bound 
by a harmonic oscillator potential can be described by the Lorentz-invariant eq-
uation  

( ) ( )
2 2

2 2
2 2

1 , , .
2

z t z t z t
z t

ψ λψ
    ∂ ∂ − + − − + =    ∂ ∂     

         (39) 

For simplicity, we do not consider the transverse coordinates x and y. 
It is possible to construct a representation of Dirac’s inhomogeneous Lorentz 

group [22] from the solutions of the differential equation of Equation (39). If the 
hadron is at rest, the solution should take the form of Equation (8). Let us re-
write this solution as the wave function  

( ) ( )
1 2 2

0

2
1, exp .

2!2
n

nn

z tz t H z
n

ψ
  +   = −   
     π

          (40) 

The subscript 0 means that the wave function is for the hadron at rest. The 
above expression is not Lorentz-invariant, and its localization undergoes a Lo-
rentz squeeze as the hadron moves along the z direction as shown in Figure 4. 

For this Lorentz-covariant system, it is convenient to use the light-cone va-
riables  

, ,
2 2

z t z tu v+ −
= =                         (41) 
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introduced in Equation (12). The lorentz-boost along the z axis leads to  

e , e ,u u u v v vη η−′ ′→ = → =                     (42) 

where η  is the boost parameter and is tanh v cη = . In terms of these light- 
cone variables, the wave function of Equation (40) can be written as  

( )
2 2

0

1 2

2

1, exp .
2!2 2

n
n

u v u vx t H
n

ψ
  + +  = −             π

          (43) 

If the system is boosted, the wave function becomes  

( )
1 2 2 2 2 2

2

1 e e e e, exp .
2!2 2

n
n

u v u vx t H
n

η η η η

ηψ
− −    + + = −            π 

     (44) 

This wave function can be expanded as [24]  

( )
( ) ( ) ( ) ( ) ( )

1 1 2
!1, tanh ,

cosh ! !

n
kn

n k k
k

n k
z t z t

n kηψ η χ χ
η

+

+

+  
=   
   

∑      (45) 

where ( )n zχ  is the n-th excited-state oscillator wave function. 
Here comes the fundamental problem. If the hadron is at rest, this wave func-

tion is separable in z and t. If the t variable is integrated out, the rest is the 
present form of non-relativistic quantum mechanics. 

However, if the hadron moves and gains speed, the t dependence becomes 
non-separable, and we have to resort to density matrix. From the wave function 
of Equation (6), we can construct the pure-state density matrix  

( ) ( ) ( )
*

, ; , , , ,n n nz t z t z t z tη η ηρ ψ ψ ′ ′ ′ ′=                  (46) 

where ( ) ( )
*

, ,n nz t z tη ηψ ψ ′ ′ ′ ′=  . This pure-state density matrix satisfies the 
condition 2ρ ρ= :  

( ) ( ) ( ), ; , , ; , , ; , d d .z t x t z t x t z t z t z tη η ηρ ρ ρ′ ′ ′′ ′′ ′′ ′′ ′ ′ ′′ ′′= ∫          (47) 

However, there are at present no measurement theories which accommodate 
the time-separation variable t. Thus, we can take the trace of the ρ  matrix with 
respect to the t variable. Then the resulting density matrix is  

( ) ( ) ( ), , , dn n nz z z t z t tη η ηρ ψ ψ′ ′= ∫                   (48) 

( ) ( ) ( ) ( ) ( )
2 1

2!1 tanh .
cosh ! !

n
k

n k n k
k

n k
z z

n k
η χ χ

η

+

+ +

+  ′=  
 

∑         (49) 

The trace of this density matrix is one, but the trace of 2ρ  is less than one, as  

( ) ( ) ( )2 , , d dTr z z z z z zρ ρ ρ′ ′ ′= ∫                  (50) 

( ) ( ) ( )
24 1

4!1 tanh .
cosh ! !

kn
k

k

n k
n k

η
η

+ +  
=   
   

∑              (51) 

which is less than one. This is due to the fact that we do not know how to deal 
with the time-like separation in the present formulation of quantum mechanics. 
Our knowledge is less than complete. 
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The standard way to measure this ignorance is to calculate the entropy de-
fined as [1] [2] [3] [27] 

( )ln .S Tr ρ ρ= −                            (52) 

This formula is known as the Shannon entropy in the current literature on 
quantum computation and quantum information [11]. 

If we pretend to know the distribution along the time-like direction and use 
the pure-state density matrix given in Equation (46), then the entropy is zero. 
However, if we do not know how to deal with the distribution along the time 
separation t, then we should use the density matrix of Equation (48) to calculate 
the entropy, and the result is [27]  

( ) ( ) ( ) ( ) ( )2 22 1 cosh ln cosh sinh ln sinhS n η η η η = + −         (53) 

( ) ( ) ( ) ( )
2 1

2! !1 ln tanh .
cosh ! ! ! !

n
k

k

n k n k
n k n k

η
η

+  + +  
−    

     
∑           (54) 

Let us go back to the wave function given in Equation (6). As is illustrated in 
Figure 4, its localization property is dictated by the Gaussian factor which cor-
responds to the ground-state wave function. For this reason, we expect that 
much of the behavior of the density matrix or the entropy for the n-th excited 
state will be the same as that for the ground state with n = 0. For this state, the 
density matrix and the entropy are  

( ) ( )
( )

( ) ( ) ( )
21 2

21 1, exp cosh 2 ,
cosh 2 4 cosh 2

z z
z z z zρ η

η ηπ

  ′  + ′ ′= − − −            
  (55) 

and 

( ) ( ) ( ) ( )2 2 2 2cosh ln cosh sinh ln sinh ,S η η η η= −           (56) 

respectively. The quark distribution ( ),z zρ  becomes  

( ) ( ) ( )

1 2 21, exp .
cosh 2 cosh 2

zz zρ
η η

   −
=    

π    
             (57) 

The width of the distribution becomes ( )cosh 2η , and becomes wide-spread 
as the hadronic speed increases. Likewise, the momentum distribution becomes 
wide-spread, as in the case of Feynman’s parton picture described in Subsection 
5.1. This simultaneous increase in the momentum and position distribution 
widths is called the parton phenomenon in high-energy physics [13] [14] [15]. 
The position-momentum uncertainty becomes 2cosh η . This increase in uncer-
tainty is due to our ignorance about the physical but unmeasurable time-separation 
variable. This does not violate the fundamental law of the uncertainty as de-
scribed in Subsection 5.2. 

The use of an unmeasurable variable as a shadow coordinate is not new in 
physics [7] [8]. Feynman’s book on statistical mechanics contains the following 
paragraph [5]. 
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When we solve a quantum-mechanical problem, what we really do is divide 
the universe into two parts—the system in which we are interested and the 
rest of the universe. We then usually act as if the system in which we are in-
terested comprised the entire universe. To motivate the use of density ma-
trices, let us see what happens when we include the part of the universe 
outside the system.  

In the present paper, we have identified Feynman’s rest of the universe as the 
time-separation coordinate in a relativistic two-body problem. Our ignorance 
about this coordinate leads to a density matrix for a non-pure state, and conse-
quently to an increase of entropy. Figure 9 shows the entropy as a function of 
the hadronic speed or tanη . The entropy is zero when the hadron is at rest. It 
increases rapidly as the hadronic speed approaches the speed of light. 

Finally, let us examine how the ignorance will lead to the concept of tempera-
ture [28]. For the Lorentz-boosted ground state, the density matrix of Equation 
(48) becomes  

( ) ( ) ( ) ( )21, tanh .
cosh

k
k k

k
z z z zηρ η χ χ

η
 ′ ′=  
 

∑           (58) 

We can now compare this expression for the oscillator system in the thermally 
excited state. In terms of the temperature T, the density matrix takes the form 
[46] [47].  

( ) ( ) ( ) ( )1, 1 e e ,T n T
T n n

n
z z z zρ χ χ− −′ ′= − ∑             (59) 

where T means kT ω , with k and ω  as Boltzmann’s constant and the fre-
quency of oscillation respectively. If we compare this expression with Equation 
(58). Then  

( )21e tanh .T η− =                       (60) 

This leads to  

( )
1 .

2 ln tanh
T

η
−

=                       (61) 

 

 

Figure 9. Feynman’s rest of the universe and entropy. For the hadron, the space-like ex-
tension is measurable, but the time-like separation is not. It is in the rest of the universe. 
This non-measurable variable should be treated statistically. It leads to the increase in en-
tropy. 
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The temperature rises rapidly as the hadronic speed approaches the speed of 
light, as indicated in Figure 8. As we noted in Subsection 5.1, the hadron be-
comes a plasma state as in the case of Feynman’s parton picture. 

7. Concluding Remarks 

The primary purpose of this paper was to study the entropy and temperature of 
bound states in the Lorentz-covariant world. The result of study is given in Sec-
tion 6. 

This problem arises because the time separation between the constituent par-
ticles is not a measurable quantity in the present form of quantum mechanics. 
On the other hand, it is possible to treat this unmeasurable variable statistically. 
The time separation is negligible when the bound state is at rest, but it becomes 
as significant as the space separation (like the Bohr radius) when the bound state 
moves. 

In order to study this effect, we need at least one Lorentz-covariant model for 
bound states. Dirac and Feynman made their efforts to construct such a wave 
function. Much of the present paper is devoted to the integration of their efforts 
to construct wave functions for moving bound states in Einstein’s Lorentz- 
covariant world. 

It was Paul A. M. Dirac who made efforts to construct wave functions for 
moving bound states. Dirac’s papers and books are like beautiful poems, but they 
do not contain figures. It was a challenge to convert his poems [18] [19] [20] in-
to the circle and the rectangle given in Figure 4. Then it is easy to integrate those 
two figures. A more detailed explanation is given in a recent book entitled Phys-
ics of the Lorentz Group, 2nd Edition by Başkal, Kim, and Noz [24]. 

We used in this paper the Lorentz-covariant wave function which provides the 
resolution to the question whether the quarks and partons are two different ways 
of looking at the same entity in the Lorentz-covariant world, as illustrated in 
Figure 8. This also provides the answer to the Bohr-Einstein issue of moving 
hydrogen atoms. 
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Appendix 

In Section 4, we noted that the bound state has its internal space-time coordinates, 
and we considered a bound state equation in Equation (26). Let us write this os-
cillator equation:  

( ) ( )
2

21 .
2

x x x
x µ
µ

ψ λψ
  ∂ − + =  ∂   

                 (62) 

This differential equation is separable in all space-time variables. Thus we can 
concentrate on the longitudinal and time coordinates. The equation then be-
comes  

( ) ( )
2 2

2 21 , , .
2

z t z t z t
z t

ψ λψ
    ∂ ∂   − + − − + =          ∂ ∂        

        (63) 

Since the time excitations are not allowed, the solution of this equation takes 
the form  

( ) ( )
1 4 21, exp ,

2
n

n
tz t zψ ξ

 − =   
   π

                 (64) 

where ( )n zξ  is the oscillator wave function for the n-th excited state. The diffe-
rential equation of Equation (63) is invariant under the Lorentz boost:  

2 2
, ,

1 1

z t t zz tβ β

β β

+ +
→ →

− −
                 (65) 

and the boosted wave function becomes  

( ) ( )
4 211, exp ,

2
n

n
tz t zβψ φ

 ′−  ′=   
   π

                 (66) 

with  

2 2
, .

1 1

z t t zz tβ β

β β

− −′ ′= =
− −

                  (67) 

The wave function of Equation (66) becomes ( ),n z tψ  given in Equation (64) 
when 0β = . There are no excitations along the t direction because of the c- 
number time-energy uncertainty relation [18]. 

It is then of interest to evaluate the integral [24] [49], and the result is  

( ) ( ) ( )( )1
2, , d d 1 .

n
n n

nnz t z t x tβψ ψ β δ
+

′
′= −∫            (68) 

The orthogonality relation and the contraction property contained in this 
formula are illustrated in Figure A1. The stationary ground state wave function 
is orthogonal to all excited states. This ground state is contracted by 21 β− . 
This is consistent with our understanding of Einstein’s Lorentz contraction of a 
rod. 

Then why is 
( )1

21
n

β
+

 −  
 for the n-th excited states? It is because the (wave-

function)2 has (n + 1) humps. Then why are they multiplicative? 
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Figure A1. Orthogonality and Lorentz contractions of the covariant harmonic wave functions, with 
words for (a) and graphs for (b). The orthogonality is maintained for all excites sates. The Lorentz- 

contraction factor of 21 β−  for the ground state is consistent with Einstein’s Lorentz contraction. 
For the n-th excited state, the |wavefunction|2 has (1 + n) humps. Thus the net contraction thus 

should 
( )1

21
n

β
+

 −  . 

 
In order to answer this question, let us use the bra-and-ket notation for the 

harmonic oscillators, where the ground state is 0  and n  is for the n-th ex-
cited state. We use a and †a  for step-down and step-up operators respectively. 
As is well known, the n-th excited state becomes  

( )†1 0 .
!

n
n a

n
=                      (69) 

Thus, each additional hump is produced through the multiplication process. 
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