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Abstract

This study investigates the diffusive motion of a Brownian particle in a 2D
tilted periodic potential, where bias force is exerted in the x direction. The
dimension effect is revealed by simulating the Langevin equation. The diffu-
sion coefficient in x and y directions is a nonmonotonic function of the bias
force, and a massive enhancement is observed in x and y directions in com-
parison with the case without a tilt in x direction. The underlying physical
mechanism is explored.

Keywords

Surface Diffusion, Tilted Periodic Potential, Dimensionality, Langevin
Simulation

1. Introduction

Many physical situations can be described by the diffusion of a Brownian par-
ticle in a tilted periodic potential; such situations include Josephson junctions
[1], rotating dipoles in external fields [2], rotation of molecules in solids [3], su-
perionic conductors [4], charge density waves [5], mode locking in laser gyros-
copes [6], diffusion of atoms and molecules on crystal surfaces [7], particle se-
paration by electrophoresis [8]. For the diffusion of an overdamped Brownian
particle in a tilted periodic potential, an exact analytical expression for the effec-
tive diffusion coefficient is derived for arbitrary potentials and arbitrary strengths
of the thermal noise [9]. The effective diffusion coefficient in a critically tilted
periodic potential may be, in principle, arbitrarily enhanced in comparison with
the potential-free thermal diffusion. A study has shown that in the underdamped
case the diffusion coefficient is increased exponentially by a decrease in temper-
ature in a certain interval of bias force [10], which originates from the correla-

tion time of velocity increases exponentially with an increase in the inverse tem-
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perature. The nonmonotonic behavior of the effective diffusion index and su-
perballistic diffusion are observed [11] when the noise intensity is weak and the
external force is close to the critical value at which local minima of the potential
just vanish. Lévy particles exist in either a running state or a long-tailed behind
state, the distance at which the two-state centers increase with time plays a de-
finitive role in superballistic diffusion. Langevin simulation has shown that for
super-ohmic damping and certain parameters, the diffusive process of a particle
in a titled periodic potential sequentially undergoes four time regimes: therma-
lization, hyperdiffusion, collapse, and asymptotical restoration [12]. A reforma-
tional ballistic diffusive system is considered a marginal situation that does not
exhibit the collapsed state of diffusion. The diffusion properties of a vibrational
motor, in which an additional time-dependent driving brings the system out of
equilibrium and the other time-periodic driving fills the role usually played by
noise, are investigated in [13]. The diffusion coefficient exhibits a nonmonotonic
function of bias force due to the coexisting attractors, and an enhancement of
diffusion phenomenon was observed. The analytical form of the effective free
energy function in the model of entropic resonance is changed with addition of a
bias force in a periodic potential, as shown in [14].

For surface diffusion problem, at least two degrees of freedom are concerned.
Several multidimensional effects have been investigated. Based on the previous
research on one-dimensional periodic potential, this paper extends to two-dimen-
sional, thus highlighting the innovation. Molecular dynamics simulations con-
ducted based on the Bhatnagar-Gross-Krook model have shown that the x-y
coupling suppresses a large proportion of long jumps causing a decrease in the
diffusion coefficient for all values of damping [15]. This effect can be attributed
to the narrowing of the saddles with respect to the well bottom. Two kinds of
approximation schemes, namely quasi-2D approximation and effective potential
approach, have been applied to predict the 2D diffusion rate of a particle [16];
the results of these schemes are qualitatively in agreement with the numerical
results. The 2D diffusion rate constant over noise intensity shows a nonmono-
tonic behaviors function of noise intensity, in contrast to the monotonic beha-
vior in 1D case [17] [18]. In the present work, the dimensional effect in a tilted

periodic potential is investigated.

2. Model

We consider a Brownian particle diffusing in a 2D coupled periodic potential
under the influence of Gaussian white noise; the particle is contact with a heat
bath at temperature 7'which provides fluctuation and dissipation. The dynamics

of the process is governed by the following Langevin equations

. . ouU
X=V,mv, +mpv, +—=f +¢&,
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where Uis a 2D coupled periodic potential, given by

U =U (X, y) = U, [cos x+cos y]+u, cosxcosy, )

and & isazero mean Gaussian white noise satisfying the fluctuation-dissipation

theorem
(£(t)&(t) =2mpkg T (t-t), (3)

where f, is a constant force exerted in the x direction, m is the mass of the
Brownian particle, p is the damping coefficient, and kg is the Boltzmann
constant. The profile of the 2D tilted periodic potential

V (X, y)=Us[cosx+cosy]+u, cosxcosy— f x is plotted in Figure 1. What we
wish to investigate is the difference between the above-mentioned model and the
1D tilted periodic potential, and how the the bias force in x direction f, influ-

ences the diffusion in y direction.

3. Langevin Simulation Results and the Underlying Physical
Mechanisms

Langevin and the Fokker-Planck equations are most popular approaches for in-
vestigating surface diffusion. Although several analytical methods for the solu-
tion of 1D Langevin and Fokker-Planck equations are available [19], making any
analytical progress is usually difficult on a set of multidimensional coupled equ-
ations. We simulate the Langevin Equation (1) by the second-order Runge-Kutta
algorithm. In the calculation, the natural unit (m=1, k; =1), the dimension-
less parameter V, =1, and the time step At=10" are used. The results are
stable for time steps in the vicinity of the one we used. The test particles start
from the a potential well and have zero velocity. The number of test particles
N =2x10° is used to describe the surface diffusion motion of a Brownian par-
ticle. A quantity of fundamental interest in surface diffusion is the diffusion

coefficient, which is defined as
D — lim(aF (t))") /20t - t|Lrpo[<(Ax(t))2>+<(Ay(t))2>]/20|t, (4)

where d is the spatial dimension. The mean square displacement <(Af (t))2>
reveals a good linear relation at long times.

Figure 2 shows the influence of the tilt in x direction on the diffusion in ydi-
rection. The purpose of this figure is twofold. First, it presents a comparison of
cases with and without tilt. Second, it displays a nonmonotonic relation of the
diffusion coefficient with the tilt. The diffusion coefficient increases when the
bias force is exerted. The physical mechanism is as follows: the particle with a
high velocity in y direction accelerates in x direction, leading to a much larger
resultant velocity; consequently, the particle can across the potential barrier in y
direction along a direction between x and y axes, and the running state in y di-
rection is formed. The coexistence of the locked state and running state results
in rapid diffusion. Such a physical picture is confirmed by the velocity distribu-

tion in y direction (Figure 3). We can see that the number of particles with high
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Figure 1. The profile of the 2D tilted periodic potential.
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Figure 2. Diffusion coefficient in y direction versus the bias
force in x direction. Where T =03, V, =1, y=0.2.
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Figure 3. Velocity distribution in ydirection. Where T =0.2,
V,=1, =02, f,=05,andtime t=300.

positive velocities is obviously greater than that with negative values. The non-
monotonic dependence on bias force can be explained as follows: as the bias
force increases, the resultant velocities tend to x direction, and the number of
particles in running state in y direction decreases gradually. These phenomena
imply that the diffusion in one direction can be controlled by exerting a force in
another direction. A comparison of the diffusion coefficient for x direction in

two and one dimensions is shown in Figure 4. The dependence of the diffusion
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Figure 4. Diffusion coefficient in x direction versus the bias
force in x direction. Where T =03, V, =1, y=0.2, (a) for
2D case; (b) for 1D case.

coefficient on the bias force presents a nonmonotonic relation. In contrast to the
diffusion coefficient arriving its maximum when f, < f (f, is the critic tilt
where the potential barrier vanishes, here f,, =0.5) in the 1D case, the maxi-
mum is achieved when f, > f, in two dimension case. The coexistence of the
locked state and running state leads to a rapid diffusion, the locked state survives
under f, > f,. in the 2D case due to the diffusion in y direction and coexis-
tence of the locked state and running state. The massive enhancement of the
diffusion coefficient in x direction in the 2D case is attributed to the coexistence
of the locked state and running state in y direction benefits the maintenance of
locked state for x direction. For periodic potential without bias force, the particle
wanders in various directions before it jumps along x direction, leading to a
slower diffusion in the 2D case compared with that in the 1D case [15]. However,
the rapid diffusion in tilted periodic potential in y direction that comes from the
coexistence of locked state and running state benefits the maintenance of locked
state for x direction. In addition, the coexistence of two states leads to rapid dif-

fusion in medium to long periods.

4. Conclusion

We studied the diffusive motion of a particle moving in a 2D tilted periodic po-
tential, where bias force is exerted in x direction. The diffusion coefficients were
presented as nonmonotonic functions of bias force. The dimensionality is em-
bodied in the interplay of the diffusion in xand ydirections. Hence, it is possible
to control the diffusion in one direction by applying force in the vertical direc-
tion. Bias force helps the particle form a running state in y direction, and leads
to rapid diffusion, which benefits the maintenance of locked state in x direction,
and leads to a rapid diffusion in this direction. The diffusion coefficient in x di-
rection in the 2D tilted periodic potential exhibits massive enhancement com-

pared with that in the 1D tilted periodic potential.
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