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Abstract 
Since 100 years or so, it has been usually accepted that the conformal group 
could be defined in an arbitrary dimension n as the group of transformations 
preserving a non-degenerate flat metric up to a nonzero invertible point de-
pending factor called “conformal factor”. However, when 3n ≥ , it is a finite 
dimensional Lie group of transformations with n translations, ( )1 2n n −  
rotations, 1 dilatation and n nonlinear transformations called elations by E. 
Cartan in 1922, that is a total of ( )( )1 2 2n n+ +  transformations. Because 
of the Michelson-Morley experiment, the conformal group of space-time with 
15 parameters is well known for the Minkowski metric and is the biggest 
group of invariance of the Minkowski constitutive law of electromagnetism 
(EM) in vacuum, even though the two sets of field and induction Maxwell 
equations are respectively invariant by any local diffeomorphism. As this last 
generic number is also well defined and becomes equal to 3 for 1n =  or 6 
for 2n = , the purpose of this paper is to use modern mathematical tools 
such as the Spencer operator on systems of OD or PD equations, both with its 
restriction to their symbols leading to the Spencer δ -cohomology, in order 
to provide a unique definition that could be valid for any 1n ≥ . The concept 
of an “involutive system” is crucial for such a new definition. 
 

Keywords 
Conformal Group, Lie Group, Lie Pseudogroup, Spencer Operator, Spencer 
Cohomology, Acyclicity, Involutive System, Maxwell Equations 

 

1. Introduction 

Using local notations, this paper is mainly concerned with the following two  

connected problems: Given a differential operator ξ η→


, how can we find  
compatibility conditions (CC), that is how can we construct a sequence 

1

ξ η ζ→ →


 such that 1 0=   and, among all such possible sequences, what  
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are the “best” ones, at least among the generating ones and when could we say 
that the sequence obtained is “exact” in a purely formal way, that is using only 
computer algebra for testing such a property? The order of an operator will be 
indicated under its arrow. 

The difficulty is that, physicists being more familiar with analysis, will say that 
a sequence is “locally exact” if one can find locally ξ  such that ξ η=  
whenever 1 0η = . However, they have in mind the property of the exterior de-
rivative d and Maxwell equations in electromagnetism (EM), that is to say, using 
standard notations, the (local) possibility to introduce the EM potential A such 
that dA F=  whenever the EM field F is a closed 2-form with 0dF = . 

The main purpose of this paper is to prove that the “things” may be much 
more delicate and that these problems are only rarely associated with exterior 
calculus. We use the notations that can be found at length in our many books 
([1]-[6]) or papers ([7] [8] [9] [10] [11]). 

Let ( )1, , nµ µ µ= 
 be a multi-index with length 1 nµ µ µ= + +

, class i if 

1 1 0, 0i iµ µ µ−= = = ≠  and ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = + 
. We set 

{ }|1 ,0k
qy y k m qµ µ= ≤ ≤ ≤ ≤  with k ky yµ =  when 0µ = . If E is a vector 

bundle over X with local coordinates ( ),i kx y  for 1, ,i n= 
 and 1, ,k m=  , 

we denote by ( )qJ E  the q-jet bundle of E with local coordinates simply de-
noted by ( ), qx y  and sections ( ) ( ) ( ) ( )( ): , , , ,k k k

q i ijx x x x xξ ξ ξ ξ→   trans-
forming like the section ( ) ( ) ( ) ( ) ( )( ): , , , ,k k k

q i ijj x x x x xξ ξ ξ ξ→ ∂ ∂   when 
ξ  is an arbitrary section of E. Then both ( )q qJ Eξ ∈  and ( ) ( )q qj J Eξ ∈  are 
over Eξ ∈  and the Spencer operator, which is defined on sections, just allows 
to distinguish them by introducing a kind of “difference” through the operator 

( ) ( ) ( )*
1 1 1 1: :q q q q qd J E T J E jξ ξ ξ+ + +→ ⊗ → −  with local components  
( ) ( ) ( ) ( )( ), ,k k k k

i i i j ijx x x xξ ξ ξ ξ∂ − ∂ −   and more generally  

( ) ( ) ( ) ( )1 1, i

k k k
q ii

d x x xµ µµ
ξ ξ ξ+ += ∂ − . In a symbolic way, when changes of coordi-

nates are not involved, it is sometimes useful to write down the components of d 
in the form i i id δ= ∂ − . The restriction of d to the kernel *

1qS T E+ ⊗  of the 
canonical projection ( ) ( )1

1:q
q q qJ E J Eπ +

+ →  is minus the Spencer map 
* * *

1:i
i q qdx S T E T S T Eδ δ += ∧ ⊗ → ⊗ ⊗  and 0δ δ = . The kernel of d is 

made by sections such that ( ) ( ) ( )1 1 2 1 1q q q qj j jξ ξ ξ ξ+ − += = = = . Finally, if 

( )q qR J E⊂  is a system of order q on E locally defined by linear equations 
( ) ( ), 0k

q kx y a x yτ τµ
µΦ ≡ = , the r-prolongation ( ) ( )q r r q r qR R J Rρ+ = =  

( ) ( )( )q r r qJ E J J E+ ⊂  is locally defined when 1r =  by the set of linear equ-
ations ( ), 0qx yτΦ = , ( ) ( ) ( )1 1, 0k k

i q k i ki
d x y a x y a x yτ τµ τµ

µ µ+ +Φ ≡ + ∂ =  and has 
symbol ( )*

q r q r q r q rg R S T E J E+ + + += ⊗ ⊂
 if one looks at the top order terms. 

If 1 1q qRξ + +∈  is over q qRξ ∈ , differentiating the identity ( ) ( ) 0k
ka x xτµ

µξ ≡  with 
respect to ix  and substracting the identity ( ) ( ) ( ) ( )1 0

i

k k
k i ka x x a x xτµ τµ

µ µξ ξ+ + ∂ ≡ , 
we obtain the identity ( ) ( ) ( )( )1 0

i

k k
k ia x x xτµ

µ µξ ξ +∂ − ≡  and thus the restriction 
*

1: q qd R T R+ → ⊗  ([1] [3] [4] [12]). 
DEFINITION 1.1: qg  is said to be s-acyclic if the purely algebraic δ

-cohomology ( )s
q r qH g+  of *s

q rT g
δ δ

+→∧ ⊗ →   are such that  
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( ) ( )1 0, 0s
q r q q r qH g H g r+ += = = ∀ ≥  and involutive if it is n-acyclic. Also qR  

is said to be involutive if it is formally integrable (FI), that is when the restriction 
1

1:q r
q r q r q rR Rπ + +
+ + + +→  is an epimorphism 0r∀ ≥  or, equivalently, when all the 

equations of order q r+  are obtained by r prolongations only, 0r∀ ≥  and 

qg  is involutive. In that case, ( )1 1q qR J R+ ⊂  is a canonical equivalent formally 
integrable first order involutive system on qR  with no zero order equations, 
called the Spencer form. 

EXAMPLE 1.2: (Classical Killing operator) 
Considering the classical Killing operator ( ) *

2 0: S T Fξ ξ ω→ = Ω∈ =   

where ( )ξ  is the Lie derivative with respect to ξ  and *
2S Tω∈  is a non-

degenerate metric with ( ) 0det ω ≠ . Accordingly, it is a lie operator with 

[ ]0, 0 , 0ξ η ξ η= = ⇒ =    and we denote simply by TΘ ⊂  the set of so-
lutions with [ ],Θ Θ ⊂ Θ . Now, as we have explained many times, the main 
problem is to describe the CC of 0Fξ = Ω∈  in the form 1 0Ω =  by intro-
ducing the so-called Riemann operator 1 0 1: F F→ . We advise the reader to 
follow closely the next lines and to imagine why it will not be possible to repeat 
them for studying the conformal Killing operator. Introducing the well known 
Levi-Civita isomorphism ( ) ( ) ( )1 , ,xj ω ω ω ω γ= ∂ 

 by defining the Christoffel  

symbols ( )1
2

k kr
ij i rj j ir r ijγ ω ω ω ω= ∂ + ∂ − ∂  where ( )rsω  is the inverse matrix of 

( )ijω  and the formal Lie derivative of gometric objects, we get the second order 
system ( )2 2R J T⊂ : 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

1

2

0

0

r r r
ij rj i ir j r ijij

kk k k r k r r k r k
ij ij rj i ir j ij r r ijij

L x x x

L x x x x

ξ ω ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ = + + ∂ =


Γ ≡ = + + − + ∂ =

 

with sections ( ) ( ) ( )( )2 : , ,k k k
i ijx x x xξ ξ ξ ξ→  transforming like  

( ) ( ) ( ) ( )( )2 : , ,k k k
i ijj x x x xξ ξ ξ ξ→ ∂ ∂ . The system ( )1 1R J T⊂  has a symbol 

2 * *
1g T T T∧ ⊂ ⊗

 depending only on ω  with ( ) ( )1 1 2dim g n n= −  and is 
finite type because its first prolongation is 2 0g = . It cannot be thus involutive 
and we need to use one additional prolongation. Indeed, using one of the main 
results to be found in ([4] [5]), we know that, when 1R  is FI, then the CC of 
  are of order 1s +  where s is the number of prolongations needed in order 
to get a 2-acyclic symbol, that is 1s =  in the present situation, a result that 
should lead to CC of order 2 if 1R  were FI. However, it is known that 2R  is FI, 
thus involutive, if and only if ω  has constant Riemannian curvature, a result 
first found by L.P. Eisenhart in 1926 ([13]) which is only a particular example of 
the Vessiot structure equations discovered by E. Vessiot in 1904 ([14]), though 
in a quite different setting (See [4] and [15] for an explicit modern proof). Such a 
necessary condition for constructing an exact differential sequence could not 
have been used by any follower because the “Spencer machinery” has only been 
known after 1970 ([12]). Otherwise, if the metric does not satisfy this condition, 
CC may exist but have no link with the Riemann tensor ([10]). We may define 
the vector bundle 1F  in the short exact sequence made by the top row of the 
following commutative diagram: 
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* *
3 2 0 1

* * * *
2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F F

T S T T T T F

T g T T T T F

T T T T

↓ ↓

→ ⊗ → ⊗ → →

↓ ↓

→ ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

where the vertical δ -sequences are exact but the first, or, using a snake type di-
agonal chase, from the short exact sequence of vector bundles: 

2 * 3 *
1 10 0F T g T T

δ
→ → ∧ ⊗ →∧ ⊗ →  

This result is first leading to the long exact sequence of vector bundles: 

( ) ( )3 3 2 0 10 0R J T J F F→ → → → →  

and to the Riemann operator ( )
2

1 0 2 0 1:
j

F J F F→ → . As 2 0g = , we also dis-

cover that 1F  is just the Spencer δ -cohomology ( )2
1H g  at 2 *

1T g∧ ⊗  
along the previous short exact sequence. 

We get the striking formulas where the + signs are replaced by − signs: 

( ) ( ) ( )( )
( ) ( )( )
( )

22 2
1

22 2

2 2

1 4 1 2 6

1 4 1 2 6

1 12

dim F n n n n n

n n n n n

n n

= + − + +

= − − − −

= −
 

This result, first found as early as in 1978 ([9]), clearly exhibit without indices 
the two well known algebraic properties of the Riemann tensor as a section of 
the tensor bundle 2 * *T T T∧ ⊗ ⊗ . 

It thus remains to exhibit the Bianchi operator exactly as we did for the Rie-
mann operator, with the same historical comments already provided. However, 
now we know that 1R  is formally integrable (otherwise nothing could be 
achieved and we should start with a smaller system [1] [4] [6]), the construction 
of the linearized Janet-type differential sequence as a strictly exact differential 
sequence but not an involutive differential sequence because the system 1R  and 
thus the first order operator   are formally integrable though not involutive as 

1g  is finite type with 2 0g =  but not involutive. Doing one more prolongation  

only, we obtain the first order Bianchi operator ( )
1

2 1 2 1 2:
j

F J F F→ →  as  

before, defining the vector bundle 2F  in the long exact sequence made by the 
top row of the following commutative diagram: 
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* * *
4 3 0 1 2

* * * * *
3 2 0 1

2 * * 2 * *
2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F T F F

T S T T T S T F T F

T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓
→ ⊗ → ⊗ → ⊗ → →

↓ ↓
→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓
→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓



 
where the vertical δ -sequences are exact but the first, or, using a snake type di-
agonal chase, from the short exact sequence: 

3 * 4 *
2 10 0F T g T T

δ
→ → ∧ ⊗ →∧ ⊗ →  

showing that ( )3
2 1F H g=  ([8] [9]). We have in particular for 4n ≥ : 

( ) ( ) ( ) ( )( )( )
( )( )( ) ( )
( )( )( )

( )( )

22 2
2

2 3 2
1

2

2 2

1 2 12 1 2 3 24

1 2 3 24 12

1 2 3 24

1 2 24

dim F n n n n n n n

n n n n n n

n n n n

n n n

= − − − − − −

= + + + +

− + + +

= − −

 

and thus ( ) ( ) ( ) ( )2 4 6 1 4 16 15 2 24 20dim F = × − × = × × =  when 4n = . This 
result also exhibits all the properties of the Bianchi identities as a section of the 
tensor bundle 3 * *T T T∧ ⊗ ⊗ . In arbitrary dimension, we finally obtain the dif-
ferential sequence, which is not a Janet sequence: 

0 1 21 2 1
0

Killing Riemann Bianchi
T F F F→Θ→ → → →

 
EXAMPLE 1.3: (Conformal Killing operator) 
At first sight, it seems that similar methods could work in order to study the 

conformal Killing operator and, more generally, all conformal concepts will be de-
scribed with a “hat”, in order to provide the strictly exact differential sequence: 

1 2ˆ ˆˆ

0 1 2
ˆ ˆ ˆ ˆ0 T F F F→Θ→ → → →

 

 
where 1̂  is the Weyl operator with generating CC 2̂ . It is only in 2016 (see 
[9] and [15] for more details) that we have been able to recover all these opera-
tors and confirm with computer algebra that the orders of the operators involved 
highly depend on the dimension as follows: 
• 3n = : 

1 3 1
3 5 5 3 0→ → → →  

• 4n = : 
1 2 2 1

4 9 10 9 4 0→ → → → →  

• 5n ≥ : 
1 2 1 2 1

5 14 35 35 14 5 0→ → → → → →  
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These results are bringing the need to revisit entirely the mathematical foun-
dations of conformal geometry, in particular when 3n =  because the Weyl 
type operator is of third order and when 4n =  because the Bianchi type operator 
is second order in this case contrary to the situation met when 5n = . However, 
surprisingly, these results have never been acknowledged and the reader will not 
discover a single reference on such questions in the mathematical literature. 

The reason is probably because these results are based on the following tech-
nical lemma that could not be even imagined without a deep knowledge and 
practice of the Spencer δ -cohomology (see [16] for details): 

LEMMA 1.4: The symbol 1ĝ  defined by the linear equations: 

( ) ( ) ( )1ˆ 0
2

r r r
ij rj i ir j ij rx x xω ξ ω ξ ω ξΩ ≡ + − =

 
does not depend on any conformal factor, is finite type with 3ˆ 0, 3g n= ∀ ≥  and 
is surprisingly such that 2ĝ  is 2-acyclic for 4n ≥  or even 3-acyclic when 

5n ≥ . 
REMARK 1.5: In order to emphasize the reason for using Lie equations, we 

now provide the explicit form of the n infinitesimal relations with 1 , ,r s t n≤ ≤ , 
whenever 3n ≥ : 

[ ]21 , , 0
2

r t r r t
s s r st r r s st s tx x x n xθ δ ω θ ω θ θ= − ∂ + ∂ ⇒ ∂ = =

 
where the underlying metric is used for the scalar product 2x  involved. It is 
easy to check that *

2 2S T Tξ ∈ ⊗  defined by ( ) ( ) ( )k s k
ij ij sx x xξ λ θ= ∂  belongs 

to 2ĝ  with s
i siA ω λ=  in the following formula where δ  is the standard 

Kronecker symbol and 2 2R̂ξ ∈ : 

( )( )2
kk k k r k r r k r k

ij ij rj i ir j ij r r ijij

k k kr
i j j i ij r

L

A A A

ξ γ ξ γ ξ γ ξ γ ξ ξ γ

δ δ ω ω

Γ ≡ = + + − + ∂

= + −
 

We thus understand how important it is to use “sections” rather than “solutions”. 
Accordingly, a possible unification can be achieved through the “fundamental 

diagram I” relating together the Spencer sequence and the Janet sequence as fol-
lows in arbitrary dimension n for any involutive system ( )q qR J E⊆  because 
these are the only existing canonical sequences ([1]): 

( ) ( ) ( ) ( )

11 2

11 2

11 2

0 1 1

0 1 1

0 1 1

0 1 1

0 0 0 0

0 0

0 0

0 0

0 0 0 0

q n n

q n n

n n

j D DD D

n n

j D DD D

n n

n n

n n

C C C C

E C E C E C E C E

E F F F F

−

−

−

−

−

−

−

↓ ↓ ↓ ↓

→ Θ → → → → → →
↓ ↓ ↓ ↓

→ → → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → → →
↓ ↓ ↓ ↓
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where ( ) ( )0 0q qC R J E C E= ⊂ =  and ( ) ( )( ) ( )r r rdim F dim C E dim C= − . In-
deed, we have ( ) ( ) ( )*r

r qdim C dim T dim R= ∧ ×  for finite type involutive sys-
tems and we therefore notice that the crucial point is to deal with involutive sys-
tems. In the group framework, we have E T=  and, as we are dealing with finite 
type systems, it is thus sufficient to replace qj  and ( )q qR J E⊂  by 2j  and 

( )2 2R J T⊂  with 2 0g =  in the classical situation or by 3j  and ( )3 3R̂ J T⊂  
with 3ˆ 0g =  in the conformal situation, on the condition to be able to treat the 
specific cases 1n =  and 2n = . 

Finally, as a different way to look at these questions, if K be a differential field 
containing  , we may introduce the ring [ ] [ ]1, , nD K d K d d= = 

 of diffe-
rential operators with coefficients in K and consider a linear differential operator 
  with coefficients in K. If 1  generates the CC of  , we have of course 

1 0=  . Taking the respective (formal) adjoint operators, we obtain therefore 

( ) ( )1 0ad ad =   but ( )ad   may not generate the CC of ( )1ad   and so 
on in any differential sequence where each operator generates the CC of the 
preceding one. 

DEFINITION 1.6: If M is the differential module over D or simply D-module 
defined by  , we set ( ) ( )0 ,D Dext M hom M D= . As for the other extension 
modules, they have been created in order to “measure” the previous gaps ([5]). 
In particular, we say that ( )1 0Dext M =  if ( )ad   generates the CC of 

( )1ad  , that ( )2 0Dext M =  if ( )1ad   generates the CC of ( )2ad   and so 
on. Moreover, if   is of finite type, then ( )ad   is surjective with 

( )0 0Dext M = . The simplest example is that of classical space geometry with 
3n =  and ( )ad grad div= − . Similar definitions are also valid for the Janet and 

Spencer sequences. Also, vanishing of the first extension module amounts to the 
existence of a local parametrization by potential-like functions ([7]). 

According to a (difficult) theorem of (differential) homological algebra, the 
extension modules only depend on M and not on the previous differential se-
quences used ([17] [18]. They are used in agebraic geometry and have even been 
introduced in engineering sciences after 1990 (control theory) ([5] [6]). Howev-
er, though the extension modules are the only intrinsic objects that can be asso-
ciated with a differential module, they have surprisingly never been introduced 
in mathematical physics. The main problem is that a control system is controlla-
ble if and only if it is parametrizable by potentials while the systems involved can 
be parametrized in all classical physics (Cauchy or Maxwell equations are well 
known examples in [7]) apart from... Einstein equations ([8]). As for the tools 
involved, we let the reader compare ([2] [3]) to ([19] [20]). 

After presenting two motivating examples in Section 2, such a procedure will 
be achieved in Section 3 in such a way that the Spencer sequences involved, be-
ing isomorphic to tensor products of the Poincaré sequence for the exterior de-
rivative by finite dimensional Lie algebras, will have therefore vanishing zero, 
first and second extension modules when 3n ≥  ([4] [11]). For all results con-
cerning differential modules, we refer the reader to the (difficult) references ([5] 
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[21] [22] [23]). 

2. Two Motivating Examples 

EXAMPLE 2.1 
With 1, 2, 2,m n q K= = = =  , let us consider the inhomogeneous second 

order operator: 

22 12,Py d y u Qy d y y v≡ = ≡ − =  
We obtain at once through crossed derivatives: 

11 12 0y d u d v v= − − ⇒ Θ =  
and, by substituting, two fourth order CC for ( ),u v , namely: 

1122 1222 22
12 11

1112 11 1122

0
0

0
U d u d v d v u

W d V V d U
V d u d u d v
≡ − − − = 

⇒ ≡ + − = ≡ − − =   
However, the commutation relation P Q Q P≡   provides a single CC for 

( ),u v , namely: 

12 22 0C d u u d v≡ − − =  

and we check at once 12 11,U d C C V d C= + =  while 22 12C d V d U U= − + , hat is: 

( ) ( )0, 0 0 .U V C= = ⇔ =  
Using corresponding notations, let us compare the two following differential 

sequences: 

( ) ( )

( )

1 2

1

2 4 2

2 2

0 , , 0 (1)

0 , 0 (2)

y u v U V W

y u v C
′

→ Θ→ → → → →

→Θ→ → → →

 



 

Though the second order system considered is surely not FI because the 4 pa-
rametric jets of 2R  are ( )1 2 11, , ,y y y y  and the 4 (again !) parametric jets of 3R  
are ( )1 11 111, , ,y y y y  but the 4 (again !) parametric jets of 4R  are  
( )1 11 111 1111, , ,y y y y . More generally, we let the reader prove by induction that 

( )2 4, 0rdim R r+ = ∀ ≥ . The formal r-prolongation of (2), namely: 

( ) ( ) ( )4 4 20 , 0r r r rR J y J u v J C+ + +→ → → → →  

is exact because ( )( ) ( )( ) ( )( )4 5 6 2 3 4 1 2 2 0r r r r r r− + + + + + − + + = , even 
though the corresponding symbol sequence: 

( ) ( ) ( )* * *
4 4 20 , 0r r r rg S T y S T u v S T C+ + +→ → → → →  

is not exact because ( ) ( )( ) ( )( ) ( ) ( )2 3 1 5 1 5 4 1 0r r r r r+ − + − + − = + − + = ≠  
because the system considered is not formally integrable. 

On the contrary, the prolongations of (1) are not exact on the jet level. Indeed, 
the long sequence: 

( ) ( ) ( )8 8 6 20 , , 0R J y J u v J U V W→ → → → → →  
is not exact because we have 4 45 56 12 1 4 0− + − + = ≠ . 
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Now, considering the ring [ ]1 2,D d d=   of differential operators with coef-
ficients in the trivial differential field  , we have the “exact” sequences of dif-
ferential modules where 0M = : 

2 2 *

2 *

0 0 (1 )

0 0 (2 )

p

p

D D D D M

D D D M

→ → → → → →

→ → → → →  

where p is the canonical residual projection. However, and this is a quite delicate 
point rarely known even by mathematicians, a fortiori by physicists, they are not 
“strictly” exact even if the Euler-Poincaré characteristics both vanish because 
1 2 2 1 0− + − =  and 12 1 0+ =  (see [15] for definitions and more details). 
Roughly speaking, it follows that the “best” differential sequences are obtained 
by using only formally integrable operators/systems in such a way that sequences 
on the jet level can be studied through their symbol sequences, the “canonical” 
ones by using exclusively involutive operators/systems in such a way that what 
happens with   also happens with 1  and so on. It follows that the se-
quences (2) or (2*) are “better” than (1) or (1*) because they provide more in-
formation on the generating CC. 

However, the given system is not FI and it should be “better” to use another 
system providing more information. In particular, if we start wth a system 

( )q qR J E⊂  and set ( ) ( ) ( )q r r q r q q rR R J R J Eρ+ += =  , it is known that (in 
general) one can find two integers , 0r s ≥  such that the system  

( ) ( )s q r s
q r q r q rR Rπ + +
+ + +=  is formally integrable and even involutive with the same 

solutions ([1] [5] [6]). When all the operators are FI, the sequence is said to be 
strictly exact ([24]). 

In the present situation, it should be “better” to replace 2R  by ( )4
2 0R =  be-

cause ( )2
2R  is adding 0y =  while ( )3

2R  is adding 1 20, 0y y= =  and ( )4
2R  is 

adding 11 0y = . It follows that the Janet sequence for the injective trivially in-
volutive operator 2j  is providing even more information, along with the fact 
that the Spencer bundles vanish in the “fundamental diagram I” ([1] [4] [5]). 

We let the reader check that all the extension modules vanish because 0M =  
and to compare with the totally different involutive system defined by  

22 120, 0y y= =  with ( )00 0M ext M≠ ⇒ = , ( )1 0ext M ≠ , ( )2 0ext M ≠ . 
EXAMPLE 2.2 

• FIRST STEP With 3, 1, 2n m q= = = , let us consider the second order linear 
system ( )2 2R J E⊂  introduced by F.S. Macaulay in his 1916 book ([25]) 
(See also [6] for more details): 

3 2 1
33 23 11 220, 0, 0y y y yΦ ≡ = Φ ≡ − = Φ ≡ =  

Using muli-indices, we may introduce the operators 33 23 11 22, ,R d Q d d P d= = − = . 
Taking into account the 3 commutation relations [ ] [ ] [ ], 0, , 0, , 0Q R R P P Q= = =  
and the single Jacobi identity 

[ ] [ ] [ ] ( ), , , , , , 0, , ,P Q R Q R P R P Q P Q R     + + = ∀      , we obtain at once the fol-

lowing locally and strictly exact sequence where the order of each operator is 
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under its own arrow: 
1 2

2 2 2
0 1 3 3 1 0→Θ→ → → → →

 

 
However, the first operator   involved cannot be involutive because it is fi-

nite type, that is 0q rg + =  for a certain integer 0r ≥  as we must have an exact 
sequence ( )1 *

10 0n
q rT g−
+ −→ ∧ ⊗ →  and so on. The first prolongation is ob-

tained by adding the 9 PD equations: 

333 233 223 222 133

123 111 122 113 112

0, 0, 0, 0, 0,
0, 0, 0, 0

y y y y y
y y y y y

= = = = =

− = = = =  
and the second prolongation is obtained by adding the 15 PD equations 0ijkly = . 
We obtain therefore ( )2 6 3 3dim g = − = , ( )3 1dim g = , 4 = 0g . Nevertheless, 
the interesting fact is that 3g  is 2-acyclic without being 3-acycic and thus invo-
lutive. Indeed, we have the δ -sequences: 

2 * 3 * 3 *
3 2 30 0, 0 0T g T g T g

δ
→ ∧ ⊗ →∧ ⊗ → → ∧ ⊗ →  

Using the letter v for the symbol coordinates, the mapping δ  on the left is 
defined by: 

111,23 112,31 113,12 11,123

121,23 122,31 123,12 12,123

131,23 132,31 133,12 13,123

,
,

v v v v
v v v v
v v v v

+ + =

+ + =

+ + =  
that is to say 111,23 11,23v v= , 111,12 12,123v v= , 111,31 13,123v v= . The corresponding 
δ -map is thus injective and surjective, that is 3g  is 2-acyclic but cannot be also 
3-acyclic because of the inequality, ( ) ( )3 *

3 3 1 0dim T g dim g∧ ⊗ = = ≠ . The 
above sequence is thus very far from being a Janet sequence and we cannot 
compare it with the Spencer sequence. 
• SECOND STEP In the example of Macaulay, we have at once ( )2 7dim R =  

with the 7 parametric jets ( )1 2 3 11 12 13, , , , , ,y y y y y y y  and thus  
( ) ( ) 3

4 3 7 1 8 2dim R dim R= = + = =  with the only additional third order pa-
rametric jet ( 111y ). We notice that, when 2n = , the new system 2R  defined 
by 22 0y = , 12 11 0y y− =  is also finite type with 0ijry =  and thus 

( ) ( ) 2
3 2 4 2dim R dim R= = =  and we invite the reader to treat directly such 

an elementary example as an exercise and to compare (see [25] for this strik-
ing result on the powers of 2). Therefore, instead of starting with the previous 
second order operator 1  defined by 2R , we may now start afresh with the 
new third order operator 1  defined by 3R  which is not involutive again. 
We let the reader check as a tricky exercise or using computer algebra that 
one may obtain “necessarily” the following finite length differential sequence 
which is far from being a Janet sequence but for other reasons. 

3 51 2 4

0 1 2 3 4 53 1 2 1 1 1
0 0E F F F F F F→Θ→ → → → → → → →

   

 
3 51 2 4

3 1 2 1 1 1
0 1 12 21 46 72 48 12 0→Θ→ → → → → → → →

   

 

https://doi.org/10.4236/jmp.2021.1213106


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.1213106 1832 Journal of Modern Physics 
 

and we check that 1 12 21 46 72 48 12 0− + − + − + = . As 3g  is 2-acyclic, the 
third order operator   has a CC operator 1  of order 1 having a CC opera-
tor 2  of order 2 which is involutive, totally by chance, and we end with the 
Janet sequence for 2 . Such a situation is the only one we have met during the 
last... 40 years !. (see [15], p 119-126 for more details). 
• THIRD STEP We may finally start with the new operator   defined by the 

involutive system 4R  with symbol 4 0g = . The following “fundamental di-
agram I” only depends on its left commutative square and 0 4C R= . Each 
horizontal sequence is formally exact and can be constructed step by step. 
The interest is that we have *

0
r

rC T C= ∧ ⊗  because 4 0g = . It is neverthe-
less, even today, not so well known that the three differential sequences ap-
pearing in this diagram can be constructed “step by step” or “as a whole” ([1] 
[4] [5] [6]). Accordingly, the reader not familiar with the formal theory of 
systems of PD equations may find difficult to deal with the following defini-
tions of the Spencer bundles ( )r rC C E⊂  and Janet bundles rF  for an in-
volutive system ( )q qR J E⊂  of order q over E: 

( )
( ) ( ) ( )

( ) ( )( )

* 1 *
1

* 1 * *
1

* * 1 * *
1

r r
r q q

r r
r q q

r r r
r q q q

C T R T g

C E T J E T S T E

F T J E T R T S T E

δ

δ

δ

−
+

−
+

−
+

= ∧ ⊗ ∧ ⊗

= ∧ ⊗ ∧ ⊗ ⊗

= ∧ ⊗ ∧ ⊗ + ∧ ⊗ ⊗
 

For this reason, we prefer to use successive compatibility conditions, starting 
from the commutative square 4D j= Φ   on the left of the next diagram. The 
Janet tabular of the Macaulay system and its prolongations up to order 4 can be 
decomposed as follows ([26]): 

1 PDE order 4 class3 1 2 3
4 PDE order 4 class 2 1 2
10 PDE order 4 class1 1
9 PDE order 3
3 PDE order 2


 • • •
 • • •

• • •  

The total number of different single “dots” provides the 4 20 27 9 60+ + + =  
CC 1 . 

The total number of different couples of “dots” provides the 10 27 9 46+ + =  
CC 2 . 

The total number of different triples of “dots” provides the 9 3 12+ =  CC 

3 . 
We obtain therefore the fiber dimensions of the successive Janet bundles in 

the Janet sequence. 
The same procedure can be applied to the Spencer bundles in the Spencer se-

quence by introducing the new 8 parametric jet indeterminates: 
1 2 3 4 5 6 7 8

1 2 3 11 12 13 111, , , , , , ,z y z y z y z y z y z y z y z y= = = = = = = =  

in the first order system defined by 24 PD equations (8 of class 3 + 8 of class 2 + 
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8 of class 1): 
1 2 1 3 1 4 5 8
1 2 3 1
6 8 7 8
3 3 3

0, 0, 0, , 0, ,

0, , 0, , 0

z z z z z z z z

z z z z

− = − = − = − =

− = = =

 

   

( ) ( ) ( ) ( )

34 1 2

34 1 2

31 2

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 0 0 0

0 0

0 0

0 0

0 0 0 0

Dj D D

Dj D D

D

C C C C

E C E C E C E C E

E F F F F

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓ ↓



 

 

34 1 2

34 1 2

31 2

0 1 2 3

0 0 0 0

0 8 24 24 8 0

0 1 35 84 70 20 0

0 1 27 60 46 12 0

0 0 0 0

Dj D D

Dj D D

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓ ↓



 

 
The morphisms 1 2 3, ,Φ Φ Φ  in the vertical short exact sequences are induc-

tively induced from the morphism 0Φ = Φ  in the first short exact vertical se-
quence on the left. The central horizontal sequence can be called “hybrid se-
quence” because it is at the same time a Spencer sequence for the first order sys-
tem ( ) ( )( )5 1 4J E J J E⊂  over ( )4J E  and a Janet sequence for the involutive 
injective operator ( )4 4:j E J E→ . It can be constructed step by step, starting 
with the short exact sequence: 

( ) ( )( ) ( )5 1 4 10 0J E J J E C E→ → → →
 

0 56 140 84 0→ → → →  
In actual practice, as the system ( )2 2R J E⊂  is homogeneous, it is thus formally 

integrable and finite type because the system ( ) ( ) ( )4 2 2 4R R ker J Eρ= = Φ ⊂  is 
trivially involutive with a symbol 4 0g = . Accordingly, 4j= Φ   is an invo-
lutive operator of order 4 and we obtain a finite length Janet sequence which is 
formally exact both on the jet level and on the symbol level, that can only con-
tain the successive first order operators 1 2 3, ,   . For example, one can deter-
mine 2 2 1 1 2:j F F= Ψ →  just by counting the dimensions, either in the long 
exact jet sequence: 
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( ) ( ) ( )
2

6 6 2 0 1 1 20 0R J E J F J F F
Ψ

→ → → → → →  
( )20 8 84 270 240 0dim F→ → → → → →  

and obtain ( )2 8 84 270 240 46dim F = − + − + = . 
However, one can also use the fact that ( ) 1dim E =  and 4 60 0g g= ⇒ =  

while introducing the restriction ( )2σ Ψ  of 2Ψ  to ( )*
1 1 1T F J F⊗ ⊂  in the 

long exact symbol sequence: 
( )2

* * *
6 2 0 1 20 0S T S T F T F F

σ Ψ

→ → ⊗ → ⊗ → →  
( )20 28 162 180 0dim F→ → → → →  

in order to obtain again ( )2 28 162 180 46dim F = − + = . 
We wish good luck to anybody using Computer Algebra because one should 

have to deal with a matrix 540 600×  in order to describe the prolongation 
morphism ( ) ( )3 0 2 1J F J F→ . Nevertheless, in order to give a hint, we recall the 
vanishing of the Euler-Poincaré characteristic as we can check successively: 

8 24 24 8 0, 1 35 84 70 20 0, 1 27 60 46 12 0− + − = − + − + − = − + − + − =  

In the case of finite type systems, the usefulness of the Spencer sequence is so 
evident, like on such an example, that it needs no comment. 

We invite the reader to treat separately but similarly the system: 

33 11 23 22 110, 0, 0y y y y y− = = − =  

and to compare the various extension modules. 

3. Solution 

According to the previous sections, it only remains to consider the two cases 
1n =  and 2n = . For simplicity, we shall only consider the situation of the Euc-

lidean metric and the corresponding linear systems. We let the reader treat by 
himself the nonlinear counterparts. 
• CASE 1n =  

With 0ω ≠ , we may consider a section ( ) ( ) ( )( )3 , , ,x xx xxxx x xξ ξ ξ ξ ξ=  and 
introduce the classical Killing system ( )1 1R J T⊂  by means of the formal Lie 
derivative: 

( )1 2 0x xL ξ ω ωξ ξ ωΩ ≡ ≡ + ∂ =  

Similarly, with the Christoffel symbol 1
2 xγ ω
ω

= ∂ , we may consider: 

( )2 0xx x xL ξ γ ξ γξ ξ γΓ ≡ ≡ + + ∂ =  

The conformal Killing system can be defined with a conformal factor as: 

( ) ( )1 2 2x xL A xξ ω ωξ ξ ω ωΩ ≡ ≡ + ∂ =  
and its first prolongation becomes: 

( ) ( )2 xx x x xL A xξ γ ξ γξ ξ γΓ ≡ ≡ + + ∂ =  

https://doi.org/10.4236/jmp.2021.1213106


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.1213106 1835 Journal of Modern Physics 
 

The elimination of ( )A x  or ( )xA x  does not provide any OD equation of order 
1 or 2. Moreover, we let the reader check that ( ) ( ) ( )2 2 0x xj A x A xξ ξ= ⇒ ∂ − =  
as a way to understand the part plaid by the Spencer operator and the reason for 
introducing ( )2A x . With more details, dividing the Killing system by 2ω , we 
get ( )x A xξ γξ+ = . Differentiating this OD equation, we get: 

( )x x x x x A xξ γ ξ γξ∂ + ∂ + ∂ = ∂  
and we just need to substract the OD equation ( )xA xΓ =  in order to get: 

( ) ( ) ( ) ( )x x xx x x x xA x A xξ ξ γ ξ ξ∂ − + ∂ − = ∂ −  
In order to escape from the previous situation while having a vanishing sym-

bol 3 0g = , we may consider the new unusual prolongation: 

( )2 0xxx xx x x xxξ γξ γ ξ ξ γ+ + ∂ + ∂ =  
and substract the second order OD equation 0Γ =  multiplied by γ  while in-

troducing the new geometric object 21
2xν γ γ= ∂ −  in order to obtain the third 

order infinitesimal Lie equation: 

( )3 2 0xxx x xL ξ ν ξ νξ ξ ν≡ + + ∂ =  
The nonlinear framework, not known today because the work of Vessiot is 

still not acknowledged, explains the successive inclusions ( ) ( )1 1,j jγ ω ν γ∈ ∈ . 
Indeed, if we consider the translation group ( ),y x a a cst= + =  and the bigger 
isometry group ( ), ,y x a y x a a cst= + = − + = , the inclusion of groups of the 
real line: 

translation group isometry group affine group projective group⊂ ⊂ ⊂  

with the respective finite Lie equations in Lie form with the jet coordinates 
( ), , , ,x xx xxxx y y y y : 

( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )

2

2
2

, , ,

3
2

xx
x x x

x

xxx xx
x

x x

y
y y x y y x y y x

y

y y
y y x

y y

α α ω ω γ γ

ν ν

= = + =

 
− + = 

   

where we recognize the Schwarzian third order differential invariant of the pro-
jective group. 

Of course, we have 1 1 0 0α ω γ ν= ⇒ = ⇒ = ⇒ =  and the respective linea-
rizations: 

2
31 0, 0 0, 0 0
2

xxx xx
x x xx xx xxx

x x

y y
y y

y y
ξ ξ ξ

 
= ⇒ = = ⇒ = − = ⇒ = 

   

The Janet tabular of the conformal system order 3 can be decomposed as fol-
lows: 

{1 PDE order 3 class1 1
 

The total number of different single “dots” provides the 0 CC 1 . 
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We obtain therefore the fiber dimensions of the successive Janet bundles in 
the Janet sequence. 

The same procedure can be applied to the other canonical differential se-
quences. 

When 1n = , one has 3 parameters (1 translation + 1 dilatation + 1 elation) 
and we get the following “fundamental diagram I “ only depending on the left 
commutative square: 

3 1

3 1

0 0

0 3 3 0

0 1 4 3 0

0 1 1 0

0

j D

j D

Spencer

Janet

↓ ↓

→ Θ → → →
↓

→ → → →
↓Φ ↓

→ Θ → → →
↓







 

In this diagram, the operator  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 : , , ,x x xx xx xxx xxxj x x x x x x x x xξ ξ ξ ξ ξ ξ ξ ξ ξ→ = ∂ = ∂ = ∂ =  

has compatibility conditions 1 3 0D ξ =  induced by d and the space of solutions 
Θ  of ( ) ( )3 : xxxD j x xξ ξ= Φ → ∂

 is generated over the constants by the 
three infinitesimal generators: 

1 xθ = ∂  (translation), 2 xxθ = ∂  (dilatation), 2
3

1
2 xxθ = ∂  (elation) 

of the action and coincides with the projective group of the real line. 
• CASE 2n =  

The classical approach is to consider the infinitesimal conformal Killing sys-
tem for 2n =  and eliminate the infinitesimal conformal factor ( )2A x  as fol-
lows by introducing the formal and the effective Lie derivatives such that 

( )( ) ( )1L j ξ ξ=  : 

( ) ( ) ( ) ( )1 1 2 2
1 1 2 1 2

2 1 1 2
2 1 2 1

2 , 0,

0, 0

L A x A x A xξ ω ω ξ ξ ξ ξ

ξ ξ ξ ξ

Ω ≡ = ⇒ = + = =

⇒ − = + =  

that is to say the elimination of A is just producing locally the two well known 
Cauchy-Riemann equations allowing to define infinitesimal complex transforma-
tions of the plane, that is to say an infinite dimensional Lie pseudogroup which is 
by no way providing a finite dimensional Lie group. As such an operator has no 
compatibility condition (CC), we obtain by one prolongation 2 2 4× =  second 
order equations but another prolongation does not provide a zero symbol at or-
der 3 and it is just such a delicate step that we have to overcome by adding 
2 4 8× =  homogeneous third order PD equations. The only possibility is to 
consider the following system and to prove that it is defining a system of infini-
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tesimal Lie equations leading to ( ) ( )2 1 2 3 4 2 4 8 20 14 6× + + + − + + = − =  infi-
nitesimal generators. 

2 1 1 2 2 1 1 2
22 12 22 12 12 11 12 11
2 1 1 2
2 1 2 1

0

0, 0, 0, 0

0, 0

k
ijrξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

 =
 − = + = − = + =
 − = + =  

where the 4 second order PD equations can also be rewritten with 11 22d d∆ = +  
as: 

2 2 2
22 11

1 1 1
22 11

2 1
12 11
1 2
12 11

0,

0,

0,

0

ξ ξ ξ

ξ ξ ξ

ξ ξ

ξ ξ

∆ ≡ + =

∆ ≡ + =

− =

+ =

 

The general solution of the 8 third order PD equations can be written with 12 
arbitrary constant parameters as: 

( ) ( )2 21 1 1 2 2 1 21 1
2 2

a x bx x c x dx ex fξ = + + + + +
 

( ) ( )2 22 1 1 2 2 1 21 1
2 2

a x bx x c x dx ex gξ = + + + + +
 

Taking into account the first and second order PD equations, we must have 
the relations: 

, , 0, 0, , 0b a c b a b b c e d d e= = + = + = = + =  

and the final number of parameters is indeed reduced to 2 1 1 2 6+ + + =  arbi-
trary parameters. Collecting the above results, we obtain the 6 infinitesimal ge-
nerators: 

( ) ( )( )2 21 2 1 2
1 2

1
2

a x x x x→ − ∂ + ∂
 

( ) ( )( )2 21 2 2 1
1 2

1
2

b x x x x→ ∂ + − ∂
 

1 2 1 2
2 1 1 2,e x x d x x− → ∂ − ∂ → ∂ + ∂  

1 2,f g→∂ → ∂  

We find back the two infinitesimal generators of the elations, namely: 

( ) ( )( ) ( )

( ) ( )( )

2 21 2 1 1 2
1 1 1 2

2 21 2 1 2
1 2

1
2

1
2

x x x x x

x x x x

θ = − + ∂ + ∂ + ∂

= − ∂ + ∂
 

and 2θ  obtained by exchanging 1x  with 2x . 
Contrary to the situation met when 3n ≥  where one starts with a groupoid 

of order 1 and obtains groupoids of order 2 or 3 after one or two prolongations, 
in the present situation, we have to check directly the commutation relations for 
the six infinitesimal generators already found, namely: 
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[ ] [ ]1 2
1 1 1 2 2 1

1 2
2 1

, , ,x x

x x

θ θ∂ = ∂ + ∂ ∂

= ∂ − ∂
 

[ ]

1 2 1 2
2 1 1 2 1 2 1

1 1 2

, , ,

, ,
0

x x x xθ θ θ

θ θ θ

   ∂ − ∂ = − ∂ + ∂   
=

=

 

We have thus obtained in an unexpected way the desired 2 translations, 1 ro-
tation, 1 dilatation and 2 elations of the conformal group when 2n = . 

At order one, we may consider the classical Killing system 1R  obtained by 
preserving ω , the Weyl system 1R  and the conformal system 1R̂  with 

( )1 1 1 1
ˆR R R J T⊂ = ⊂  and ( )1 1 1dim R R = . At order two, we have the strict in-

clusions 2 2 2
ˆR R R⊂ ⊂  with ( )2 1 1R Rρ=  preserving ( ) ( )1, jω γ ω

,  
( )2 1 1R Rρ⊂   obtained by preserving ( )ˆ ,ω γ  and ( )2 1 1

ˆ ˆR Rρ=  obtained by 
preserving ( ) ( )1ˆ ˆ ˆ, jω γ ω

. The main difference with the case 3n ≥  is that 
now ( )3 2 1R Rρ=  has a symbol 3 0g = , ( )3 1 2R Rρ=   has also a symbol 

3 0g =  but that ( )3 1 2
ˆ ˆR Rρ⊂  with strict inclusion in order to have now 

3ˆ 0g = , even though ( )1 2ˆ 0gρ ≠ . However, we are now able to deal with three 
trivially involutive systems having zero symbols and we have the strict inclusions 

3 3 3
ˆR R R⊂ ⊂  with respective dimensions 3 4 6< <  according to the basic in-

equalities ( ) ( )( ) ( )( )1 2 1 2 1 1 2 2n n n n n n+ < + + < + +  valid in arbitrary di-
mension 1n ≥ . The interest of this result is that we have for the Spencer bun-
dles the strict inclusions 0 0 0

ˆC C C⊂ ⊂  of the zero Spencer bundles, leading to 
the strict inclusions of the respective linear Spencer sequences because: 

* *
3 3 3 0 0

*
0

ˆ 0 , ,
ˆ ˆ ˆ

r r
r r

r
r r r r

g g g C T C C T C

C T C C C C

= = = ⇒ = ∧ ⊗ = ∧ ⊗

= ∧ ⊗ ⇒ ⊂ ⊂

 





 
in agrement with many recent results ([21] [22] [23] [24]). As in Example 2.2, 
we let the reader introduce the 6 parametric jet indeterminates  

1 1 2 2 3 1 4 2 5 1 6 2
1 1 11 11, , , , ,z y z y z y z y z y z y= = = = = = . 

The Janet tabular of the conformal Killing system and its prolongations up to 
order 3 can be decomposed as follows: 

2 PDE order 3 class 2 1 2
6 PDE order 3 class1 1
4 PDE order 2
2 PDE order1


 •
 • •
 • •  

The total number of different single “dots” provides the 6 8 4 18+ + =  CC 

1 . 
The total number of different couples of “dots” provides the 4 2 6+ =  CC 2 . 
We obtain therefore the fiber dimensions of the successive Janet bundles in 

the Janet sequence. 
The same procedure can be applied to the other canonical differential se-

quences. 
When 2n = , one has 6 parameters (2 translations + 1 rotation + 1 dilatation 
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+ 2 elations) and we get the following “fundamental diagram I” only depending 
on the left commutative square: 

3 1 2

3 1 2

1 2

0 1 2

0 0 0

0 6 12 6 0

0 2 20 30 12 0

0 2 14 18 6 0

0 0 0

j D D

j D D

Spencer

Janet

↓ ↓ ↓

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓ Φ ↓ Φ

→ Θ → → → → →
↓ ↓ ↓



 

 
• CASE 3n =  

The Janet tabular of the conformal Killing system and its prolongations up to 
order 3 can be decomposed as follows: 

3 PDE order 3 class3 1 2 3
9 PDE order 3 class 2 1 2
18 PDE order 3 class1 1
15 PDE order 2
5 PDE order1


 • • •
 • • •

• • •  

The total number of different single “dots” provides the 9 36 45 15 105+ + + =  
CC 1 . 

The total number of different couples of “dots” provides the 18 45 15 78+ + =  
CC 2 . 

The total number of different triples of “dots” provides the 15 5 20+ =  CC 

3 . 
We obtain therefore the fiber dimensions of the successive Janet bundles in 

the Janet sequence. 
The same procedure can be applied to the other canonical differential se-

quences and we get the desired “fundamental diagram I” below: 

3 31 2

3 31 2

31 2

0 1 2 3

0 0 0 0

0 10 30 30 10 0

0 3 60 135 108 30 0

0 3 50 105 78 20 0

0 0 0 0

j DD D

j DD D

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓ ↓
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We have 10 parameters (3 translations, 3 rotations, 1 dilataion, 3 elations). 
The computation of ( )( )3 30dim C E =  needs to determine the rank of a 

1200 1350×  matrix ! 

4. Conclusion 

We have shown that the true important specific property of the conformal 
group, at least for applications to physics, is that, even if it is defined as a specific 
Lie pseudogroup of transformations, it is in fact a Lie group of transformations 
with a finite number ( )( )1 2 2n n+ +  of parameters or infinitesimal generators 
when 1n ≥ . Accordingly, in dimension 1n = , we have no OD equation of or-
der 1 and 2, a result leading therefore to add 1 unexpected OD equation of order 
3. Similarly, when 2n = , we obtain the Cauchy-Riemann PD equations defining 
an infinite dimensional Lie pseudogroup and we have therefore to add, again in 
a totally unexpected way, as many third order PD equations as the number of jet 
coordinates of strict order 3. When 3n = , the fact that the analogue of the Weyl 
operator for describing the CC of the conformal operator is of order 3 is rather 
un-pleasant but this is nothing compared to the fact that, when 4n = , the ana-
logue of the Bianchi operator for describing the CC of the previous second order 
CC playing the part of the Weyl CC is of order 2 again. And we don’t speak 
about the case 5n =  ([9] [15]). Though these results can be checked by means 
of computer algebra and are confirmed by the use of the fundamental diagram I, 
they do not seem to be known today. Accordingly, any physical theory (existence 
of gravitational waves or black holes... ) which is not coherent with differential 
homological algebra (vanishing of the first and second extension modules for the 
Poincaré sequence in the previous examples...) must be revisited in the light of 
these new mathematical tools, even if it seems apparently well established ([8] 
[27] [28] [29] [30]). 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudo-

groups. Gordon and Breach, New York. (Russian Translation: MIR, Moscow, 1983) 

[2] Pommaret, J.-F. (1983) Differential Galois Theory. Gordon and Breach, New York. 

[3] Pommaret, J.-F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach, New 
York. 

[4] Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Kluwer, 
Dordrecht. https://doi.org/10.1007/978-94-017-2539-2 

[5] Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-010-0854-9 

[6] Pommaret, J.-F. (2001) Algebraic Analysis of Control Systems Defined by Partial 
Differential Equations. In: Advanced Topics in Control Systems Theory, Springer, 

https://doi.org/10.4236/jmp.2021.1213106
https://doi.org/10.1007/978-94-017-2539-2
https://doi.org/10.1007/978-94-010-0854-9


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.1213106 1841 Journal of Modern Physics 
 

Berlin, Lecture Notes in Control and Information Sciences 311, Chapter 5, 155-223.  
https://doi.org/10.1007/11334774_5 

[7] Pommaret, J.-F. (2010) Acta Mechanica, 215, 43-55.  
https://doi.org/10.1007/s00707-010-0292-y 

[8] Pommaret, J.-F. (2013) Journal of Modern Physics, 4, 223-239.  
https://doi.org/10.4236/jmp.2013.48A022 

[9] Pommaret, J.-F. (2O16) Journal of Modern Physics, 7, 699-728.  
https://doi.org/10.4236/jmp.2016.77068 

[10] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 371-401.  
https://doi.org/10.4236/jmp.2019.103025 

[11] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1454-1486.  
https://doi.org/10.4236/jmp.2019.1012097 

[12] Spencer, D.C. (1965) Bulletin of the American Mathematical Society, 75, 1-114. 

[13] Eisenhart, L.P. (1926) Riemannian Geometry. Princeton University Press, Prince-
ton. https://doi.org/10.1090/coll/008 

[14] Vessiot, E. (1903) Annales Scientifiques de l’École Normale Supérieure, 20, 411-451.  
https://doi.org/10.24033/asens.529 

[15] Pommaret, J.-F. (2016) Deformation Theory of Algebraic and Geometric Structures. 
Lambert Academic Publisher (LAP), Saarbrucken. https://arxiv.org/abs/1207.1964  
https://doi.org/10.1007/BFb0083506 

[16] Pommaret, J.-F. (2015) From Thermodynamics to Gauge Theory: The Virial Theo-
rem Revisited. In: Gauge Theories and Differential Geometry, NOVA Science Pub-
lisher, Hauppauge, 1-46. https://doi.org/10.4236/jmp.2016.77068 

[17] Northcott, D.G. (1966) An Introduction to Homological Algebra. Cambridge Uni-
versity Press, Cambridge. 

[18] Rotman, J.J. (1979) An Introduction to Homological Algebra. Academic Press, 
Cambridge. 

[19] Gasqui, J. and Goldschmidt, H. (1984) Déformations Infinitésimales des Structures 
Conformes Plates. Progress in Mathematics, Vol. 52, Birkhauser, Boston. 

[20] Kumpera, A. and Spencer, D.C. (1972) Lie Equations. Ann. Math. Studies 73, Prin-
ceton University Press, Princeton. https://doi.org/10.1515/9781400881734 

[21] Björk, J.-E. (1993) Analytic D-Modules and Applications. Mathematics and Its Ap-
plications, Vol. 247. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-017-0717-6 

[22] Kashiwara, M. (1995) Algebraic Study of Systems of Partial Differential Equations. 
Mémoires de la Société Mathématique de France, 63. (Transl. from Japanese of His 
1970 Master’s Thesis) 

[23] Schneiders, J.-P. (1994) Bulletin de la Société Royale des Sciences de Liège, 63, 
223-295.  

[24] Pommaret, J.-F. (2015) Multidimensional Systems and Signal Processing, 26, 
405-437. https://doi.org/10.1007/s11045-013-0265-0 

[25] Macaulay, F.S. (1916) The Algebraic Theory of Modular Systems, Cambridge 
Tracts, Vol. 19. Cambridge University Press, London. Stechert-Hafner Service 
Agency, New-York, 1964. https://doi.org/10.3792/chmm/1263317740 

[26] Janet, M. (1920) Journal de Mathematiques, 8, 65-151. 

[27] Pommaret, J.-F. (2017) Journal of Modern Physics, 8, 2122-2158.  
https://doi.org/10.4236/jmp.2017.813130 

https://doi.org/10.4236/jmp.2021.1213106
https://doi.org/10.1007/11334774_5
https://doi.org/10.1007/s00707-010-0292-y
https://doi.org/10.4236/jmp.2013.48A022
https://doi.org/10.4236/jmp.2016.77068
https://doi.org/10.4236/jmp.2019.103025
https://doi.org/10.4236/jmp.2019.1012097
https://doi.org/10.1090/coll/008
https://doi.org/10.24033/asens.529
https://arxiv.org/abs/1207.1964
https://doi.org/10.1007/BFb0083506
https://doi.org/10.4236/jmp.2016.77068
https://doi.org/10.1515/9781400881734
https://doi.org/10.1007/978-94-017-0717-6
https://doi.org/10.1007/s11045-013-0265-0
https://doi.org/10.3792/chmm/1263317740
https://doi.org/10.4236/jmp.2017.813130


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.1213106 1842 Journal of Modern Physics 
 

[28] Pommaret, J.-F. (2018) New Mathematical Methods for Physics. Mathematical 
Physics Books, Nova Science Publishers, New York, 150 p. 

[29] Pommaret, J.-F. (2020) Nonlinear Conformal Electromagnetism and Gravitation.  
https://arxiv.org/abs/2007.01710   

[30] Pommaret, J.-F. (2021) Journal of Modern Physics, 12, 453-482. 
https://doi.org/10.4236/jmp.2021.124032  

 
 

https://doi.org/10.4236/jmp.2021.1213106
https://arxiv.org/abs/2007.01710
https://doi.org/10.4236/jmp.2021.124032

	The Conformal Group Revisited
	Abstract
	Keywords
	1. Introduction
	2. Two Motivating Examples
	3. Solution
	4. Conclusion
	Conflicts of Interest
	References

